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Abstract. Inspired by emerging applications of social networks,
we introduce in this paper a new centrality measure termed gate-
keeper centrality. The new centrality is based on the well-known
game-theoretic concept of Shapley value and, as we demonstrate,
possesses unique qualities compared to the existing metrics. Fur-
thermore, we present a dedicated approximate algorithm, based on
the Monte Carlo sampling method, to compute the gatekeeper cen-
trality. We also consider two well known applications in social net-
work analysis, namely community detection and limiting the spread
of mis-information; and show the merit of using the proposed frame-
work to solve these two problems in comparison with the respective
benchmark algorithms.

1 Introduction

Social networks are prevalent in several real world scenarios such as
online social networks (e.g., Facebook or Flickr), collaboration net-
works, email networks, trading networks, and R & D networks [8, 3].
Social networks are social structures made up of individuals (or au-
tonomous entities) and connections among these individuals. In the
literature, such networks are conveniently represented using graphs,
where nodes represent entities in the networks and edges represent
the connections among these entities. A significant amount of work
on social network analysis in the literature is devoted to understand-
ing the role played by nodes/edges, with respect to either their struc-
tural placement in the network or their behavioral influence over oth-
ers in the network. To this end, it is important to rank nodes/edges in
a given network based on either their positional power or their behav-
ioral influence. There exist several well known ranking mechanisms
in the literature, ranging from the well known centrality measures
from social sciences such as degree centrality, closeness centrality,
clustering coefficient, and betweenness centrality [8, 3] to Google
PageRank [5].

However, the existing centrality measures in the literature are of-
ten inadequate to satisfactorily serve the needs of emerging real-life
applications. Let us consider one such scenario as follows: We want
to determine a group of nodes of specific cardinality such that these
nodes can disconnect the given network into connected components
having cardinalities as close as possible. Such scenarios arise in ap-
plications like community detection in networks and limiting the
spread of misinformation over social networks. For instance, con-
sider a stylized graph of a social network as shown in Figure 1 and
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Figure 1. A stylized network

we want to find a group of two nodes; then choosing node 4 and node
9 is the best solution as the resulting components have cardinalities
4, 3, and 4 respectively. On the other hand, we can also rank nodes in
this network using any well-known centrality metric and take the top

Centrality Rank 1 Rank 2
Measure
Degree 9 3,5,10,11,12,13

Closeness 7 6,8

Betweenness 7 6,8
CC 10,11,12,13 9

EigenVector 1,2,10,11,12,13 3,5

PageRank 9 3,5

Table 1. Centrality measures for the nodes in Figure 1

2 nodes to address the problem. Table 1 lists the top two nodes using
degree, closeness, betweenness, clustering coefficient (CC), eigen-
vector, and PageRank centrality measures. Strikingly, none of these
well-known centrality measures pick node 4 and node 9 as the solu-
tion for the problem. In this paper, we refer to such nodes (that is,
node 4 and node 9 in Figure 1) as gatekeeper nodes. We wish to pro-
pose a centrality measure that ranks the nodes based on their ability
of being gatekeepers and we refer to such a measure as gatekeeper
centrality. To the best of our knowledge, none of the existing central-
ity measures in the literature are adequate to identify the gatekeeper
nodes in a given social network.

In this paper, we present an efficient algorithm to determine the
gatekeeper centrality of a given network. We believe that this new no-
tion of centrality can address certain social network analysis tasks in
an advantageous way as compared to that of other algorithms avail-
able in the literature. We demonstrate it using the following two so-
cial network analysis tasks:
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Community Detection: Finding communities in a given network has
found significant attention from the network science research com-
munity [13]. There exists several variants of this community detec-
tion problem; of these, determining communities (or clusters) of sim-
ilar size is very important as it finds applications in job scheduling
over computing resources and VLSI circuit design. There exist in
the literature well known measures to determine the quality of the
communities—notably, modularity [13] and coverage [3]. In this pa-
per, we apply the framework of gatekeeper centrality to determine
communities in networks and we observe that the modularity and
coverage of the communities found using our approach either outper-
forms or is close to that of certain benchmark community-detection
algorithms.

Limiting the Speed of Misinformation Over Social Networks:
Given a constant k, consider the problem of which k& nodes should
be removed so that the speed of misinformation over a network is
minimized. This scenario is important in the context of controlling
the spread of a virus in a network and limiting the spread of negative
opinions about a product in a social network. The goal is to remove
some nodes in the network such that the virus/misinformation is not
allowed to spread rapidly to the entire network. As an application of
the proposed gatekeeper centrality to this context, we consider the
top-k nodes with high gatekeeper centrality and this choice turns out
to be very attractive in comparison with the benchmark algorithms.

1.1 Why a Game-Theoretic Approach is Essential

The common feature of all the standard centrality measures in the
literature [4, 8] is that they evaluate the importance of a node (or
an edge) by focusing only on the role played within the network by
this node by itself. However, such an approach does not take into
account the fact that in many cases there occur joint effects if the
functioning of nodes is considered together in groups. For instance,
removing any single node might not be enough to stop communica-
tion between two communities, but removing a group of nodes could
accomplish this goal. Standard centrality metrics completely ignore
such synergies. To address this issue the notion of group centrality
was developed [9]—it works in a virtually the same way as standard
centrality measures but it evaluates the functioning of a given group
of nodes, rather than individual nodes.

The concept of group centrality allows only for computing the cen-
trality of a group of nodes. However, even if one computes all such
groups, it is not clear how to construct a consistent ranking of indi-
vidual nodes using the group results. Some nodes can play a decisive
role in certain groups and can be completely irrelevant in others.

Fortunately, the issue of assessing individual entities given their
participation in various groups has been extensively studied in the
field of coalitional game theory. In particular, given a game where
coalitions are allowed to form, one of the fundamental questions is
how to distribute the surplus achieved by cooperation among the par-
ticipating players. To answer this question, Shapley [28] proposed to
remunerate players with payoffs that are a function of their individual
marginal contributions to the game. For a given player, an individual
marginal contribution is measured as the weighted average marginal
increase in the payoff of any coalition caused by the entrance of the
player. Importantly, the division scheme proposed by Shapley, called
the Shapley value, is the only scheme that meets certain desirable
normative properties (see Section 3 for more details). Given this, the
fundamental idea of the game theoretic approach to centrality® is to

5 See the next section for an overview of the literature on this topic.

define an appropriate cooperative game over the social network in
which players are the nodes, coalitions are the groups of nodes, and
payoffs of coalitions are defined so as to meet our requirements.

In the context of the gatekeeper centrality as well, it is required
to first assess an appropriate score gained by each possible group of
nodes based on their ability to disconnect the network into compo-
nents of similar size and then we have to derive a fair ranking of
the individual nodes based on these group scores. We propose to use
the Shapley value approach to perform this task. Towards this end,
we have to first define an appropriate cooperative game that captures
the notion of gatekeeper centrality and then we need to compute the
Shapley value of the nodes of this cooperative game to generate a
consistent ranking of these individual nodes.

1.2 Our Contributions

In this paper, we formally model the notion of gatekeeper centrality
and present an algorithm to approximate it. In particular:

e We propose an appropriate cooperative game that formally models
the notion of gatekeeper centrality.

e We propose to work with the Shapley value of the proposed co-
operative game. And, as we show, the nodes with high Shapley
values are the nodes with high ability of being gatekeepers.

e We present an efficient algorithm to approximate the Shapley val-
ues of the nodes.

e We finally apply the proposed notion of gatekeeper centrality to
solve two popular social network analysis tasks, namely commu-
nity detection and limiting the spread of misinformation. It turns
out that our proposed approach solves these two tasks in an im-
pressive manner as compared to the respective benchmark algo-
rithms.

Organization of the Paper: We present the relevant work in Sec-
tion 2 and preliminary definitions and notation in Section 3. We then
formally present our model in Section 4. We next present the algo-
rithm to compute the gatekeeper centrality in Section 5. In Section
6, we conduct thorough experimentation of our proposed approach.
We conclude the paper in Section 7 by pointing out a few important
directions to future work.

2 Relevant Work

The fundamental notion of centrality in networks [11] determines the
relative importance of nodes in the network, for instance how influ-
ential an individual is within a social network. Several classical mea-
sures of centrality in networks have been proposed in the literature
[4] such as degree centrality, closeness centrality, and betweenness
centrality. Further, game theoretic approaches have been employed
either to offer new centrality measures or to enrich the existing well-
known centrality measures to complement the literature on the theory
of centrality in networks [16, 33, 31, 32, 14, 30]. For instance, Grof-
man and Owen [16] were the first to present a game theoretic central-
ity measure to offer a new definition of degree centrality. Szczepanski
et al. [30] proposed the Shapley-value-based betweenness centrality
measure to enrich the classical betweenness centrality [4]. Brink et
al. [32] presented a Shapley value-based approach to define a new
network centrality metric, namely S-measure. Gomez et al. [15] pro-
posed a new Shapley value-based network centrality measure for the
class of graph-restricted games [22] (where each feasible coalition is
induced by a subgraph of the given graph).
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Game theoretic approaches have also been used to work with cen-
tral (or influential) nodes in the network in order to solve certain
important problems associated with social network analytics. For in-
stance, Hendrickx et al. [17] proposed a Shapley value-based ap-
proach to identify key nodes to optimally allocate resources over the
network. Alon et al. [1] proposed a game theoretic approach to deter-
mine k£ most popular or trusted users in the context of directed social
networks. Ramasuri and Narahari [26] proposed a Shapley value-
based approach to measure the influential capabilities of individual
nodes in the context of viral marketing and then presented Monte
Carlo simulation based heuristic to determine top k influential nodes
for effective viral marketing over social networks. There also exists
work in the literature that tackled the issue of computing the Shapley
value-based centrality [30, 20, 21, 29].

3 Preliminary Definitions and Notation

Let G = (N, E) be a directed and unweighted graph that models
the given social network where [V is the set of nodes corresponding
to the individuals in the social network and E is the set of edges
that captures the connections between the individuals in the social
network. A path in G is an alternating sequence of nodes and edges,
beginning at a node and ending at another node, and which does not
visit any node more than once. Consider a graph H = (A, B) where
A is the set of nodes and B is the set of edges among nodes in A. We
call that H is a subgraph of G if A C N and B C FE. Note that a
connected component in G is a subgraph in which any two vertices
are connected to each other by paths. Consider any subset S C .
Let G(N\S, E(N\S)) be the graph that is obtained by removing all
nodes in S and all the edges incident to the nodes in .S from G. Also
let ©(S) be the set of connected components in G(N \ S, E(N\ 5)).

Let us now formalize the notions of a coalitional game and the
Shapley value. To this end, we denote by A = {a1,...,a 4} the set
of players of a coalitional game. A characteristic function v :(— R
assigns to every coalition C' C A a real number representing payoff
attainable by this coalition. By convention, it is assumed that v(()) =
0. A characteristic function game is then a tuple (4, v).

It is usually assumed that the grand coalition, i.e., the coalition of
all the agents in the game, forms. Given this, one of the fundamental
questions of coalitional game theory is how to distribute the pay-
off of the grand coalition among the players. Among many different
answers, Shapley [27] proposed to evaluate the role of each player
in the game by considering his marginal contributions to all coali-
tions this player could possibly belong to. A certain weighted sum
of such marginal contributions constitutes a player’s payoff from the
coalition game and is called the Shapley value. Importantly, Shapley
proved that his payoff division scheme is the only one that meets, at
the same time, the following four desirable criteria:

(1) efficiency — all the payoff of the grand coalition is distributed
among players;

(ii) symmetry — if two agents play the same role in any coalition they
belong to (i.e. they are symmetric) then their payoff should also
be symmetric;

(iii) null player — agents with no marginal contributions to any coali-
tions whatsoever should receive no payoff from the grand coali-
tion; and

(iv) additivity — values of two uncorrelated games sum up to the value
computed for the sum of both games.

Formally, let 7 € II(A) denote a permutation of agents in A, and let
C (1) denote the coalition made of all predecessors of agent a; in 7

(if we denote by 7(j) the location of a; in 7, then: Cr (7)) = {a; €
7w : 7(j) < m(4)}). Then the Shapley value is defined as follows
[27]:

SVi(w) = 1y WG U {ah) —v(C )], (D

mwell

i.e., the payoff assigned to a; in a coalitional game is the average
marginal contribution of a; to coalition C (i) over all = € II. It is
easy to show that the above formula can be rewritten as:

SVi(v) = Z

CCA\{a;}

|C|!<|A\|; ||!c| “ Ve ufay) - vO)).

(@3]

In our context, we will define a coalitional game over a network G.

In this game the players will be nodes in the network, i.e., A = V(&)

and a characteristic function v will depend in a certain way on G.
Thus the coalitional game will be formally tuple (V (G), v).

4 The Proposed Game Theoretic Model

In this section, we present the coalitional game that is the corner-
stone of the gatekeeper centrality. Note that the nodes in [V is the set
of players in the coalitional game. In what follows, we define two
variants of the characteristic function. The intuition behind the char-
acteristic function is as follows. Consider any group of nodes, call it
S C N. The more close is the sizes of the connected components
of the graph after removing the nodes in S, the higher the value of
S should be. This objective is accomplished by defining the charac-
teristic function as a function of inverse of the cardinalities of these
connected components.

e Version 1: We define the first variant of the characteristic function
v (.) as follows: V.S C N,

1
Zie@(S) ‘Ci|27
where ®(S) = {1,2,...,t} is the set of indices for the ¢ con-
nected components (i.e. C1, Co, ...,Cy) in G(N\ S, E(N\ S)).

e Version 2: For each S C N, we define the second variant of the
characteristic function vy (.) as follows: VS C N,

v(9) = 3

t

S) =
v8) = GG 10

“

where ®(S) = {1,2,...,t} is the set of indices for the ¢ con-
nected components (i.e. C1, Ca, ...,Cy) in G(N\ S, E(N '\ 5)).

We now consider the following example to illustrate the two dif-
ferent versions of the characteristic functions defined above.

Example 1 Let N = {1,2,3,4,5,6,7,8,9,10} and consider the
graph G as shown in Figure 2. Let S = {3,4}. By removing the
nodes and the edges incident to the nodes in S from G, we get 4
connected components as shown in Figure 2(ii). That is ®(S) =
{Cl, 027 C’g7 04} where Cl = {1, 2}, Cz = {5, 6}, C3 = {7, 8, 9},
and Cy = {10}.

Note that |C1| = 2, |Ca| = 2, |Cs| = 3, and |C4| = 1. The two
different versions of the characteristic function are as follows:

_ 1 _ 1

e v1(S) = o = 15, and
1
E-

* 02(5) = gz =
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Figure 2. A stylized example

5 Approximate Algorithm for Computing
Gatekeeper Centrality

A few methods for approximating the Shapley value for various types
of coalitional games have been recently discussed in the literature.
[10] studied weighted voting games and [2] focused on a broader
class of simple coalitional games in which the characteristic function
is binary. A method to approximate the Shapley value in any game in
characteristic function form was studied by Castro et al. [6]. In this
method, based on Monte Carlo sampling, a chosen permutations of
the set of all players are generated iteratively. For any given permu-
tation, the marginal contribution of each player to the coalition made
of all his predecessors is computed. The approximated Shapley value
is then given by the average marginal contribution to all sampled
permutations. Castro et al. showed that the precision of the solution
increases (statistically) with every new permutation analysed.

With a growing number of agents in the game, computing any rea-
sonable approximation of the Shapley value may require sampling
millions of permutations. Consequently, the time efficiency of Monte
Carlo approach hinges upon the way in which | N| marginal contri-
butions are calculated in every permutation.

Given this, in this section we present a Monte Carlo algorithm
that is dedicated to dealing efficiently with gatekeeper games. Let
us start our analysis with the following fundamental observation: in
gatekeeper games, the value of the coalition .S depends only on the
structure formed by the outside players IV \ .S. Thus, we can traverse
the permutation backward and, as we sequentially add players, assign
the changes in the value of N \ S (i.e., players’ marginal contribu-
tions) to adequate players.

For this purpose, we propose a dedicated structure to store sub-
graph components (SGC) based on the idea of FindUnion, a disjoint-
set data structure [12]. The main concept here is to store separate
components of the graph as trees. Whenever we add a new edge be-
tween different components, we attach the root of one tree as a child
of the second one. It is important that we do not store all graph edges,
but maintain multiple statistics that allow us to calculate the value of
the subgraph without traversing the whole structure.

SGC-structure allows for the following operations:

e createEmpty() - initializes the structure;

e addNode(i) - adds a new component (parent[i] = i) and updates
statistics;

o addEdge(i, j) - finds the roots of the components of ¢ and j (with
path compressionG); if roots differ, attach a root of the smaller tree

6 As we traverse up the tree to the root we attach all passed nodes directly to
the root to flatten the structure:

find(i) {if (parent[i] # i) return parent[i] = find(parent[i]); }.

Algorithm 1: Approximation algorithm for the New Centrality
Measures
Input: Graph G = (N, E) and a function v : 2 — R
Output: Shapley value, Sh;, of eachnode i € N

1 foralli € N do Sh; + 0;
2 for k = 1 to numberO f Samples do
3 7 <— random permutation of N;

4 SGC .create Empty();

5 valueO fSGC + v(SGC);
6
7
8
9

foreach i € 7 do
Sh; = Sh; + valueO fSGC;

SGC.addNode(i);

foreach j € neighbours(i) do
10 if SGC.exist(j) then
1 L L SGC.addEdge(i,7);
12 valueO fSGC + v(SGC);
13 Sh; = Sh; —valueO fSGC;

14 forall: € N do Sh; < Sh;/numberO f Samples;

to the bigger one (if rank[i] < rank[j] then parent[i] = j; this
technique is called union rank) and updates statistics; otherwise,
only updates statistics if needed;

e exist(i) - return true if parent|[i] is set. Return false otherwise

This representation, based on the two improving techniques union by
rank and the path compression, allows us to perform |E| addEdge()
and |N| addNode() operations in time O(|E| - log* (| N])) where
log™(x) denotes the iterated logarithm and log™(z) < 5 for z <
963536 [1g].

Finally, let us address the statistics that we have to collect in or-
der to calculate the value of the structure. To compute v2(S) we
need to store the number of nodes (variable increased in addNode())
and number of components (variable increased in addNode() and de-
creased in addEdge() if edge links different components). The for-
mula for v; (S) is based on the sum of squares of components’ sizes
(to this end, we store the size with every component, initialize it
in addNode() and update it in addEdge(); in addition, we store the
global sum of squares in O(1) and update it whenever the size of a
component changes).

The pseudocode is presented in Algorithm 1. In our procedure we
aggregate agents’ marginal contributions in variables Sh;, initialized
to zero (line 1) and divided at the end by the number of samples con-
sidered (line 14). In the main loop (lines 2-13) after the initialization
we traverse the random permutation 7 (lines 6-13) and sequentially
add nodes and edges to the SGC-structure (lines 8-11). Based on the
value of the structure before and after the addition of a given agent,
we calculate its marginal contribution (line 7 and 13).

The time complexity of the algorithm depends on the number of
samples chosen to calculate the Shapley value (and that depends on
our target precision). Let us then comment on the complexity of
single sample, i.e. the calculations needed to update Shapley value
based on a randomly chosen permutation. Firstly, the selection of
a permutation (line 3) is performed in a linear time using Knuth
shuffle. Next, calculating value of a SGC-structure (lines 5 and 12)
is done in a constant time. Finally, the loop over the permutation
7 (lines 6-13) performs | V| operations addNode(), | E| operations
addEdge() and 2| E| operations exist(). To summarize, the calcu-
lation of a single sample takes O(|E| - log™ (| N|)). In other words,
this is the time complexity of single iteration of the main loop.
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5.1 Illustration of Algorithm 1

Let us first consider the stylized example shown in Figure 1. The
following are the Shapley values of the nodes computed using Algo-
rithm 1 (in non-increasing order): Sho = 0.135, Shy = 0.102,
Shs = 0.085, Shs = 0.085, Shy = 0.071, Shg = 0.071,
She = 0.071, Ship = 0.068, Shi2 = 0.068, Sh11 = 0.068,
Shiz = 0.068, Shy = 0.054, She = 0.054.

Next consider the network shown in Figure 2. The following are
the Shapley values of the nodes computed using Algorithm 1 (in non-
increasing order): Shys = 0.249, Shs = 0.163, Shy = 0.149,
Shs = 0.11, Shy = 0.078, Sha = 0.078, Shs = 0.063,
Sho = 0.068, Sh1g = 0.024, Shg = 0.024.

6 Experimental Results

In this section, we show the efficacy of the proposed gatekeeper cen-
trality by applying it to solve two social network analysis tasks: com-
munity detection and limiting the speed of misinformation.

6.1 Community Detection using Gatekeeper
Centrality

Here we outline the steps of the algorithm that we follow to deter-
mine the community structure for a given network using gatekeeper
centrality. We first arrange the nodes of the network in non-increasing
order of their gatekeeper centrality values. Then we keep on remov-
ing the nodes in that order and compute the modularity at each point.
We continue to do this process until there are no nodes left to remove.
We report the community structure pertaining to the best modularity
value. Here we consider modularity [13] and coverage [3] as the mea-
sures of performance for any clustering algorithm in our experiments.
Informally, coverage measures the fraction of intra-cluster edges and
modularity measures internal (and not external) connectivity, but it
does so with reference to a randomized null model.

We compare the modularity and coverage of our approach with
that of three benchmark algorithms for finding communities in so-
cial networks, namely (i) the greedy algorithm proposed by [23] and
hereafter we refer to this as Greedy Algorithm, (ii) a spectral opti-
mization approach due to [24] and hereafter we refer to this as Spec-
tral Algorithm, and (iii) a randomized and game theoretic algorithm
due to [7] and hereafter we refer to this as RGT Algorithm. The im-
plementations were carried out using Java. Also, all our experiments
were run on a Windows based Intel PC with two 2.00 GHz processors
and 2GB of RAM.

Table 2 describes four network data sets that are well known in
network science community. Table 3 shows the modularity and the
coverage obtained using (i) our approach using version 1, (ii) our ap-
proach using version 2, (iii) Greedy Algorithm [23], (iv) Spectral Al-
gorithm [24], and (v) RGT Algorithm [7] on these four network data
sets. From these results in Table 3, our proposed approach clearly
outperforms the benchmark algorithms in terms of coverage; and the
modularity of the community structures obtained using our approach
are comparable to that of the benchmark algorithms.

6.2 Limiting the Speed of Misinformation over
Networks

We consider the problem of controlling the spread of a virus or mis-
information in a network. The goal is to remove some nodes in the
network such that the virus/misinformation is not allowed to spread

DataSet [ Nodes [ Edges | Triangle Count
Karate 34 78 45
Dolphins 62 318 95
Political Books 105 882 560
FootBall 115 1226 810

Table 2. Description of network data sets

Dolphins
7T N 4

—Betweenness
Closeness

——EigenVector

——Greedy
Game1
Game2

40 1 2 3 4 5 6 7 8 9 10

Number of nodes Removed

Figure 3. Results for decreasing the speed of misinformation diffusion for
the Dolphins data set

rapidly in the entire network. We propose the use of nodes with high
gatekeeper centrality to remove in order to decrease the speed of
misinformation spread. It has been proven in the literature that the

\ PolBooks

\

— Betweenness|
Closeness

7 —EigenVector

—Greedy
Game1
Game2

0 1 2

3 4 5 6 7 8 9 10
Number of Nodes removed

Figure 4. Results for decreasing the speed of misinformation diffusion for
the PolBooks data set

largest eigenvalue of the adjacency matrix of the given network ac-
curately captures the speed of information diffusion in the network
[25]. Therefore we use the largest eigenvalue of the adjacency matrix
of the underlying social network to measure how the speed of diffu-
sion has changed by removing certain nodes from the network. We
present the results in Fig 3 and Fig 4 using two example network
data sets. The X -axis denotes the number of nodes removed and Y-
axis denotes the value of the leading eigenvalue (smaller is better).
We compare our results with three standard centrality metrics (i.e.
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Data Set Game 1 Game 2 Greedy [23] Spectral [24] RGT [7]
Mod Cov \ Mod Cov Mod Cov \ Mod Cov \ Mod Cov
Karate 0.3092 65.38 | 0.3092 65.38 | 0.380 30.76 | 0.393 2524 | 0.392 68.52
Dolphins 0.4833 81.76 | 0.4606 74.84 | 0495 22.01 | 0491 22.64 | 0.502 69.43
Political Books | 0.4371 91.83 | 0.4338 88.2 | 0.509 59.63 | 0469 4557 | 0493 74.45
Football 0.5172 719 0.556 73.4 | 0566 16.15 | 0.539 12.39 | 0.581 67.92

Table 3. Comparison of modularity and coverage due to our proposed approach with that of three benchmark algorithms. In this table, Mod means
Modularity and Cov means Coverage

betweenness, closness, eigenvector) and the well known greedy al-
gorithm [19] for information diffusion. Our approach turns out to be
very effective in limiting the speed of misinformation over networks.

7 Conclusions

In this paper, we introduced a new centrality metric for social net-
works and we referred to this as gatekeeper centrality. We proposed
an appropriate cooperative game and then presented efficient approx-
imate algorithm to compute Shapley value of this game in order to
rank the nodes based on the gatekeeper centrality.
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