
Integrating BDI Agents into a MATSim Simulation

Lin Padgham1 and Kai Nagel2 and Dhirendra Singh3 and Qingyu Chen 4

Abstract.

MATSim is a mature and powerful traffic simulator, used for large
scale traffic simulations, primarily to assess likely results of various
infrastructure or road network changes. More recently there has been
work to extend MATSim to allow its use in applications requiring
what has been referred to as “within day replanning”. In the work
described here we have coupled MATSim with a BDI (Belief De-
sire Intention) system to allow both more extensive modelling of the
agent’s decision making, as well as reactivity to environmental situ-
ations. The approach used allows for all agents to be “intelligent” or
for some to be “intelligent”/reactive, while others operate according
to plans that are static within a single day. The former is appropriate
for simulations such as a bushfire evacuation, where all agents will be
reacting to the changing environment. The latter is suited to introduc-
ing agents such as taxis into a standard MATSim simulation, as they
cannot realistically have a predetermined plan, but must constantly
respond to the current situation. We have prototype applications for
both bushfire evacuation and taxis. By extending the capabilities of
MATSim to allow agents to respond intelligently to changes in the
environment, we facilitate the use of MATSim in a wide range of
simulation applications. The work also opens the way for MATSim
to be used alongside other simulation components, in a simulation
integrating multiple components.

1 Introduction

MATSim (Multi-Agent Transport Simulation, [4, 5, 19]) is a traf-
fic simulation software framework built around two principles: (1)
Behavioral entities, such as travellers or taxi drivers, but also, say,
traffic signals, are resolved individually. (2) The system should be
fast enough to run on large scenarios with several millions of trav-
ellers [5]. The framework uses a co-evolutionary iterative approach
to move the simulated system towards a user equilibrium [17]: Each
synthetic traveller has several daily plans, one of them “selected”;
all selected plans are executed in a synthetic reality and then scored
based on their performance; plans with low scores are removed while
plans with high scores are duplicated and mutated (cf. [1]). The result
is that each synthetic traveller individually improves his/her plans,
conditional on the environment generated by the other synthetic trav-
ellers. Mutation can include various choice dimensions, such as route
choice [16], departure time choice [4], mode choice [10], activity lo-
cation choice [11], etc.

A shortcoming of the original approach is that the synthetic trav-
ellers can only replan between iterations [17]; so-called “within-day”
or “en-route” replanning [2] is not possible. However, in some appli-

1 RMIT University, Australia, email: lin.padgham@rmit.edu.au
2 TU Berlin, Germany, email: kai.nagel@tu-berlin.de
3 RMIT University, Australia, email: dhirendra.singh@rmit.edu.au
4 RMIT University, Australia, email: s3257935@student.rmit.edu.au@rmit.edu.au

cations it is difficult, or impossible, to model appropriately without
the ability to generate or modify plans reactively during the within-
day execution. For example, to understand possible emergency evac-
uation scenarios, it does not make sense to evolve a stable equilib-
rium. Rather one wants to model individuals dynamically adjusting
their plans depending on the unfolding situation. Similarly, within
a transport simulation, it is difficult to model taxis in the standard
manner. It is far preferable to have them dynamically determine their
plans throughout the day.

Two approaches have currently been followed to address this
shortcoming. One approach [7] leaves the plan-following agents in-
tact, but from time to time selects certain agents and modifies their
plans in reaction to external conditions. For example, the routes
of agents within a certain radius of a disturbance are recomputed,
say, every 60 simulation time steps. Another approach [13] replaces
the original MATSim DriverAgent object, which follows the pre-
computed plan, by a new object, which does not know its plan be-
forehand but instead decides on every next step when it is necessary.

A problem with both approaches is that they are somewhat ad-hoc:
They have grown out of the specific MATSim environment. In both
of the two approaches, the programmer has to work deeply within the
MATSim environment, in order to either be able to replace existing
plans while the agent is under way, or in order to be able to answer
the specific requests that the simulation may have towards the agent.
This is not always desirable, and requires the developer to have an in
depth understanding of MATSim internals.

This paper presents an attempt at a more general approach,
grounded in the general computer science principles of modularity.
We use the very general and standard view of situated agents in an
environment as taking percepts as input from the environment and
producing actions which take effect in the environment [20]. We also
use a well understood paradigm for modelling agent decision mak-
ing, the Belief, Desire, Intention (BDI) approach, supporting a pow-
erful yet intuitive model of human decision making, which balances
commitment to specific goals, with constant ability to react to envi-
ronmental changes. There are some BDI platforms (e.g. Jack [22]
and Gorite [12]) which are very fast, and are capable of running tens
or hundreds of thousands of agents. Plans are underway to extend this
to even larger numbers as required by some MATSim applications,
but already many applications can benefit from the addition of tens
of thousands of BDI agents, within MATSim, possibly alongside a
larger number of standard agents.

The main contributions of this work are:

• it allows for selected MATSim agents to have a complex deci-
sion making capability, that is both goal oriented, and responsive
to changes in the environment, using the well established BDI
paradigm. This is done using a general purpose interface of per-
cepts and actions, for each agent, as described in section 2.1.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-681

681



• it provides a modular approach to increasing the complexity of
some of the agents in MATSim, with minimal impact on the cur-
rent system. We show how the BDI reasoning can be incorporated
into the existing MATSim infrastructure, using existing experi-
mental MATSim packages. We also sketch an alternative possible
approach within MATSim, to this integration (section 2.2).

• it supports representation of high level reasoning at an appropriate
level of abstraction, separated out from simulation of the phys-
ical aspects. We describe in section 2.3, a generic infrastructure
that can be incorporated into a BDI platform, to allow the per-
cept/action interface to work seamlessly.

• it also allows for the decision making to receive information from
a part of the simulation not modelled within MATSim, but affect-
ing what happens in MATSim, such as fire spread data. This is
explored further in our bushfire evacuation example, based on an
application developed with the Country Fire Authority (section 3).

2 Integration Architecture

The integrated BDI/MATSim architecture allows selected MATSim
agents to register with the BDI system, creating a decision making
agent for each registered MATSim agent, as shown in figure 1. These
decision making agents can then inform their MATSim counterparts
regarding what they should be doing (actions), and can receive rel-
evant environmental information from their MATSim counterparts
(percepts), which can in turn affect the decision making. The BDI
component can be seen as the agent “brain” while MATSim manages
the agent “body” within the environment. Some MATSim agents may
not require BDI counterparts, but simply follow their evolved daily
plans. Depending on the application, there may also be BDI agents
which are not represented in MATSim, but do have a role within the
BDI component. The taxi job controller is such an agent in our ap-
plication incorporating taxis into MATSim.

BDI System ABM System

actions

percepts
statusA1

A2

A3

A1

A2

A3

Figure 1. Some agents have a BDI brain and a MATSim body

2.1 The conceptual interface

The communication interface between the BDI representation of an
agent and its MATSim counterpart is defined in terms of the standard
agent concepts, actions and percepts. We have provided an infras-
tructure which is similar to that described in [15] which packages up
all agent and percept information as a single message, with the appro-
priate actions/percepts collected from and distributed to the relevant
agents by this infrastructure. To distinguish the high level actions
managed via this infrastructure from related but different low level
actions that agents perform within MATSim, we refer to the actions
as BDI-actions.

• BDI actions are basically the level at which the reasoning agent
decides to do something which can be carried out by the MAT-
Sim agent. For example in all the applications where we have
used MATSim, drive-to(loc) is one of the BDI-actions. The
MATSim counterpart executes this high level BDI-action by plan-
ning the route from the current position to the required location
and inserting the relevant legs into the MATSim plan. Standard
MATSim behaviour will then cause the agent to follow this route
to the destination. The MATSim counterpart reports when the ac-
tion succeeds, or when it fails.
BDI actions are initiated by the BDI agent, which can also suspend
or abort them. The BDI agent thus has control at all times over
what action is being pursued, but the actual detailed carrying out
is done by the MATSim agent. BDI-actions will generally take
more than a single MATSim timestep to complete.

• Percepts are inputs “pushed” from the MATSim system, to the
BDI system, providing information which conceptually should be
perceived by each reasoning (BDI) agent. These percepts contain
information that should automatically be noticed, and may trigger
some response from the BDI agent. A traffic blockage may well
be such a percept.

Additionally, the infrastructure provides a query mechanism to al-
low information to be “pulled” from the MATSim system, on de-
mand, in order to reason about a particular situation. For example
when deciding whether to drive-to location A or location B, the BDI
agent may want to know the distance to each of these from its current
location. This is done via a BDI sensing action, which sends a query,
and results in a response percept being provided. Queries may be sent
at any time, and may require some calculations, but are responded
to immediately, and are guaranteed not to cause any changes to the
MATSim environment. Their results may be stored in BDI agent be-
liefs, but the developer should be aware that such beliefs will not be
updated until there is a new query.

Figure 2 shows the details of these interface communications.

BDI Actions < action-id, parameters, status>
Percepts < percept-type, value>

(value may be a complex object)
Queries < query, response >

Messages provided to specific agents via the interface.

State Description

INITIATE Initiated by BDI agent and to be executed
RUNNING Being executed by the simulation agent
PASS Completed as expected
FAIL Aborted/failed by the simulation agent
DROPPED Aborted by the BDI agent

Action states

Figure 2. The data that is passed between BDI and MATSim

2.2 Integration into MATSim

The MATSim package is made up of 5 separate components [3]:
Demand Modelling, which sets up the scenario of the network
and agents with plans, Mobility Simulation which runs the
simulation for one day, Scoring which gives a score to each plan
depending on how well the actual execution matched what was ex-
pected with regard to the plan, Replanning which takes some

L. Padgham et al. / Integrating BDI Agents into a MATSim Simulation682



number of agents with poorly performing plans, and generates new
plans for them to try on the next day (using genetic algorithms)
and Result Analysis which provides statistics and analysis at
the end of the simulation. In this work we are primarily concerned
with the Mobility Simulation, although the other compo-
nents may still be used.

Our aim is to allow at least some of the agents (possibly all)
to modify their plans during the execution of the Mobility
Simulation, depending on factors in the environment. Figure 3
shows how MATsim (Mobility Simulation) has been extended with
our MATSim Module containing:

• the ModuleInterface which communicates about actions and per-
cepts with the BDI reasoning component, as described in section
2.1;

• the BDIMATSimWithinDayEngine which translates BDI Actions
into updates to MATSim plans, as well as notifying percepts and
action updates to the ModuleInterface; and

• the AgentActivityEventHandler which implements callbacks from
the relevant MATSim events and provides percepts to the Within-
DayEngine.

MATSim

MATSim Module

MATSimModel

(ModuleInterface)

AgentActivityEventHandler BDIMATSimWithinDayEngine

Relavent Matsim

events
Simulation Time Step Events

New Actions
Action updates and 

percepts

Updates to agent

location and 

notification of destination 

arrival events

BDIAgentModel

(Interface)

New Actions
Action Updates

and Percepts

Sensing actions 

handled by querying 

withinday engine 

for cached information

Figure 3. The enhanced framework which integrates the BDI reasoning
with the MATSim simulation

Since MATSim (Mobility Simulation) progresses in
time steps, we use a straightforward approach to man-
aging the integration with the BDI system as follows:

Algorithm 1:

1 for each time step do

2 send percepts and action status to BDI module ;
3 possibly respond to queries from BDI module;
4 receive agent actions from BDI module ;
5 provide BDI agent actions to MATsim agents ;
6 move MATsim agents ;

This was achieved by starting with components developed by
Dobler [7], but re-writing most of it for the purposes here. In par-
ticular, rather than collecting and centrally determining which agents
will have changes made to their plans, the decisions about what each
plan should contain for the next period, is made by the BDI reason-
ing counterpart. Typically a BDI action may involve several entries
in the MATSim plan. Existing MATSim functionality for such things
as route planning is used to translate a BDI action to drive from X to
Y, into a series of legs in the MATSIM network, to be inserted into
the MATSim agent plan. This plan is then followed, until such time
as it is again changed by the BDI decision making.

The percepts that can be obtained must be linked in some way to
the events which are available within MATSim, the full list of which
is available from the documentation on the MATsim website. These
include things such as vehicles entering or leaving a road segment, or
agents arriving at a location. For example, the taxi application uses
a percept to indicate when it is approaching the destination. This is
used to trigger a plan to start monitoring for a suitable new job (if the
destination is a drop-off) or to notify the operator so the passenger
can be sent a text message (of a pick-up). To obtain this information
(i.e. to add the monitoring for this percept) we needed to subscribe
to the event of entering a road segment, and check if this road seg-
ment was regarded as “close to destination”. This is an example of a
percept which builds on the available information but requires some
additional calculations. The other percept used in the taxi application
was “at destination” which was simply a matter of subscribing to and
passing on the event of an agent arriving at a location.

By defining and providing the percepts needed for the reasoning,
the BDI agents are reactive to what is happening in the simulation.
Queries, or percepts which are pulled rather than pushed, rely on
accessing information stored in some attributes, such as, for example
“current location” of an agent.

Discussion of implementation choices

An alternative could have been to use the approach
of [13]. That approach replaces the original MATSim
PersonDriverAgentImpl, which follows the pre-computed
plan, by an agent which computes answers to requests by other
means. For example, a driver agent needs to implement the method
Id chooseNextLinkId(), which needs to return the id of the
next link downstream every time a driver approaches an intersection.
An advantage of this approach is that it does nothing until the
relevant MATSim event occurs, whereas the approach used does
have the communication overhead of interacting with the BDI
infrastructure periodically, regardless of whether any percepts of
interest have been observed. This is however a necessary price to
pay if one wishes to allow, as we do, for percepts generated from
some other component. These percepts (such as fire or weather
information in a bushfire evacuation) may require the BDI agent
to rethink what it is doing, and communicate this to its MATSim
counterpart. This cannot be accomplished if control is relinquished
only on generation of MATSim events.

Also, the approach by [13] necessitates that the complete agent
logic is replaced. This goes against the requirements for the present
study, which operates on a higher level: Percepts which trigger ac-
tions are relatively rare, and a typical action is the determination of
a new destination, rather than a new turn at an intersection. Thus,
it is advantageous to keep the MATSim plan-following structure in-
tact, and to modify or add to the future parts of a plan when the need
arises. Computational efficiency is achieved by filtering the informa-

L. Padgham et al. / Integrating BDI Agents into a MATSim Simulation 683



tion on the MATSim side, to send only percepts which are specified
to be of interest to the BDI module. In the case where there is no rel-
evant information (in the form of percepts, or action status changes)
from MATSim to cause any agent to consider what they are doing, or
should do next, and also no information from other sources to initiate
new reasoning in any agent, then only the infrastructure call will be
executed. No BDI agents will actually run, making the computational
cost minimal.

2.3 BDI Infrastructure support

The BDI frameworks that we are targetting in this work are those
in the AgentSpeak [18] tradition, such as PRS [9], Jack [22] and
Jason [6]. We have currently used Gorite and Jack, and will in fu-
ture be using an open source BDI system for ongoing work. Any
Java based system5 in the AgentSpeak family can readily be used,
by simply providing a small amount of platform specific infrastruc-
ture which we describe below. The BDIAgentModel of Figure 3 is
the communicating interface of an encompassing BDIModule (not
shown for brevity), and is responsible for unpacking incoming action
updates and percepts, as well as collecting and sending new actions
from BDI agents at the end of the reasoning cycle.

BDI Goals and Plans

BDI agent programs are essentially a set of plan rules of the form
G : ψ ← P , meaning that plan P is a reasonable plan for achieving
the goal (or responding to the percept) G when (context) condition
ψ is believed true. P (the plan body) is then made up of sub-goals,
which have associated plans, and actions. A plan rule can be chosen
for instantiation, and its plan body executed, if the context condition
ψ is True according to the agent’s beliefs. The plan trigger G may
be an internally generated goal (e.g. taking a lunch break at a certain
time), a percept which is externally notified to the agent from the
environment, or a message from another agent.

Given a set of plan rules, (the plan library), this collection of goals
and plans can be represented as a goal-plan tree as shown in Figure 4.
This is basically an AND/OR tree where goals have links to some
number of plans, one of which must be chosen (OR), and plans have
links to some number of (sub)goals/actions, all of which must be
accomplished (AND) for the goal to succeed.

�����

��������	


����� ���������

�����	��

�������

�����	� ������� �������

������

������ ��� !!

������
"��� � ���

����

���	

�����	

�������

#$%

Figure 4. Partial Goal-Plan tree for a BDI Taxi agent,

5 A non-java based BDI system could also be used, but a java system is more
efficient given that MATSim is in java, so they can run in the same process.

So in Figure 4 the two subgoals GetJob and ProcessJob must both
be processed successfully for the DoJob plan to succeed. GetJob has
three possible plans: Assigned for the case where the taxi has already
been assigned a job by the operator, Request for where he will select
a job from the job board to request, and FromRank for where he
will go to a rank to look for a passenger. Note that Request may
have multiple possible instances, depending on how many suitable
jobs are listed, and if one Request plan fails, the BDI execution will
automatically try another plan for that goal, if available.

When the BDI agent reaches an Action node, such as DriveTo or
PickUp, this is communicated to the MATSim agent counterpart, via
the interface previously described. The BDI agent then waits until
this action has completed, before continuing its decision making and
acting. Thus the agent does not continue to the PickUp action until
the DriveTo action is complete, which may take several MATSim
timesteps. In order to complete the NormalPU plan, the passenger
must be at the location for the PickUp action to succeed. If they are
not, the action will fail. This can be achieved by having the BDI
agent tell MATSim to PickUp, and add code in our MATSim Module
to record a failure if the passenger is not there, which will then be
passed back to the BDI agent. Alternatively the BDI agent can use
a sensing action to ascertain if the passenger is there, and if not, fail
the action. Once the action fails, its containing plan (NormalPU) will
fail. This causes an alternative plan (perhaps involving contacting the
operator to call the customer, or waiting 5 minutes) to be chosen if
available and appropriate. Otherwise the failure will propagate up
the Goal Plan tree, causing that DoJob goal instance to fail, in which
case a new DoJob goal will be posted.

Responding to Environmental Events

The trigger for a BDI plan may be a goal (generated internally by the
agent, or requested by some other agent), or an environmental event
(or percept). Figure 5 shows how the specified percept, CloseToDest
may trigger some plans, depending on the contextual information as
to whether the destination is a pickup or dropoff location. The ap-
propriate plan when close to destination, if dropping off, may be to
source a new job (SourceNext) from the operator, whereas if picking
up, may be to notify the waiting passenger NotifyApproaching with
a text message.

����������	


������	
�������	�

�������	���

���������

��	�����	����������

���������	

�� !��

"#$

������	

���

�������

�������	�

%��	����	�

Figure 5. Event/Percept CloseToDest Triggers Plans

Generic Action Goal and Plan

In order to support the management of actions executed externally to
the BDI system (i.e. in MATSim), we have defined and implemented
a generic goal and plan that manages the communication with the

L. Padgham et al. / Integrating BDI Agents into a MATSim Simulation684



interface, and the waiting for the action to terminate. The structure
can be seen in figure 6. All actions (such as DriveTo or PickUp) result
in posting of an ActivateAction subgoal, containing the name of the
specific action and its parameters (e.g. location for DriveTo). This in
turn triggers a generic ActionPlan. This plan uses the parameters of
the action name and any other parameters relevant to the action, to
populate the communication data structures of the ModuleInterface
which will be provided to the MATSim agent, as discussed in section
2.1. It also sets a belief regarding the status of the action, and then
waits for a change in that status which will cause it to progress. In
this way all infrastructure for managing the integration between the
two systems is hidden from the application developer, who simply
needs to specify that it is an action being executed.

��������
	����
�

����
����

������ ��
����������
�
�

���

����
�

���

���������
������

���	����� ���������	
����

����
�
����!�

���"	
"���

#����	
"���

Figure 6. Generic Action Goal and Plan structure

Note that a plan executing a generic action is “blocked” until a
success or failure is received from MATSim. This does not prevent
the agent from excecuting other intentions. For instance, when drop-
ping off (executing DriveTo), a taxi agent is still able to respond to
the CloseToDest event and initiate the search for a new job. More-
over, the infrastructure supports the ability to abort executing plans
by signalling DROPPED to the MATSim side (Figure 2).

3 Example Applications

We have developed two prototype applications using a BDI system
integrated with MATSim in the manner described. The first is the
integration of a simple taxi system into MATSim, as a demonstra-
tor. The second is a bushfire evacuation system, developed initially
in collaboration with the local Country Fire Authority, to help them
understand potential scenarios [21]. We are now extending this for
use as an interactive tool in training and with community groups.

Taxi application

In the Taxi application we used the Berlin road network as provided
on the MATSim website. We have run the application with 15,963
standard MATSim agents, taken from the provided sample popula-
tion, and 1000 of our BDI (GORITE) taxi agents. We have also run
the full 15,963 agents as BDI taxi agents, for stress testing purposes.
Profiling of the code reveals that a very small portion of time is spent
in the BDI reasoning. The majority of execution time is spent in route
planning. The need to plan routes during the single day execution
would seem to be inevitable if agents are to have flexibility to decide
their actions during the simulation execution – a pre-requisite for any
approach to reactive agents. It may be possible in future work to in-
vestigate additional efficiencies in route planning. We note also that
in our implementation both the BDI reasoning and MATSim run in a

single java process. If separate processes were needed then commu-
nications could be expected to add to computational load.

As mentioned earlier the key percepts for this application were ar-
rival at destination, and close to destination. The BDI actions were
DriveTo, Pick-up and DropOff and the query required was Current-
Location. In our prototype demonstrator, the taxi module is very sim-
ple, with a constant number of taxis and a single operator which gen-
erates jobs with a fixed frequency and random distribution. However,
it would be straightforward to model a range of taxi specific policies
and configurations, such as multiple competing companies, density
of taxis at various times, time related fares, etc. that could impact on
and be impacted by the rest of the traffic simulation. The ability to
keep this separate from the MATSim component supports and facili-
tates modelling modularity.

Bushfire evacuation application

The role of MATSim in the bushfire evacuation simulation is control
of the traffic simulation: a crucial aspect of any evacuation scenario.
MATSim was chosen initially because of its wide usage, robustness
and ability to model road speeds on segments, and traffic behaviour
causing traffic jams. A specialised fire simulator, Phoenix RapidFire
[8] provides fire data for a specific location under certain configured
weather conditions. Use of this fire simulator was mandated by the
Country Fire Authority, for whom we developed the simulation, as
it is used in all their simulation work, and is highly trusted and re-
spected.

The specific location which was used was the small coastal town
of Breamlea in Victoria, Australia, as this was what was requested by
the Country Fire Authority. The population at the latest census date
(2011) was 444, and the number of dwellings was 279. In running the
simulation, we placed only one agent per dwelling, assuming that this
was roughly appropriate for an evacuation scenario where probably
the household would evacuate in a single vehicle. In order to build
the integrated simulation we needed to first obtain road network maps
via OpenStreetMap6 and then convert these to MATSim format using
the support software provided by MATSim. Data on placement of
buildings was obtained in the form of a shapefile from DataSearch
Victoria7 and population statistics were obtained from the Australian
Bureau of Statistics.

Currently the simulation models only residents and their evacu-
ation behaviour as fire warnings or other relevant instructions are
issued. This behaviour includes activities such as checking on fam-
ily or neighbours, either by phone, or driving, packing possessions,
picking up family members, getting the car, arranging and waiting
for a lift, etc. Currently all BDI actions affect MATSim only by driv-
ing to a location (as in the taxi application), or doing activities that
simply take time, spent at a specified location.

The key percepts for this application currently are the percepts
coming from other subsystems, in particular the fire simulator, which
can alert when the fire is within a specified distance, and can provide
data on speed and direction if queried. Although not currently used,
percepts providing information about very slow travel speeds (indi-
cating traffic jams), would make sense so that agents could use this
as a trigger to reconsider either their route or destination. However,
this was not required initially by the user organisation, and so has not
yet been added.

6 www.openstreetmap.org/a
7 http://services.land.vic.gov.au/SpatialDatamart (ac-

count needed).

L. Padgham et al. / Integrating BDI Agents into a MATSim Simulation 685

www.openstreetmap.org/a
http://services.land.vic.gov.au/SpatialDatamart


In the current extension work for use in training and with commu-
nity groups, we are expecting to model also emergency management
services who may need to take actions such as closing off roads. Cur-
rently we have facilitated only the dynamic change to the behaviour
of agents. However the next phase will require looking at appropri-
ate interfaces and mechanisms to allow within day modification of
aspects of the road network.

4 Discussion and Conclusion

In this work we have successfully integrated BDI agents with MAT-
Sim allowing a separation of the reasoning (brain) from the physical
simulation (the body). The integrated agents can dynamically instan-
tiate goals and act to achieve them, choosing and modifying their
behaviour depending on aspects of the environment. BDI platforms
provide a powerful programming paradigm for developing intelligent
agents. The basic concepts of goals and plans to achieve them are in-
tuitive and easy for end users or domain experts to understand. In
our work in the emergency management domain, we have found that
emergency services workers and other personnel can readily discuss
and refine the BDI graphical representations of people’s behaviours.

This approach also realises many aspects of the architecture de-
scribed in [14, p.178-79] with the agent brain(s) decoupled from the
physical simulation. However, the approach is much more efficient
than envisaged there, as each agent brain, although fully autonomous,
runs within a single thread of a single process.

This decoupling of the detailed representation and reasoning of
a component, from how that plays out within the traffic simulation
facilitates integration of MATSim with other components. For ex-
ample, in the emergency management scenario, the traffic compo-
nent is clearly central. However the components that model the de-
cision making of residents, and also potentially the decision making
of emergency services personnel, are equally important. Some of the
information needed for that decision making (and particularly how
those results play out), is central to MATSim. But some may well
arise from other sources. The obvious additional source is the fire it-
self, but also weather services, or other components may well be im-
portant. In addition to providing an approach to modelling reactive
reasoning agents within MATSim, this work is a first step in allowing
MATSim to be used as one component, within a larger whole.

ACKNOWLEDGEMENTS

This work is partly funded by ARC Discovery grant DP1093290,
ARC Linkage grant LP130100008, and NCCARF grant EM1105.
We would like to acknowledge the work of RMIT University students
Arie Wilsher, Daniel Kidney, Faraz Muhammad, Megha Dhillion,
and previous staff David Scerri and Sarah Hickmott, for assistance
in development of some aspects of this work.

REFERENCES

[1] B. Arthur, ‘Inductive reasoning, bounded rationality, and the bar prob-
lem’, American Economic Review (Papers and Proceedings), 84, 406–
411, (1994). 1

[2] N.C. Balijepalli, D.P. Watling, and R. Liu, ‘Doubly dynamic traffic as-
signment – Simulation modeling framework and experimental results’,
Transportation Research Record, 2029, 39–48, (2007). 1

[3] M. Balmer, Travel demand modeling for multi-agent transport simula-
tions: Algorithms and systems, Ph.D. dissertation, Swiss Federal Insti-
tute of Technology (ETH) Zürich, Switzerland, 2007. 2

[4] M. Balmer, B. Raney, and K. Nagel, ‘Adjustment of activity timing
and duration in an agent-based traffic flow simulation’, in Progress in
activity-based analysis, ed., H.J.P. Timmermans, 91–114, Elsevier, Ox-
ford, UK, (2005). 1

[5] M. Balmer, M. Rieser, K. Meister, D. Charypar, N. Lefebvre, K. Nagel,
and K.W. Axhausen, ‘MATSim-T: Architecture and simulation times’,
in Multi-Agent Systems for Traffic and Transportation, eds., A.L.C.
Bazzan and F. Klügl, 57–78, IGI Global, (2009). 1

[6] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge, Pro-
gramming Multi-agent Systems in AgentSpeak Using Jason, Wiley,
2007. Wiley Series in Agent Technology, ISBN: 0470029005. 4

[7] C. Dobler, ‘Implementations of within day replanning in MATSim-T’,
IVT Working paper 598, Institute for Transport Planning and Systems,
ETH Zurich, Zurich, Switzerland, (2009). 1, 3

[8] TJ Duff, D Chong, and KG Tolhurst, ‘Quantifying spatio-temporal dif-
ferences between fire shapes: Estimating fire travel paths for the im-
provement of dynamic spread models’, Environmental Modelling and
Software, 46, 33–43, (2013). 5

[9] M.P. Georgeff and F.F. Ingrand, ‘Decision Making in an Embedded
Reasoning System’, in IJCAI, pp. 972–978, (1989). 4

[10] D. Grether, Y. Chen, M. Rieser, and K. Nagel, ‘Effects of a simple
mode choice model in a large-scale agent-based transport simulation’,
in Complexity and Spatial Networks. In Search of Simplicity, eds.,
A. Reggiani and P. Nijkamp, Advances in Spatial Science, chapter 13,
167–186, Springer, (2009). 1

[11] A. Horni, K. Nagel, and K. Axhausen, ‘High-resolution destination
choice in agent-based demand models’, IVT Working paper 682, Insti-
tute for Transport Planning and Systems, ETH Zurich, Zurich, Switzer-
land, (2011). 1

[12] Dennis Jarvis, Jacqueline Jarvis, Ralph Rnnquist, and Lakhmi C. Jain,
Multiagent Systems and Applications - Volume 2: Development Using
the GORITE BDI Framework, volume 46 of Intelligent Systems Refer-
ence Library, Springer, 2013. 1

[13] M. Maciejewski and K. Nagel, ‘Simulation and dynamic optimization
of taxi services in MATSim’, VSP working paper, TU Berlin, Transport
Systems Planning and Transport Telematics, (2013). see www.vsp.tu-
berlin.de/publications. 1, 3

[14] K. Nagel and F. Marchal, ‘Computational methods for multi-agent sim-
ulations of travel behaviour’, in Moving through nets: The physical and
social dimensions of travel, ed., K.W. Axhausen, Elsevier, (2007). 6

[15] Lin Padgham, David Scerri, Gaya Buddhinath Jayatilleke, and Sarah
Hickmott, ‘Integrating BDI reasoning into agent based modelling and
simulation’, in Winter Simulation Conference (WSC), pp. 345–356,
Pheonix, Arizona, USA, (December 2011). 2

[16] B. Raney and K. Nagel, ‘Iterative route planning for large-scale mod-
ular transportation simulations’, Future Generation Computer Systems,
20(7), 1101–1118, (2004). 1

[17] B. Raney and K. Nagel, ‘An improved framework for large-scale multi-
agent simulations of travel behaviour’, in Towards better performing
European Transportation Systems, eds., P. Rietveld, B. Jourquin, and
K. Westin, 305–347, Routledge, London, (2006). 1

[18] Anand S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
putable language’, in Agents Breaking Away: Proceedings of the Sev-
enth European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW’96), eds., Walter Van de Velde and John Per-
rame, pp. 42–55. Springer Verlag, (January 1996). LNAI, Volume 1038.
4

[19] Marcel Rieser, Christoph Dobler, Thibaut Dubernet, Dominik Grether,
Andreas Horni, Gregor Lämmel, Rashid Waraich, Michael Zilske,
Kay W. Axhausen, and Kai Nagel. MATSim user guide, 2013. Ac-
cessed 2013. 1

[20] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edn.,
2009. 1

[21] David Scerri, Ferdinand Gouw, Sarah L. Hickmott, Isaac Yehuda, Fabio
Zambetta, and Lin Padgham, ‘Bushfire BLOCKS: a modular agent-
based simulation’, in Proceedings of Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 1643–1644, (2010). 5

[22] Michael Winikoff, ‘Jack intelligent agents: An industrial strength plat-
form’, in Multi-Agent Programming: Languages, Platforms and Ap-
plications, eds., Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah-Seghrouchni, volume 15 of Multiagent Systems, Ar-
tificial Societies, and Simulated Organizations, 175–193, Springer,
(2005). 1, 4

L. Padgham et al. / Integrating BDI Agents into a MATSim Simulation686


	1 Introduction
	2 Integration Architecture
	2.1 The conceptual interface
	2.2 Integration into MATSim
	2.3 BDI Infrastructure support

	3 Example Applications
	4 Discussion and Conclusion

