
A Cluster-Based Approach to Improve Similarity-Based
Retrieval for Process-Oriented Case-Based Reasoning

Gilbert Müller and Ralph Bergmann1

Abstract. In case-based reasoning, improving the performance of
the retrieval phase is still an important research issue for complex
case representations and computationally expensive similarity mea-
sures. This holds particularly for the of retrieval workflows, which is
a recent topic in process-oriented case-based reasoning. While most
index-based retrieval methods are restricted to attribute-value repre-
sentations, the application of a MAC/FAC retrieval approach intro-
duces significant additional domain-specific development effort due
to design the MAC phase. In this paper, we present a new index-
based retrieval algorithm, which is applicable beyond attribute-value
representations without introducing additional domain-specific de-
velopment effort. It consists of a new clustering algorithm that con-
structs a cluster-based index structure based on case similarity, which
helps finding the most similar cases more efficiently. The approach
is developed and analyzed for the retrieval of semantic workflows.
It significantly improves the retrieval time compared to a linear re-
triever, while maintaining a high retrieval quality. Further, it achieves
a similar performance than the MAC/FAC retriever if the case base
has a cluster structure, i.e., if it contains groups of similar cases.

1 INTRODUCTION

The retrieval phase in case-based reasoning (CBR) aims at selecting
the k-most similar cases from a case-base for a given query consid-
ering a specific similarity measure. The overall goals of retrieval are
to ensure retrieval completeness, i.e., to guarantee that the retrieval
result does not miss any of the k-most similar cases and to ensure
that the retrieval time is within an acceptable time limit. While lin-
ear retrieval algorithms, which compute the similarity between the
query and each case of the case base, can easily ensure complete-
ness, the retrieval speed is insufficient if the case base is too large,
the case representation is too complex, or the similarity measure is
computationally expensive. Thus, research in CBR has lead to sev-
eral retrieval algorithms that improve retrieval speed without sacri-
ficing completeness significantly. For cases represented as attribute-
value pairs, various efficient index-based methods exist, such as case-
retrieval nets [10] or kd-trees [17]. However, improving the retrieval
speed is still an important research issue for more complex case
representations. This is particularly true for process-oriented case-
based reasoning (POCBR) in which a case represents a process or
a workflow consisting of many task and data items linked together
[2, 3, 9, 13, 14]. Such cases are usually represented as semantically
labeled graphs and the similarity assessment requires a kind of inex-
act subgraph matching, which is computationally expensive. In such
cases, existing index-based methods are not applicable. Recent re-
search [9, 4] has addressed this problem by a two-phase retrieval,

1 University of Trier, Germany, email: [muellerg][bergmann]@uni-trier.de

also called MAC/FAC (“Many are called, but few are chosen”) re-
trieval [6]. The first retrieval phase (MAC phase) performs a rough
pre-selection of a small subset of cases from a large case base. Then,
the second phase (FAC phase) is executed to perform the compu-
tationally expensive graph-based similarity computation on the pre-
selected cases only. This method improves the retrieval performance,
if the MAC stage efficiently selects a small number of relevant cases.
However, there is a risk that the MAC phase introduces retrieval er-
rors, as it might disregard highly similar cases due to its limited as-
sessment of the similarity. Hence, the retrieval approach for the MAC
phase must be designed very carefully such that it is efficient and
sufficiently precise in assessing the similarity. MAC/FAC improves
retrieval performance but it introduces an additional significant de-
velopment effort into a CBR system. To implement the MAC phase
a second retrieval method must be developed. This requires defining
an additional simplified domain specific case representation as well
as a method for the pre-selection of cases, e.g., by an additional sim-
ilarity measure applied to the simplified case representation. As the
MAC phase must be aligned with the FAC phase, MAC/FAC not only
increases the development effort but also the maintenance effort for
a CBR application.

The aim of this paper is to develop a new index-based retrieval
approach that allows to improve the retrieval performance of CBR
applications without making assumptions concerning the similarity
measure and the case representation, thus not increasing the devel-
opment and maintenance effort. However, it will be illustrated by
semantic workflows and a semantic workflow similarity [2]. This
method significantly improves the state-of-the art in retrieval as it
can be applied beyond pure attribute-value representations.

The basic idea behind the construction of the index is to use the
similarity measure that is anyway modeled for retrieval to construct
a hierarchical cluster-tree. This cluster-tree partitions the case base
into sets of similar cases and it is used as an index structure during
retrieval. Traversing the cluster tree allows finding clusters with cases
similar to the query, thus reducing the number of required similarity
computations. Unlike most existing cluster-based retrieval methods,
which are restricted to attribute-value representations [5] or textual
representations [7], our approach is applicable in the field of POCBR.

The next section introduces our previous work in POCRB, in-
cluding semantic workflow representation and similarity. Then, we
present a hierarchical clustering algorithm HBPAM to build a cluster-
based index structure. Section 4 describes the cluster-based retrieval
algorithm QTD. The experimental evaluation of retrieval time and
quality based on a case base of cooking workflows is described
in section 5. Finally, the paper discusses the results and presents
prospective future work.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-639

639

2 PROCESS-ORIENTED CBR

Important goals of POCBR [13] are the creation of new workflows
by reuse of best-practice workflows from a repository [2, 9] and the
monitoring of running workflows [14]. These are important prob-
lems in traditional workflow areas as well as in new application do-
mains such as e-science, e-health, or how-to knowledge from the
web. POCBR supports the retrieval of workflow cases [9, 2, 4] and
may in addition support their adaptation [12]. It requires an appropri-
ate case representation for workflows as well as a similarity measure
that allows to assess the utility of workflow for a new purpose. We
now briefly describe our previous work, which is illustrated by an
example from the domain of cooking [16].

2.1 Representation of Semantic Workflows

Broadly speaking, workflows consist of a set of activities (also called
tasks) combined with control-flow structures like sequences, parallel
(AND split/join) or alternative (XOR split/join) branches, and loops.
Tasks and control-flow structures form the control-flow. In addition,
tasks exchange certain products, which can be of physical matter
(such as ingredients for cooking tasks) or data. Tasks, products, and
relationships between the two of them form the data flow. Today,
graph representations for workflows are widely used. In our work, we
use a workflow representation based on semantically labeled graphs
[2]. We represent a workflow as a directed graph W = (N,E, S, T)
where N is a set of nodes and E ⊆ N ×N is a set of edges. Nodes
and edges have types (e.g. data node, task node, see Fig. 1) assigned
by the function T . Further, nodes and edges have semantic descrip-
tion from a language Σ, which is assigned by the function S. Σ is
a semantic meta data language that is used for the semantic anno-
tation of nodes and edges. We represent semantic descriptions in an
object-oriented fashion to allow the application of well-established
similarity measures from case-based reasoning [1]. Figure 1 shows
a simple fragment of a workflow graph from the cooking domain
with different types of nodes and edges. The graph for a workflow
has one workflow node. The task nodes and data nodes represent
tasks and data items, respectively. The data-flow edge is used to de-
scribe the linking of the data items consumed and produced by the
tasks. The control-flow edge is used to represent the control-flow of
the workflow, i.e., it links tasks with successor tasks or control-flow
elements. For some nodes semantic descriptions are sketched, spec-
ifying ingredients used (data nodes) and tasks performed (cooking
steps). The semantic descriptions are based on an ontology of data
items and tasks, i.e., an ontology of ingredients and cooking steps.

2.2 Semantic Similarity

Our framework for modeling semantic workflow similarity extends
traditional approaches for similarity in CBR and allows to model
similarity measures which are inline with experts assessments [2].
The core of the similarity model is a local similarity measure for se-
mantic descriptions simΣ : Σ2 → [0, 1]. In our example domain
the taxonomical structure of the data and task ontology is employed
to derive a similarity value that reflects the closeness in the ontol-
ogy. It is combined with additional similarity measures that con-
sider relevant attributes, such as the quantity of an ingredient used
in a recipe (see [2] for more details and examples). The similarity
simN : N2 → [0, 1] of two nodes and two edges simE : E2 →
[0, 1] is then defined based on simΣ applied to their assigned se-
mantic descriptions. The similarity sim(QW,CW) between a query

n2

n3

n4

n6

Data node

n5 n7

Task node

n8

n1

Workflow node

n4: ingredient: onion
n4: status: chopped

n6: ingredient: Mushrooms
n6: status: sliced

Control flow edgeData flow edge

n7: task: addn5: task: saute
n5: duration: 5 min.

n8: task: simmer
n8: duration: until tender

Part-of edge

Figure 1. A sample workflow graph

workflow QW and a case workflow CW is defined by means of
an admissible mapping m : Nq ∪ Eq → Nc ∪ Ec, which is a
type-preserving, partial, injective mapping function of the nodes and
edges of QW to those of CW . For each query node and edge x
mapped by m, the similarity to the respective case node or edge
m(x) is computed by simN (x,m(x)) and simE(x,m(x)), respec-
tively. The overall workflow similarity with respect to a mapping m,
named simm(QW,CW) is computed by an aggregation function
(e.g. a weighted average) combining the previously computed sim-
ilarity values. The overall workflow similarity is determined by the
best possible mapping m, i.e.,

sim(QW,CW) = max{simm(QW,CW) | admissible mapm}.

This similarity measure assesses how well the query workflow is cov-
ered by the case workflow. In particular, the similarity is 1 if the
query workflow is exactly included in the case workflow as a sub-
graph. Hence, this similarity measure is not symmetrical.

2.3 Similarity Computation and Case Retrieval

The computation of the similarity requires the systematic construc-
tion of admissible mappings m. As the similarity computation by
exhaustive search is computationally not feasible, we developed sev-
eral memory-bounded A* search algorithms for this purpose [2]. For
linear retrieval, this similarity computation must be applied to each
case of the case base to find the k-most similar cases. By interleaving
the A* search processes that occur for each case of the case base, we
achieved an improved variant of a linear retriever, which we call A*
parallel retriever. It is complete as long as the memory bounds are
not exceeded but it is not sufficiently fast.

Recently, we also introduced a MAC/FAC approach [4] for work-
flow retrieval. Unlike the A* parallel retriever, the MAC/FAC re-
triever is not complete. It allows to speed-up the retrieval by the cost
of retrieval errors. Thus, there is a trade-off between retrieval speed
and retrieval quality, which can be controlled by a parameter of the
MAC phase. The MAC/FAC approach uses a MAC phase with a do-
main specific attribute-value representation as well as a similarity
measure with appropriately weighted local similarity measures for
the attributes. The additional modeling effort introduced thereby is a
significant disadvantage of the MAC/FAC approach and the motiva-
tion for research presented in this paper.

G. Müller and R. Bergmann / A Cluster-Based Approach to Improve Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning640

3 CLUSTER INDEX CONSTRUCTION

We now introduce the Hierarchical Bisecting Partitioning Around
Medoids (HBPAM) algorithm, which is a hierarchical version of
the traditional Partitioning Around Medoids (PAM) algorithm [8].
It combines a bisecting PAM approach [11] with a hierarchical k-
means approach [15] in order to construct a hierarchical index where
each cluster is represented by a particular case (medoid). Such an
index can currently not be gained using traditional clustering algo-
rithms. HBPAM constructs a binary cluster tree for a given case base
CB as follows:

INPUT: case base CB, number of runs I
OUTPUT: cluster tree T
BEGIN
Initialize the tree T with a root cluster RC
consisting of all cases in CB

REPEAT
Select a leaf cluster C from T with |C|>=2
Execute PAM I times to split C into two
sub-clusters C1 and C2

Select PAM result (C1,C2) with best quality
Link C1 and C2 as child clusters to C in T
UNTIL each leaf cluster contains one case
RETURN T
END

Initially, HBPAM assigns all cases of the case base to a root cluster
RC. Using PAM, HBPAM repeatedly splits the cases of a cluster C
into two sub-clusters and thereby constructs the cluster tree T in a
top-down fashion (see Fig. 2). As PAM only finds a local optimum
of the clustering depending on the randomly selected initial medoids,
multiple runs (parameter I) are executed to alleviate this problem
[15]. The best result is selected based on the quality criterion of PAM,
which maximizes the average similarity of the medoids to the cases
within the clusters. The two resulting clusters C1 and C2 are linked as
child clusters of C. When the algorithm terminates, each leaf cluster
(depicted as rectangle in Fig. 2), contains only one case.

As our case base consists of workflows, the similarity measure
used by PAM to assign objects to medoids and to compute the clus-
tering quality is based on the semantic similarity measure (section
2.2) used for retrieval. Because this similarity measures is asymmet-
ric, we apply the min-symmetrization method [3] during clustering,
i.e., min{sim(W1,W2), sim(W2,W1)} is the similarity between
the workflows W1 and W2. To avoid multiple computations of the
similarity between the same workflow pairs, the similarity values
computed once are cached.

Since PAM, which has a complexity of O(l(n−l)2), is executed I
times for n = |CB| cases and with l = 2 clusters, the complexity of
the computation in the inner loop is O(I ·2(n−2)2) = O(I ·n2). In
the worst case, the HBPAM algorithm produces a most unbalanced
tree, which requires to execute the split operation n times. This re-
sults in an overall complexity of O(|CB|3).

4 CLUSTER-BASED RETRIEVAL

Based on the HBPAM cluster index, we developed a hierarchical re-
trieval algorithm, named Queued Top-Down Cluster-Based Retrieval
(QTD) for retrieving the k-most similar cases w.r.t. a query workflow
QW . The basic idea is to identify some ‘reasonably-sized’ clusters
from the tree that are similar to the query and to investigate the cases

. . .

PAM k=2

PAM k=2

.

PAM k=2

RC RC RC

level 0

level 1

level 2

Figure 2. HBPAM example

of those clusters for similarity only. To control the search for clus-
ters, QTD uses two parameters upper level UL and lower level LL
which define two levels2 in cluster tree. The search is restricted to the
interval of nodes between these two levels. Additionally, a parameter
filter size FS ≤ k defines the minimum total number of cases from
the most similar clusters that have to be investigated before the re-
trieval stops. In the algorithm, the similarity between a cluster C and
a query QW is determined based on the medoid of the cluster, i.e.,
sim(QW,C) = sim(QW,medoid(C)).

INPUT: query QW, cluster tree T,
upper level UL, lower level LL,
filter size FS, number of cases k

OUTPUT: list of k-most similar cases RL
BEGIN

Initialize sorted queue SQ, result list RL
cluster retrieval list CRL

FOR cluster C FROM clustersAtLevel(UL)
SQ.PUSH(C,sim(QW,medoid(C)))

END FOR
REPEAT

X=SQ.POP()
IF (size(X)!= 1 AND level(X)!=LL) THEN

simL=sim(QW,medoid(childLeft(X)))
simR=sim(QW,medoid(childRight(X)))
SQ.PUSH(childLeft(X),simL)
SQ.PUSH(childRight(X),simR)

ELSE
CRL.add(cases(X))

END IF
UNTIL size(CRL)>=FS
RL = EXECUTE A*Parallel(QW,CRL,k)
RETURN RL

END

The QTD retriever maintains a queue SQ that stores a cluster-
similarity-pair for each computed similarity between a query QW
and a cluster C, i.e., (C, sim(QW,C)). At any time QW is in de-
scending order w.r.t. the similarity values. Initially, the similarity of
the query QW to each cluster C ∈ T at level UL is calculated and
their cluster-similarity-pairs are added to SQ. The following itera-
tion implements a heuristic search in the tree from the nodes of level
UL towards some nodes of level LL which are most similar to the
query. Therefore, the first cluster of SQ (cluster with highest simi-
larity) is selected and removed from SQ. If this cluster is not a leaf

2 The level of a node is the number of parent nodes the node has. The root
node RC is at level 0.

G. Müller and R. Bergmann / A Cluster-Based Approach to Improve Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning 641

node or on the lowest level LL, the similarities of the query QW to
the left and right child cluster are computed and both child clusters
are added along with their similarity into SQ. Otherwise, the cases
contained in the cluster are added to the cluster retrieval list CRL.
This iteration is continued until the CRL contains at least FS many
cases. Then, for each of the cases in CRL, the similarity w.r.t. the
query QW is computed using a linear retriever, to determine the k-
most similar cases which are stored in the result list RL. In our case
we use the A* parallel retriever for semantic workflows (see Sec.
2.3).

0.4 0.2

0.4 0.2

lower level

SQ

0.5 0.6

0.5 0.6 0.8 0.3

0.6 0.5 0.2 0.8 0.5 0.3 0.2 0.6 0.5 0.3 0.2

upper level

CB

A

D E E

H I J K

B C E D C J D K C I H K C

SQ1 SQ2 SQ3 SQ4

SQ1

SQ2

SQ3
SQ4 FE G

CRLj100 j2 j1 j2 i1

j1

j2
i1

query q

Figure 3. QTD example (UL = 1, LL = 3, FS = 3, k = 1)

An example scenario is illustrated in Figure 3. First, the cluster-
similarity-pairs for each cluster at level UL = 1 (B and C) are added
to SQ. Next, cluster B, the most similar cluster in SQ, is removed
from SQ. Then, the cluster-similarity-pairs of the child clusters of B
(D and E) are inserted into SQ. Next, this process is again applied
to cluster E. As the subsequent cluster J is located at level LL its
cases j1 and j2 are added to the cluster retrieval list CRL and no
further clusters are added to SQ. Next, cluster D is selected and its
child clusters are inserted to SQ. Finally, leaf cluster I is selected
and the case i1 of I is added to CRL. Now the iteration stops as the
stopping criterion size(CRL) >= 3 is met. The similarity between
the query and the three cases in CRL is computed by applying the
A* parallel retriever and the most similar case is returned (as k=1).

Please note that this retrieval algorithm does not make any as-
sumption concerning the similarity measure used during retrieval.
HBPAM and QTD just use the available similarity measure for clus-
tering and retrieval. Also, no assumptions are made concerning the
structure of the cases. Hence, this method is generic and cannot only
be applied for workflow cases.

The QTD retriever can reduce the retrieval time compared to a lin-
ear retriever, as the number of overall similarity computations can
be reduced, depending on the chosen parameter values. The over-
all number of similarity computations performed is the number of

computations performed during tree traversal (one similarity com-
putation for each cluster being investigated) plus the size of the re-
sulting CRL, as for each case in CRL the similarity is computed
as well. In the worst case, 2LL+1 − 2UL similarity computations
are performed during tree traversal, which occurs if each cluster is
considered. In the best case, the tree is traversed top-down and the
algorithm terminates when selecting the first cluster at level LL,
hence 2UL + 2 · (LL − UL) similarity computations have to be
performed. The size of the CRL can be estimated by FS + E ,
whereas E < max{size(C)|Clusters C at level LL}. Thus, in the
best case with a balanced tree and with UL = 1, FS = k, and
LL = �log2(|CB|/k)� the tree can be traversed from the root node
to a node that contains the requested number of cases, leading to
2 · LL + k similarity computations, which would be a significant
search reduction.

An other aspect is also important to note: the QTD retriever does
not guarantee retrieval completeness. The selected clustering strategy
cannot guarantee that the selected clusters contain the k-most similar
cases. Hence it could happen that similar cases are missed because
they are in a different cluster. The larger the filter size parameter FS,
the more similar clusters are investigated and thereby the chance of
missing cases is reduced. Thus, there is a trade-off between retrieval
quality and retrieval speed, similar to MAC/FAC approaches. The
retrieval time and retrieval error (or quality) obviously depends on
many factors, including the distribution of the cases, i.e., how well
the cases can be grouped into clusters of similar cases. This makes a
more thorough theoretical assessment difficult. Hence, we investigate
the characteristics of the retrieval algorithm using an experimental
approach.

5 EXPERIMENTAL EVALUATION

We now evaluate retrieval time and retrieval quality for various pa-
rameter combinations of the QTD algorithm.

While measuring retrieval time is obvious, different measures for
retrieval quality have been proposed in the literature. We use a mea-
sure that assesses which cases from the set of the k-most similar
cases (called MSC(QW, k) in equation 1) have been omitted in the
result list RL returned by QTD or MAC/FAC retrieval for the query
QW . Each missing case has a negative impact on the retrieval qual-
ity proportional to its similarity to the query. Thus, if a highly similar
case is omitted, the negative impact on the quality is stronger than if
a case with a low similarity is omitted.

quality(QW,RL) = 1− 1

|RL| ·
∑

CW∈MSC(QW,|RL|)−RL

sim(QW,CW) (1)

In our experiments, we investigated five hypotheses. We explore
whether the two level parameters (Hypothesis H1) as well as the fil-
ter size parameter (Hypothesis H2) can be used to control the trade-
off between retrieval quality and retrieval time. Moreover, we expect
that the distribution of the cases has an impact on the retrieval qual-
ity. We assume that a case base with a strong cluster structure, i.e., a
case base in which there are separated groups of similar cases leads
to a higher retrieval quality compared to a case base with litte cluster
structure, i.e., where cases are more equally distributed (Hypothesis
H3). Further, we compare the retrieval time of QTD with the retrieval
time of the A* parallel retriever. We expect that QTD decreases the
retrieval time of the A* parallel retriever with an acceptable loss of
retrieval quality (Hypothesis H4). Finally, we compare QTD with
our MAC/FAC retriever [4]. We do not expect to improve retrieval

G. Müller and R. Bergmann / A Cluster-Based Approach to Improve Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning642

time and quality compared to MAC/FAC (Hypothesis H5) as QTD
is generic, while MAC/FAC uses additional, manually optimized do-
main knowledge in the MAC phase.

Table 1. Evaluation parameters

parameter values

number of cases k 10, 25, 50, 100, 200
filter size FS 10, 25, 50, 100, 200, 300
upper level UL 1, 2, . . . , 12
lower level LL 7, 8, . . . , 12

We implemented the QTD algorithm as new component within
the CAKE framework3 in which the A* parallel retriever and the
MAC/FAC retriever were already included. This allows a systematic
comparison of the three retrieval algorithms in the same implementa-
tion environment. The evaluation was performed in cooking domain
using a workflow repository automatically generated by information
extraction [16] from the recipe web site allrecipes.com. Furthermore,
we used a manually developed cooking ontology with 208 ingredi-
ents and 225 cooking preparations steps upon on which the semantic
similarity measure has been defined. The workflow repository consist
of 1526 cases (case base CB-I). A first cluster analysis of this case
base revealed that it has only little cluster [3] structure. Hence, to as-
sess H3, a second case base (CB-II) with a strong cluster structure is
constructed, which consists of 1793 cases. For this purpose, we ran-
domly selected 50 cases from CB-I and generated 35-40 variations of
each case by randomly modifying task orders, and by adding, delet-
ing, or replacing nodes and edges. Both case bases are queried using
a set of 100 query cases (also recipes extracted from allrecipes.com),
which are different from the cases in the two case bases. QTD was
executed with all parameter combinations given in table 1 and HB-
PAM with parameter I = 4.

Table 2. Evaluation of the level parameters

CB-I CB-II

UL LL quality time quality time

1 7 0.6968 0.4925 0.7256 0.5298
2 7 0.6963 0.4996 0.7575 0.5756
4 7 0.7378 0.5276 0.8172 0.6005
6 7 0.7644 0.6220 0.8571 0.6706
7 7 0.7787 0.7614 0.8855 0.7963
1 8 0.7067 0.5487 0.7345 0.6005
2 8 0.7053 0.5363 0.7702 0.6418
4 8 0.7460 0.5868 0.8269 0.6973
6 8 0.7706 0.6870 0.8649 0.7663
7 8 0.7803 0.8191 0.8855 0.8801
8 8 0.8003 1.0577 0.9097 1.1063
1 9 0.7163 0.6213 0.7437 0.6868
2 9 0.7160 0.6118 0.7796 0.7415
4 9 0.7548 0.6748 0.8316 0.8038
6 9 0.7786 0.7735 0.8692 0.8757
7 9 0.7866 0.9032 0.8876 0.9921
8 9 0.8009 1.1299 0.9084 1.2028
9 9 0.8197 1.6250 0.9270 1.4883

Additionally the A* parallel retriever and the MAC/FAC retriever
were executed with the same queries on CB-I and CB-II. All experi-
ments were executed on a PC with an Intel Core i7-870 CPU @ 2.93
GHz and 8 GB RAM running Windows-7 Enterprise 64-bit.
3 Collaborative Agile Knowledge Engine, see cake.wi2.uni-trier.de

First, we evaluated the impact of level parameters on the trade-off
between retrieval time and quality (see H1). Table 2 shows an extract
of different upper and lower level combinations and their average
time and quality values over all parameter combinations in Tab. 1.

For both level parameters UL and LL it can be observed that a
larger value leads to a higher quality but also to a higher retrieval
time, which confirms H1. The impact of UL is higher than the im-
pact of LL. Larger level parameter values lead to higher quality as
the considered clusters are smaller and thus more cases from differ-
ent clusters are collected in the CRL. The fastest retrieval is achieved
when UL = 1, which is an indication that the worst-case assump-
tion considered in section 4 does not occur in the experiment. This
shows that climbing down the cluster tree indeed reduces the can-
didate clusters to be investigated and reduces retrieval time. When
comparing the results for CB-I and CB-II we can also see that the
quality is much better for the case base with cluster structure, which
is in line with hypothesis H3.

Table 3. Comparison of retrievers for different parameters k and FS

QTD MAC/FAC A* Parallel

k FS quality time quality time time

CB-I
10 10 0.6042 0.2469 0.7537 0.2506 1.3280
10 25 0.6431 0.2790 0.8802 0.3005 1.3280
10 50 0.7026 0.3240 0.9563 0.3582 1.3280
10 100 0.7664 0.3985 0.9829 0.4423 1.3280
25 25 0.6148 0.3147 0.7892 0.3103 1.4370
25 50 0.6707 0.3717 0.9040 0.3937 1.4370
25 100 0.7402 0.4595 0.9620 0.5176 1.4370
50 50 0.6521 0.4188 0.8278 0.4272 1.5640
50 100 0.7227 0.5211 0.9286 0.5985 1.5640

CB-II
10 10 0.7201 0.2596 0.7182 0.2889 1.3221
10 25 0.7796 0.3031 0.8503 0.3355 1.3221
10 50 0.8228 0.3606 0.9219 0.4117 1.3221
10 100 0.8660 0.4660 0.9586 0.5276 1.3221
25 25 0.7543 0.3239 0.7865 0.3365 1.4407
25 50 0.8042 0.3863 0.8838 0.4348 1.4407
25 100 0.8542 0.5085 0.9490 0.5723 1.4407
50 50 0.7806 0.4257 0.8199 0.4624 1.6215
50 100 0.8478 0.5577 0.9184 0.6114 1.6215

For the following analyses, we fixed the level parameters to UL =
6 and LL = 7 as this setting is a good compromise between retrieval
speed and quality. First, we evaluated the influence of filter size FS
and number of cases k to be retrieved. Table 3 shows the average
quality and retrieval time measures over all 100 queries.

As expected, the retrieval time increases both with the increase of
k and FS as both parameters increase the number of similarity as-
sessments in QTD. Further, for a fixed number of cases k, an increase
of FS increases the quality, as more cases are investigated, which
confirms hypothesis H2. Again, we can see that the quality results
for CB-II are better than for CB-I, which is in line with hypothesis
H3. Table 3 also allows to compare the three retrieval algorithms.
Compared to A* parallel, QTD shows a speed-up in retrieval of a
factor 3-5.4 for case base CB-I and a factor of 2.8-5.1 for CB-II. If
we consider a quality value of 75% as acceptable, QTD achieves a
retrieval speed-up of a factor 3.8-4.3 with a quality above this level.
However, for CB-I the 75% level is only reached for k = 10 and
FS = 100, but still leading to a speedup of a factor 3.3. Hence,
hypothesis H4 is confirmed for CB-II, for CB-I the speed-up is sig-
nificant, but the retrieval quality is becoming worse, which is in line

G. Müller and R. Bergmann / A Cluster-Based Approach to Improve Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning 643

with hypothesis H3.
When investigating the results for the MAC/FAC retriever, one can

easily recognize that the retrieval quality does not depend on the clus-
ter structure of the case base. Its quality on CB-I is clearly better than
the quality of the QTD retriever, while the retrieval time is similar.
However, for CB-II the difference in quality and retrieval time is get-
ting smaller and thus the advantage of the MAC/FAC retriever disap-
pears. Figure additionally illustrates the relation between QTD and
the MAC/FAC retriever. Here, the average retrieval time and qual-
ity values over the 100 queries are plotted, for k = 10 cases and a
varying filter size of 10-100. Overall, hypothesis H5 is confirmed,
as QTD does not outperform MAC/FAC, but for the case base CB-II
the quality difference is surprisingly small. Hence, QTD achieves a
similar performance than the MAC/FAC retriever on CB-II.

0 0.2 0.4 0.6 0.8 1 1.2
0.5

0.6

0.7

0.8

0.9

1

time in seconds

qu
al

ity

QTD (CB-II)
MAC/FAC (CB-II)
QTD (CB-I)
MAC/FAC (CB-I)
A* parallel

Figure 4. Retrieval time and quality for k = 10, UL = 6, LL = 7, and
FS varying from 10-100.

6 CONCLUSIONS AND FUTURE WORK

We presented a new approach for index-based retrieval of workflows.
A cluster index is constructed prior to the execution of a cluster-based
retrieval. For this purpose we developed the HBPAM clustering al-
gorithm and the QTD retrieval algorithm. Our investigation revealed
that the presented approach is able to decrease the retrieval time
without a considerable loss of retrieval quality compared to a lin-
ear retrieval approach. Furthermore, parameters enable to control the
trade-off between retrieval quality and retrieval time. The retrieval
quality of the presented approach depends on the structure of the
case base; if groups of similar cases are present, our approach is able
to compete with a MAC/FAC approach specified for semantic work-
flows. A significant advantage compared to the general MAC/FAC
approach is that no additional retrieval phase (the MAC stage) must
be designed and thus the development and maintenance effort is not
increased.

In contrast to other indexing approaches, no restrictions are made
on the similarity measure and the case representation. Furthermore,
it solely relies on the similarity measure present in any CBR appli-
cation. Hence, the approach could possibly serve as a generic index-
based retrieval framework for CBR applications with different com-

plex case representations and different similarity measures, which
still has to be investigated.

Future work could also focus on a further improvement of the pre-
sented approach. Adapting the clustering quality criterion of HB-
PAM, for example, could improve the retrieval performance, since
traditional clustering might not be optimal for the construction of an
cluster index [18]. Further studies are needed to investigate whether
this method is suitable for other case bases, other domains, different
case representations and other similarity measures.

ACKNOWLEDGEMENTS

This work was funded by the German Research Foundation (DFG),
project number BE 1373/3-1.

REFERENCES

[1] Ralph Bergmann, Experience Management - Foundations, Develop-
ment Methodology, and Internet-Based Applications, volume LNAI
2432, Springer, 2002.

[2] Ralph Bergmann and Yolanda Gil, ‘Similarity assessment and efficient
retrieval of semantic workflows’, Inf. Syst., 40, 115–127, (March 2014).

[3] Ralph Bergmann, Gilbert Müller, and Daniel Wittkowsky, ‘Workflow
clustering using semantic similarity measures.’, in KI 2013: Advances
in Artificial Intelligence, eds., Timm and Thimm, volume 8077 of
LNCS, pp. 13–24. Springer, (2013).

[4] Ralph Bergmann and Alexander Stromer, ‘Mac/fac retrieval of seman-
tic workflows’, in Proc. of FLAIRS 2013, St. Pete Beach, Florida. May,
2013, eds., Boonthum-Denecke and Youngblood. AAAI Press, (2013).

[5] Chuang-Cheng Chiu and Chieh-Yuan Tsai, ‘A weighted feature c-
means clustering algorithm for case indexing and retrieval in cased-
based reasoning’, in New Trends in Applied Artificial Intelligence, eds.,
Okuno and Ali, volume 4570 of LNCS, 541–551, Springer, (2007).

[6] Kenneth D. Forbus and Dedre Gentner, ‘MAC/FAC: a model of
similarity-based retrieval’, in Proc. of CogSci1991. Cognitive Science
Society, (1991).

[7] Nick Jardine and Cornelis Joost van Rijsbergen, ‘The use of hierarchic
clustering in information retrieval’, Information storage and retrieval,
7(5), 217–240, (1971).

[8] Leonard Kaufman and Peter J. Rousseeuw, Finding Groups in Data -
An Introduction to Cluster Analysis, John Wiley, New York, 1990.

[9] Kendall-Morwick, J. and Leake, D., ‘On tuning two-phase retrieval
for structured cases’, in ICCBR-Workshop on Process-oriented Case-
Based Reasoning, pp. 25–34, Lyon, (2012).

[10] Mario Lenz and Hans-Dieter Burkhard, ‘Lazy propagation in Case Re-
trieval Nets’, in Proc. of ECAI-96, ed., Wahlster, pp. 127–131. John
Wiley and Sons, (1996).

[11] Michael Steinbach, George Karypis and Vipin Kumar, ‘A comparison
of document clustering techniques’, in In KDD Workshop on Text Min-
ing, (2000).

[12] Mirjam Minor, Ralph Bergmann, and Sebastian Görg, ‘Case-based
adaptation of workflows’, Inf. Syst., 40, 142–152, (2014).

[13] Mirjam Minor, Stefania Montani, and Juan A. Recio-Garcı́a, ‘Editorial:
Process-oriented case-based reasoning’, Inf. Syst., 40, 103–105, (2014).

[14] Stefania Montani and Giorgio Leonardi, ‘Retrieval and clustering for
supporting business process adjustment and analysis’, Information Sys-
tems, 40(0), 128 – 141, (2014).

[15] Rasha Kashef and Mohamed S. Kamel, ‘Efficient bisecting k-medoids
and its application in gene expression analysis’, in Proc. of ICIAR ’08,
pp. 423–434, Berlin, Heidelberg, (2008). Springer-Verlag.

[16] Pol Schumacher, Mirjam Minor, Kirstin Walter, and Ralph Bergmann,
‘Extraction of procedural knowledge from the web: A comparison of
two workflow extraction approaches’, in Proc. of WWW ’12, pp. 739–
747. ACM, (2012).

[17] Stefan Wess, Klaus-Dieter Althoff, and Guido Derwand, ‘Using kd-
trees to improve the retrieval step in case-based reasoning’, in Proc. of
EWCBR-93, eds., Wess, Althoff, and Richter, LNAI, 837, pp. 167–181.
Springer, (1993).

[18] Tim Wylie, Michael A Schuh, John Sheppard, and Rafal A Angryk,
‘Cluster analysis for optimal indexing’, in Proc. of FLAIRS 2013,
(2013).

4

G. Müller and R. Bergmann / A Cluster-Based Approach to Improve Similarity-Based Retrieval for Process-Oriented Case-Based Reasoning644

