
Landmarks in Oversubscription Planning

Vitaly Mirkis and Carmel Domshlak 1

Abstract. In the basic setup of oversubscription planning (OSP),
the objective is to achieve an as valuable as possible subset of goals
within a fixed allowance of the total action cost [32]. Continuing
from the recent successes in exploiting logical goal-reachability land-
marks in classical planning, we develop a framework for exploit-
ing such landmarks in heuristic-search OSP. We show how standard
landmarks of certain classical planning tasks can be compiled into
the OSP task of interest, resulting in an equivalent OSP task with
a lower budget, and thus with a smaller search space. We then show
how such landmark-based task enrichment can be combined in a mu-
tually stratifying way with the BFBB search used for OSP planning.
Our empirical evaluation confirms the effectiveness of the proposed
landmark-based budget reduction scheme.

1 INTRODUCTION

In most general terms, deterministic planning is a problem of find-
ing paths in large-scale yet concisely represented state-transition sys-
tems. In what these days is called classical planning [11], the task is
to find an as cost-effective path as possible to a goal-satisfying state.
In contrast, in what Smith [32] baptized as “oversubscription” plan-
ning (OSP), the task is to find an as goal-effective (or valuable) state
as possible via a cost-satisfying path. In other words, the hard con-
straint of classical planning translates to only preference in OSP, and
the hard constraint of OSP translates to only preference in classical
planning. Finally, in “optimal” classical planning and OSP, the tasks
are further constrained to finding only most cost-effective paths and
most goal-effective states, respectively.

Classical planning and OSP constitute the most fundamental vari-
ants of deterministic planning, with many other variants of deter-
ministic planning being defined in terms of mixing and relaxing the
two. For instance, “net-benefit” planning tries to achieve both (classi-
cal) cost-effectiveness of the path and (OSP) goal-effectiveness of the
end-state by additively combining the two measures, but at the same
time, it relaxes the hard constraints of (classical) goal-satisfaction
and (OSP) cost-satisfaction [31, 1, 4, 2, 7, 24]. Another popular
setup is “cost-bounded” planning, in which both (classical) goal-
satisfaction and (OSP) cost-satisfaction are pursued, but both (clas-
sical) cost-effectiveness of the path and (OSP) goal-effectiveness of
the end-state are relaxed/ignored [33, 34, 13, 15, 19, 12, 27].

While OSP has been advocated over the years on par with classi-
cal planning, so far, the theory and practice of the latter have been
studied and advanced much more intensively. The remarkable suc-
cess and continuing progress of heuristic-search solvers for classical
planning is one notable example. Primary enablers of this success
are the advances in domain-independent approximations, or heuris-
tics, of the cost needed to achieve a goal state from a given state.

1 Technion, Haifa, Israel, emails: {mirkis@tx}{dcarmel@ie}.technion.ac.il

With our focus here on optimal planning, two classes of approxi-
mation techniques have been found especially useful in the context
of optimal classical planning: those based on state-space abstrac-
tions [10, 14, 18, 22] and these based on logical landmarks for goal
reachability [21, 17, 9, 5, 28].

Considering OSP as heuristic search, a question is then whether
some similar-in-spirit (yet possibly mathematically different) ap-
proximation techniques can be developed for heuristic-search OSP.
Recently, the authors provided the first affirmative answer to this
question in the context of abstractions by developing the actual no-
tion of OSP abstractions, investigating the complexity of working
with them for the purpose of heuristic approximation, and demon-
strating empirically that using OSP abstraction heuristics within a
best-first branch-and-bound (BFBB) search can be extremely effec-
tive in practice [25]. In contrast, the prospects of goal-reachability
landmarks in heuristic-search OSP have not been investigated yet.

This is precisely the contribution of this paper: First, we intro-
duce and study ε-landmarks, the logical properties of OSP plans
that achieve valuable states. We show that ε-landmarks correspond
to regular landmarks of certain classical planning tasks that can be
(straightforwardly) derived from the OSP tasks of interest. We then
show how such ε-landmarks can be compiled into the OSP task of
interest, resulting in an equivalent OSP task, but with a stricter cost
satisfaction constraint, and thus with a smaller effective search space.
Finally, we show how such landmark-based task enrichment can be
combined in a mutually stratifying way with the BFBB search used
for OSP planning, resulting in an incremental procedure that inter-
leaves search and landmark discovery. The entire framework is inde-
pendent of the OSP planner specifics, and in particular, of the heuris-
tic functions it employs. Our empirical evaluation on a large set of
OSP tasks confirms the effectiveness of the proposed approach.

2 PRELIMINARIES

Since both OSP and classical planning tasks are discussed in the pa-
per, we use a formalism that is based on the standard STRIPS formal-
ism with non-negative operator costs (cf. [17]), extended to OSP in
line with the notation of our earlier paper on OSP [25].

Planning Tasks. A planning task structure is given by a pair
〈V,O〉, where V is a finite set of propositional state variables, and
O is a finite set of operators. State variables are also called proposi-
tions or facts. A state s ∈ 2V is a subset of facts, representing the
propositions which are currently true. Each operator o ∈ O is as-
sociated with preconditions pre(o) ⊆ V , add effects add(o) ⊆ V ,
and delete effects del(o) ⊆ V . Applying an operator o in s results in
state (s \ del(o)) ∪ add(o), which we denote as s�o�. The notation
is only defined if o is applicable in s, i.e., if pre(o) ⊆ s. Applying
a sequence 〈o1, . . . , ok〉 of operators to a state is defined inductively
as s�ε� := s and s�〈o1, . . . , ok〉� := (s�〈o1, . . . , ok−1〉�)�ok�.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-633

633



A classical planning task Π = 〈V,O; I,G, cost〉 extends its
structure 〈V,O〉 with an initial state I ⊆ V , a goal G ⊆ V , and
a real-valued, nonnegative operator cost function cost : O → R

0+.
An operator sequence π is called an s-plan if it is applicable in s, and
G ⊆ s�π�. The cost of s-plan π is cost(π) :=

∑
o∈π cost(o), and

π is optimal if its cost is minimal among all s-plans. The objective
in classical planning is to find an I-plan of as low cost as possible or
prove that no I-plan exists. Optimal classical planning is devoted to
searching for optimal I-plans only.

An oversubscription planning (OSP) task Π =
〈V,O; I, cost, u, b〉 extends its structure 〈V,O〉 with four com-
ponents: an initial state I ⊆ V and an operator cost function
cost : O → R

0+ as above, plus a succinctly represented and
efficiently computable state value function u : S → R

0+, and a cost
budget b ∈ R

0+. In what follows, we assume u(s) =
∑

v∈s u(v),
i.e., the value of state s is the sum of (mutually independent) values
of propositions which are true in s. Conceptually, our results equally
apply to general value functions, but the complexity of certain
construction steps may vary between different families of value
functions.

In OSP, an operator sequence π is called an s-plan if it is appli-
cable in s, and

∑
o∈π cost(o) ≤ b. While even an empty operator

sequence is an s-plan for any state s, the objective in OSP is to find
an I-plan that achieves as valuable a state as possible. By û(π) we
refer to the value of the end-state of π, that is, û(π) = u(s�π�).
Optimal OSP is devoted to searching for optimal I-plans only: An
s-plan π is optimal if û(π) is maximal among all the s-plans.

Heuristics. The two major ingredients of any heuristic-search
planner are its search algorithm and heuristic function. In classical
planning, the heuristic is typically a function h : 2V → R

0+∪{∞},
with h(s) estimating the cost h∗(s) of optimal s-plans. A heuristic h
is admissible if it is lower-bounding, i.e., h(s) ≤ h∗(s) for all states
s. All common heuristic search algorithms for optimal classical plan-
ning, such as A∗, require admissible heuristics.

In OSP, a heuristic is a function h : 2V × R
0+ → R

0+, with
h(s, b) estimating the value h∗(s, b) of optimal s-plans under cost
budget b. A heuristic h is admissible if it is upper-bounding, i.e.,
h(s, b) ≥ h∗(s, b) for all states s and all cost budgets b. Here as
well, search algorithms for optimal OSP, such as best-first branch-
and-bound (BFBB) discussed later on in detail, require admissible
heuristics.

Landmarks in Classical Planning. For a state s in a classical
planning task Π, a landmark is a property of operator sequences that
is satisfied by all s-plans [20]. For instance, a fact landmark for a
state s is a fact that is true at some point in every s-plan. Several
admissible landmark heuristics have been shown as extremely effec-
tive in optimal classical planning [21, 17, 5, 28]. These heuristics use
extended notions of landmarks which are subsumed by disjunctive
action landmarks. Each such landmark is a set of operators such that
every s-plan contains at least one action from that set. In what fol-
lows we consider this popular notion of landmarks, and simply refer
to disjunctive action landmarks for a state s as s-landmarks. For ease
of presentation, most of our discussion will take place in the context
of landmarks for the initial state of the task, and these will simply be
referred to as landmarks (for Π).

Deciding whether an operator set L ⊂ O is a landmark for clas-
sical planning task Π is PSPACE-hard [29]. Therefore, all land-
mark heuristics employ methods for landmark discovery that are
polynomial-time, sound, but incomplete. In what follows we as-
sume access to such a procedure; the actual way the landmarks
are discovered is tangential to our contribution. For a set L of s-

landmarks, a landmark cost function lcost : L → R
0+ is admis-

sible if
∑

L∈L lcost(L) ≤ h∗(s). For a singleton set L = {L},
lcost(L) := mino∈L cost(o) is a natural admissible landmark cost
function, and it extends directly to non-singleton sets of pairwise dis-
joint landmarks. For more general sets of landmarks, lcost can be de-
vised (in polynomial time) via operator cost partitioning [23], either
given L [21], or within the actual process of generating L [17].

3 “BRING ME SOMETHING” LANDMARKS

While landmarks play an important role in (both satisficing and op-
timal) classical planning, so far they have not been exploited in OSP.
At first glance, this is probably no surprise: Since landmarks must
hold in all plans, and the empty operator sequence is always a plan
for any OSP task, the notion of landmark does not seem useful here.

Having said that, consider the anytime “output improvement”
property of the forward-search branch-and-bound algorithms used
for heuristic-search OSP. The empty plan is not interesting there not
only because it is useless, but also because it is “found” by the search
algorithm right at the get-go. In general, at all stages of the search,
anytime algorithms like BFBB maintain the best-so-far solution π,
and prune all branches that promise value lower or equal to û(π).
Hence, in principle, such algorithms may benefit from information
about properties that are “satisfied by all plans with value larger than
x.” Unfortunately, it is not yet clear how the machinery for discover-
ing classical planning landmarks can be adapted to discovery of such
“value landmarks” while preserving polynomial-time complexity on
general OSPs and arbitrary lower bounds x.

Looking at what is needed and what is available, our goal here is
to exploit this machinery as it is. While the value of different s-plans
in an OSP task Π varies between zero and the value of the optimal
s-plan (which may also be zero), let an ε-landmark for state s be
any property that is satisfied by any s-plan π that achieves something
valuable. For instance, with the disjunctive action landmarks we use
here, if L ⊆ O is an ε-landmark for s, then every s-plan π with
û(π) > 0 contains an operator from L. In what follows, unless stated
otherwise, we focus on ε-landmarks for (the initial state of) Π.

Given an OSP task Π = 〈V,O; I, cost, u, b〉, let a classical plan-
ning task Πε = 〈Vε, Oε; Iε, costε, Gε〉 be constructed as Vε =
V ∪ {g}, Iε = I , Gε = {g}, and Oε = O ∪ Og , where, for
each proposition v with u(v) > 0, Og contains an operator ov with
pre(ov) = {v}, add(ov) = {g}, del(ov) = ∅, and costε(ov) = 0.
For all the original operators o ∈ O, costε(o) = cost(o). In other
words, Πε extends the structure of Π with a set of zero-cost actions
such that applying any of them indicates achieving a positive value
in Π. In what follows, we refer to Πε as the ε-compilation of Π.
Constructing Πε from Π is trivially polynomial time, and

Theorem 1 For any OSP task Π, any landmark L for Πε such that
L ⊆ O is an ε-landmark for Π.

With Theorem 1 in hand,2 we can now derive ε-landmarks for Π
using any method for classical planning landmark extraction, such as
that employed by the LAMA planner [30] or the LM-Cut family of
techniques [17, 5]. However, at first glance, the discriminative power
of knowing “what is needed to achieve something valuable" seems to
be negligible when it comes to deriving effective heuristic estimates
for OSP. The good news is that, in OSP, such information can be
effectively exploited in a slightly different way.

2 Due to space limitations, all proofs are delegated to a full technical re-
port [26].

V. Mirkis and C. Domshlak / Landmarks in Oversubscription Planning634



BFBB (Π = 〈V,O; I, cost, u, b〉)
open := new max-heap ordered by f(n) = h(s[n], b− g(n))
open.insert(make-root-node(I))
closed:= ∅; best-cost:= ∅
initialize best solution n∗ := I
while not open.empty()

n := open.pop-max()
if f(n) ≤ u(s[n∗]): break
if s[n] �∈ closed or g(n) < best-cost(s[n]):
closed:= closed ∪ {s[n]}
best-cost(s[n]) := g(n)
foreach o ∈ O(s[n]):

n′ := make-node(s[n]�o�)
if g(n′) > b or f(n′) ≤ u(s[n∗]): continue
if u(s[n′]) > u(s[n∗]): update n∗ := n′
open.insert(n′)

return n∗

Figure 1. Best-first branch-and-bound (BFBB) search for OSP

3.1 ε-Landmarks and Budget Reduction

In the same way that A∗ constitutes a canonical heuristic-search al-
gorithm for optimal classical planning, anytime best-first branch-
and-bound (BFBB) probably constitutes such an algorithm for opti-
mal OSP.3 Figure 1 depicts a pseudo-code description of BFBB. s[n]
there denotes the state associated with search node n. In BFBB for
OSP, a node n with maximum evaluation function h(s[n], b− g(n))
is selected from the OPEN list. The duplicate detection and reopen-
ing mechanisms in BFBB are similar to those in A∗. In addition,
BFBB maintains the best solution n∗ found so far and uses it to
prune all generated nodes evaluated no higher than u(s[n∗]). Like-
wise, complying with the semantics of OSP, all generated nodes n
with cost-so-far g(n) higher than the problem’s budget b are also im-
mediately pruned. When the OPEN list becomes empty or the node
n selected from the list promises less than the lower bound, BFBB
returns (the plan associated with) the best solution n∗, and if h is ad-
missible, i.e., the h-based pruning of the generated nodes is sound,
then the returned plan is guaranteed to be optimal.

Now, consider a schematic example of searching for an optimal
plan for an OPS task Π with budget b, using BFBB with an ad-
missible heuristic h. Suppose that there is only one sequence of (all
unit-cost) operators, π = 〈o1, o2, . . . , ob+1〉, applicable in the ini-
tial state of Π, and that the only positive value state along π is its
end-state. While clearly no value higher than zero can be achieved in
Π under the given budget of b, the search will continue beyond the
initial state, unless h(I, ·) counts the cost of all the b + 1 actions of
π. Now, suppose that h(I, ·) counts only the cost of {oi, . . . , ob+1}
for some i > 0, but {o1}, {o2}, . . . , {oi−1} are all discovered to
be ε-landmarks for Π. Given that, suppose that we modify Π by (a)
setting the cost of operators o1, o2, . . . , oi−1 to zero, and (b) reduc-
ing the budget to b− i+ 1. This modification seems to preserve the
semantics of Π, while on the modified task, BFBB with the same
heuristic h will prune the initial state and thus establish without any
search that the empty plan is an optimal plan for Π. Of course, the
way Π is modified in this example is as simplistic as the example
itself. Yet, this example does motivate the idea of landmark-based
budget reduction for OSP, as well as illustrates the basic idea behind
the generically sound task modifications that we discuss next.

Let Π = 〈V,O; I, cost, u, b〉 be an OSP task, L = {L1, . . . , Ln}
be a set of pairwise disjoint ε-landmarks for Π, and lcost be
an admissible landmark cost function from L. Given that, a new
OSP task ΠL = 〈VL, OL; IL, costL, uL, bL〉 with budget bL =

3 BFBB is also extensively used for net-benefit planning [3, 7, 8], as well as
some other variants of deterministic planning [4, 6].

compile-and-BFBB (Π = 〈V,O; I, cost, u, b〉)
Πε = ε-compilation of Π
L := a set of landmarks for Πε

lcost := admissible landmark cost function for L
ΠL∗ := budget reducing compilation of (L, lcost) into Π
n∗ := BFBB(ΠL∗ )
return plan for Π associated with n∗

Figure 2. BFBB search with landmark-based budget reduction

b − ∑n
i=1 lcost(Li) is constructed as follows. The set of variables

VL = V ∪ {vL1 , . . . , vLn} extends V with a new proposition per
ε-landmark in L. These new propositions are all initially true, and
IL = I ∪ {vL1 , . . . , vLn}. The value function uL = u remains
unchanged—the new propositions do not affect the value of the
states. Finally, the operator set is extended as OL = O ∪⋃n

i=1 OLi ,
with OLi containing an operator o for each o ∈ Li, with pre(o) =
pre(o) ∪ {vLi}, add(o) = add(o), del(o) = del(o) ∪ {vLi}, and,
importantly, costL(o) = cost(o) − lcost(Li). In other words, ΠL
extends the structure of Π by mirroring the operators of each ε-
landmark Li with their “lcost(Li) cheaper" versions, while ensur-
ing that these cheaper operators can be applied no more than once
along an operator sequence from the initial state. At the same time,
introduction of these discounted operators for Li is compensated for
by reducing the budget by precisely lcost(Li), leading to effective
equivalence between Π and ΠL.

Theorem 2 Let Π = 〈V,O; I, cost, u, b〉 be an OSP task, L be a
set of pairwise disjoint ε-landmarks for Π, lcost be an admissible
landmark cost function from L, and ΠL be the respective budget re-
ducing compilation of Π. For every π for Π with û(π) > 0, there is
a plan πL for ΠL with û(πL) = û(π), and vice versa.

The above budget reducing compilation of Π to ΠL is clearly
polynomial time. Putting things together, we can see that the
compile-and-BFBB procedure depicted in Figure 2 (1) generates
an ε-compilation Πε of Π, (2) uses off-the-shelf tools for classical
planning to generate a set of landmarks L for Πε and an admissible
landmark cost function lcost, and (3) compiles (L, lcost) into Π,
obtaining an OSP task ΠL. The optimal solution for ΠL (and thus
for Π) is then searched for using a search algorithm for optimal OSP
such as BFBB.

Before we proceed to consider more general sets of landmarks, a
few comments concerning the setup of Theorem 2 are now probably
in place. First, if the reduced budget bL turns out to be lower than
the cost of the cheapest action applicable in the initial state, then no
search is needed, and the empty plan can be reported as optimal right
away. Second, zero-cost landmarks are useless in our compilation as
much as they are useless in deriving landmark heuristics for optimal
planning. Hence, lcost in what follows is assumed to be strictly pos-
itive. Third, having both o and o applicable at a state of Πε brings
no benefits yet adds branching to the search. Hence, in our imple-
mentation, for each landmark Li ∈ L and each operator o ∈ Li, the
precondition of o in OL is extended with {¬vLi}. It is not hard to
verify that this extension4 preserves the correctness of ΠL in terms
of Theorem 2. Finally, if the value of the initial state is not zero, that
is, the empty plan has some positive value, then ε-compilation Πε

of Π will have no positive cost landmarks at all. However, this can
easily be fixed by considering as “valuable" only facts v such that
both u(v) > 0 and v 
∈ I . For now we put this difficulty aside and
assume that û(ε) = 0. Later, however, we come back to consider it
more systematically.
4 This modification requires augmenting our STRIPS-like formalism with neg-

ative preconditions, but this augmentation is straightforward.

V. Mirkis and C. Domshlak / Landmarks in Oversubscription Planning 635



3.2 Non-Disjoint ε-Landmarks

While the compilation ΠL above is sound for pairwise disjoint land-
marks, this is not so for more general sets of ε-landmarks. For ex-
ample, consider a planning task Π in which, for some operator o,
we have cost(o) = b, û(〈o〉) > 0, and û(π) = 0 for all other
operator sequences π 
= 〈o〉. That is, a value greater than zero is
achievable in Π, but only via the operator o. Suppose now that our
set of ε-landmarks for Π is L = {L1, . . . , Ln}, n > 1, and that all
of these ε-landmarks contain o. In this case, while the budget in ΠL
is bL = b−∑n

i=1 lcost(Li), the cost of the cheapest replica o of o,
that is, the cost of the cheapest operator sequence achieving a non-
zero value in Π, is cost(o) − minn

i=1 lcost(Li) > bL. Hence, no
state with positive value will be reachable from IL in ΠL, and thus
Π and ΠL are not “value equivalent" in the sense of Theorem 2.

Since non-disjoint landmarks can bring more information, and
they are typical to outputs of standard techniques for landmark ex-
traction in classical planning, we now present a different, slightly
more involved, compilation that is both polynomial and sound for ar-
bitrary sets of ε-landmarks. Let Π = 〈V,O; I, cost, u, b〉 be an OSP
task, L = {L1, . . . , Ln} be a set of ε-landmarks for Π, and lcost
be an admissible landmark cost function from L. For each operator
o, let L(o) denote the set of all landmarks in L that contain o. Given
that, a new OSP task ΠL∗ = 〈VL∗ , OL∗ ; IL∗ , costL∗ , uL∗ , bL∗〉
is constructed as follows. Similarly to ΠL, we have bL∗ = b −∑n

i=1 lcost(Li), VL∗ = V ∪ {vL1 , . . . , vLn}, IL∗ = I ∪
{vL1 , . . . , vLn}, and uL∗ = u. The operator set OL∗ extends O
with two sets of operators:
• For each operator o ∈ O that participates in some landmark from

L, OL∗ contains an action o with pre(o) = pre(o) ∪ {vL | L ∈
L(o)}, add(o) = add(o), del(o) = del(o) ∪ {vL | L ∈ L(o)},
costL∗(o) = cost(o)−∑

L∈L(o) lcost(L).
• For each L ∈ L, OL∗ contains an action get(L) with

pre(get(L)) = {¬vL}, add(get(L)) = {vL}, del(get(L)) = ∅,
costL∗(get(L)) = lcost(L).
For example, let L = {L1, L2, L3}, L1 = {a, b}, L2 =

{b, c}, L3 = {a, c}, with all operators having the cost of 2,
and let lcost(L1) = lcost(L2) = lcost(L3) = 1. In ΠL∗ ,
we have VL∗ = V ∪ {vL1 , vL2 , vL3} and OL∗ = O ∪
{a, b, c, get(L1), get(L2), get(L3)}, with, e.g., pre(a) = pre(a) ∪
{vL1 , vL3}, add(a) = add(a), del(a) = del(a) ∪ {vL1 , vL3}, and
costL∗(a) = 0, and, for get(L1), pre(get(L1)) = del(get(L1)) =
∅, add(get(L1)) = {vL1}, and costL∗(get(L1)) = 1.

Theorem 3 Let Π = 〈V,O; I, cost, u, b〉 be an OSP task and ΠL∗ a
budget reducing compilation of Π. For every π for Π with û(π) > 0,
there is a plan πL∗ for ΠL∗ with û(πL∗) = û(π), and vice versa.

4 ε-LANDMARKS & INCREMENTAL BFBB

As we discussed earlier, if the value of the initial state is not zero, i.e.,
the empty plan has some positive value, then the basic ε-compilation
Πε of Π will have no positive cost landmarks at all. In passing we
noted that this small problem can be remedied by considering as
“valuable" only facts v such that both u(v) > 0 and v 
∈ I . We now
consider this aspect of OSP more closely, and show how ε-landmarks
discovery and incremental revelation of plans by BFBB can be com-
bined in a mutually stratifying way.

Let Π = 〈V,O; I, cost, u, b〉 be the OSP task of our interest,
and suppose we are given a set of plans π1, . . . , πn for Π. If so,
then we are no longer interested in searching for plans that “achieve
something," but in searching for plans that achieve something beyond

inc-compile-and-BFBB (Π = 〈V,O; I, cost, u, b〉)
initialize global variables:

n∗ := I // best solution so far
Sref := {I} // current reference states

loop:
Π(ε,Sref)

= (ε, Sref)-compilation of Π
L := a set of landmarks for Π(ε,Sref)
lcost := admissible landmark cost function from L
ΠL∗ := budget reducing compilation of (L, lcost) into Π
if inc-BFBB(ΠL∗ , Sref, n

∗) = done:
return plan for Π associated with n∗

inc-BFBB (Π, Sref, n
∗)

open := new max-heap ordered by f(n) = h(s[n], b− g(n))
open.insert(make-root-node(I))
closed:= ∅ best-cost:= ∅;
while not open.empty()

n := open.pop-max()
if goods(s[n]) �⊆ goods(s′) for all s′ ∈ Sref:
Sref := Sref ∪ {s[n]}
if termination criterion: return updated

if f(n) ≤ u(s[n∗]): break
// . . .
// similar to BFBB in Figure 1

return done

Figure 3. Iterative BFBB with landmark enhancement

what π1, . . . , πn already achieve. For 1 ≤ i ≤ n, let si = I�πi�
be the end-state of πi, and for any set of propositions s ⊆ V , let
goods(s) ⊆ s be the set of all facts v ∈ s such that u(v) > 0.
If a new plan π with end-state s achieves something beyond what
π1, . . . , πn already achieve, then goods(s) \ goods(si) 
= ∅ for all
1 ≤ i ≤ n.

We now put this observation to work. Given an OSP task
Π = 〈V,O; I, cost, u, b〉 and a set of reference states Sref =
{s1, . . . , sn} of Π, let a classical planning task Π(ε,Sref) =
〈Vε, Oε; Iε, Gε, costε〉 be constructed as follows. The variable set
Vε = V ∪ {x1, . . . , xn, search, collect} extends V with a new
proposition per state in Sref, plus two auxiliary control variables.
In the initial state, all the new variables but search are false, i.e.,
Iε = I∪{search}, and the goal is Gε = {x1, . . . , xn}. The operator
set Oε contains three sets of operators: First, each operator o ∈ O is
represented in Oε by an operator o, with the only difference between
o and o (including cost) being that pre(o) = pre(o) ∪ {search}.
We denote this set of new operators o by O. Second, for each
si ∈ Sref and each value-carrying fact g that is not in si, i.e., for
each g ∈ goods(V ) \ si, Oε contains a zero-cost action oi,g with
pre(oi,g) = {g, collect}, add(oi,g) = {xi}, del(oi,g) = ∅. Fi-
nally, Oε contains a zero-cost action finish with pre(finish) = ∅,
del(finish) = {search}, and add(finish) = {collect}.

It is easy to verify that (1) the goal Gε cannot be achieved without
applying the finish operator, (2) the operators o can be applied only
before finish , and (3) the subgoal achieving operators oi,g can be
applied only after finish . Hence, the first part of any plan for Π(ε,Sref)

determines a plan for Π, and the second part “verifies” that the end-
state of that plan achieves a subset of value-carrying propositions
goods(V ) that is included in no state from Sref.5

Theorem 4 Let Π = 〈V,O; I, cost, u, b〉 be an OSP task, Sref =
{s1, . . . , sn} ⊆ 2V be a subset of Π’s states, and L be a land-
mark for Π(ε,Sref) such that L ⊆ O. For any plan π for Π such
that goods(I�π�) \ goods(si) 
= ∅ for all si ∈ Sref, π contains an
instance of at least one operator from L′ = {o | o ∈ L}.

Theorem 4 allows us to define an iterative version of BFBB, suc-
cessive iterations of which correspond to running the regular BFBB
5 This “plan in two parts" technique appears to be helpful in many planning

formalism compilations; see, e.g., [24].

V. Mirkis and C. Domshlak / Landmarks in Oversubscription Planning636



on successively more informed (ε, Sref)-compilations of Π, with
the states discovered at iteration i making the (ε, Sref)-compilation
used at iteration i + 1 more informed. The respective procedure
inc-compile-and-BFBB is depicted in Figure 3. This procedure
maintains a set of reference states Sref and the best solution so far
n∗, and loops over calls to inc-BFBB, a modified version of BFBB.
At each iteration of the loop, inc-BFBB is called with an (ε, Sref)-
compilation of Π, created on the basis of the current Sref and n∗,
and it is provided with access to both Sref and n∗. The reference set
Sref is then extended by inc-BFBB with all the non-redundant value-
carrying states discovered during the search, and n∗ is updated if the
search discovers nodes of higher value.

If and when the OPEN list becomes empty or the node n se-
lected from the list promises less than the lower bound, inc-BFBB
returns an indicator, done, that the best solution n∗ found so far,
across the iterations of inc-compile-and-BFBB, is optimal. In that
case, inc-compile-and-BFBB leaves its loop and extracts that op-
timal plan from n∗. However, inc-BFBB may also terminate in
a different way, if a certain complementary termination criterion
is satisfied. The latter criterion comes to assess whether the up-
dates to Sref performed in the current session of BFBB warrant
updating the (ε, Sref)-compilation and restarting the search.6 If ter-
minated this way, inc-BFBB returns a respective indicator, and
inc-compile-and-BFBB goes into another iteration of its loop, with
the updated Sref and n∗.

5 EMPIRICAL EVALUATION

We have implemented a prototype heuristic-search OSP solver on top
of the Fast Downward planner [16]. The implementation included7:

• (ε, Sref)-compilation of OSP tasks Π;
• Generation of disjunctive action landmarks for (ε, Sref)-

compilations using the LM-Cut procedure [17] of Fast Downward;
• The incremental BFBB procedure inc-compile-and-BFBB from

the previous section, with the search termination criterion being
satisfied (only) if the examined node n improves over current
value lower bound; and

• An additive abstraction heuristic from the framework of Mirkis
and Domshlak [25], incorporating (i) an ad hoc action cost parti-
tion over k projections of the planning task onto connected subsets
of ancestors of the respective k goal variables in the causal graph,
and (ii) a value partition that associates the value of each goal
(only) with the respective projection. The size of each projection
was limited to 1000 abstract states.

After some preliminary evaluation, we also added two (optimal-
ity preserving) enhancements to the search. First, the auxiliary vari-
ables of our compilations increase the dimensionality of the prob-
lem, and this is well known to negatively affect the quality of the
projection abstractions. Hence, we devised the projections with re-
spect to the original OSP problem Π, and the open list was or-
dered as if the search is done on the original problem, that is, by
h(s[n]↓V , b − g(n) +

∑
vL �∈s[n] lcost(L)), where s[n]↓V is the

projection of the state s[n] on the variables of the original OSP task
Π. This change in heuristic evaluation is sound, as Theorem 3 in
particular implies that any admissible heuristic for Π is also an ad-
missible heuristic for ΠL∗ , and vice versa. Second, when a new node
n is generated, we check whether g(n) +

∑
vL �∈s[n] lcost(L) ≥

6 While the optimality of the algorithm holds for any such termination condi-
tion, the latter should greatly affect the runtime efficiency of the algorithm.

7 We are not aware of any other domain-independent planner for optimal OSP.

g(n′)+
∑

vL �∈s[n′] lcost(L), for some previously generated node n′

that corresponds to the same state of the original problem Π, i.e.,
s[n′]↓V = s[n]↓V . If so, then n is pruned right away. Optimality
preservation of this enhancement is established in [26].

Since, unlike classical and net-benefit planning, OSP lacks stan-
dard benchmarks for comparative evaluation, we have cast in this
role the STRIPS classical planning domains from the International
Planning Competitions (IPC) 1998-2006. This “translation" to OSP
was done by associating a separate unit-value with each sub-goal.
The evaluation included the regular BFBB planning for Π, solving Π
using landmark-based compilation via compile-and-BFBB, and the
straightforward setting of inc-compile-and-BFBB described above.
All three approaches were evaluated under the blind heuristic and the
additive abstraction heuristic as above.

Figure 4 depicts the results of our evaluation in terms of expanded
nodes on all the aforementioned IPC tasks for which we could deter-
mine offline the minimal cost needed to achieve all the goals in the
task. Each task was approached under four different budgets, corre-
sponding to 25%, 50%, 75%, and 100% of the minimal cost needed
to achieve all the goals in the task, and each run was restricted to 10
minutes. Figures 4(a) and 4(b) compare the performance of BFBB
and compile-and-BFBB with blind (a) and abstraction (b) heuristics.
Figures 4(c) and 4(d) provide a similar comparison between BFBB
and inc-compile-and-BFBB. 8

As Figure 4 shows, the results are satisfactory. With no infor-
mative heuristic guidance at all, the number of nodes expanded by
compile-and-BFBB was typically much lower than the number of
nodes expanded by BFBB, with the difference reaching three or-
ders of magnitude more than once. Of the 760 task/budget pairs be-
hind Figure 4a, 81 pairs were solved by compile-and-BFBB with no
search at all (by proving that no plan can achieve value higher than
that of the initial state), while, unsurprisingly, only 4 of these tasks
were solved with no search by BFBB.

As expected, the value of landmark-based budget reduction is
lower when the search is equipped with a meaningful heuristic (Fig-
ure 4b). Yet, even with our abstraction heuristic in hand, the num-
ber of nodes expanded by compile-and-BFBB was often substan-
tially lower than the number of nodes expanded by BFBB. Here,
BFBB and compile-and-BFBB solved with no search 39 and 85
task/budget pairs, respectively. Finally, despite the rather ad hoc set-
ting of our incremental inc-compile-and-BFBB procedure, switch-
ing from compile-and-BFBB to inc-compile-and-BFBB was typi-
cally beneficial, though much deeper investigation and development
of inc-compile-and-BFBB is obviously still required.

ACKNOWLEDGMENTS This work was partially supported by
the ISF grant 1045/12, and the EOARD grant FA8655-12-1-2096.

REFERENCES

[1] J. A. Baier, F. Bacchus, and S. A. McIlraith, ‘A heuristic search ap-
proach to planning with temporally extended preferences’, in IJCAI,
pp. 1808–1815, (2007).

[2] J. Benton, M. Do, and S. Kambhampati, ‘Anytime heuristic search for
partial satisfaction planning’, AIJ, 173(5-6), 562–592, (2009).

[3] J. Benton, M. van den Briel, and S. Kambhampati, ‘A hybrid linear
programming and relaxed plan heuristic for partial satisfaction planning
problems’, in ICAPS, pp. 34–41, (2007).

[4] B. Bonet and H. Geffner, ‘Heuristics for planning with penalties and re-
wards formulated in logic and computed through circuits’, AIJ, 172(12-
13), 1579–1604, (2008).

8 We do not compare here between the running times, but the per-node CPU
time overhead due to landmark-based budget reduction was ≤ 10%.

V. Mirkis and C. Domshlak / Landmarks in Oversubscription Planning 637



101 103 105 107
100

102

104

106

108 unsolved

un
so

lv
ed

BFBB

co
m
p
il
e-
a
n
d

-B
F
B
B

(a)

airport
blocks
depot

driverlog
freecell

grid
gripper
logistics
miconic
mystery

openstacks
rovers

satellite
tpp

trucks
pipesworld
psr-small
zenotravel

101 103 105 107
100

102

104

106

108 unsolved

un
so

lv
ed

BFBB

co
m
p
il
e-
a
n
d

-B
F
B
B

(b)

100 101 102 103 104 105 106 107
100

102

104

106

BFBB

in
c-
co

m
p
il
e-
a
n
d

-B
F
B
B

(c)

100 101 102 103 104 105 106 107
100

102

104

106

BFBB

in
c-
co

m
p
il
e-
a
n
d

-B
F
B
B

(d)

Figure 4. Comparative view of empirical results in terms of expanded nodes: (a) & (b) BFBB vs. compile-and-BFBB, (c) & (d) BFBB
vs. inc-compile-and-BFBB, with blind ((a) & (c)) and additive projections ((b) & (d)) heuristics

[5] B. Bonet and M. Helmert, ‘Strengthening landmark heuristics via hit-
ting sets’, in ECAI, pp. 329–334, (2010).

[6] R. Brafman and Y. Chernyavsky, ‘Planning with goal preferences and
constraints’, in ICAPS, pp. 182–191, Monterey, CA, (2005).

[7] A. J. Coles and A. Coles, ‘LPRPG-P: Relaxed plan heuristics for plan-
ning with preferences’, in ICAPS, (2011).

[8] M. B. Do, J. Benton, M. van den Briel, and S. Kambhampati, ‘Planning
with goal utility dependencies’, in IJCAI, pp. 1872–1878, (2007).

[9] C. Domshlak, M. Katz, and S. Lefler, ‘Landmark-enhanced abstraction
heuristics’, AIJ, 189, 48–68, (2012).

[10] S. Edelkamp, ‘Planning with pattern databases’, in ECP, pp. 13–24,
(2001).

[11] R. E. Fikes and N. Nilsson, ‘STRIPS: A new approach to the application
of theorem proving to problem solving’, AIJ, 2, 189–208, (1971).

[12] A. Gerevini, A. Saetti, and I. Serina, ‘An approach to efficient planning
with numerical fluents and multi-criteria plan quality’, AIJ, 172(8-9),
899–944, (2008).

[13] P. Haslum, ‘Heuristics for bounded-cost search’, in ICAPS, (2013).
[14] P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig, ‘Domain-

independent construction of pattern database heuristics for cost-optimal
planning’, in AAAI, pp. 1007–1012, (2007).

[15] P. Haslum and H. Geffner, ‘Heuristic planning with time and resources’,
in ECP, (2001).

[16] M. Helmert, ‘The Fast Downward planning system’, JAIR, 26, 191–
246, (2006).

[17] M. Helmert and C. Domshlak, ‘Landmarks, critical paths and abstrac-
tions: What’s the difference anyway?’, in ICAPS, pp. 162–169, (2009).

[18] M. Helmert, P. Haslum, and J. Hoffmann, ‘Flexible abstraction heuris-
tics for optimal sequential planning’, in ICAPS, pp. 200–207, (2007).

[19] J. Hoffmann, C. P. Gomes, B. Selman, and H. A. Kautz, ‘SAT encodings
of state-space reachability problems in numeric domains’, in IJCAI, pp.
1918–1923, (2007).

[20] J. Hoffmann, J. Porteous, and L. Sebastia, ‘Ordered landmarks in plan-
ning’, JAIR, 22, 215–278, (2004).

[21] E. Karpas and C. Domshlak, ‘Cost-optimal planning with landmarks’,
in IJCAI, pp. 1728–1733, (2009).

[22] M. Katz and C. Domshlak, ‘Implicit abstraction heuristics’, JAIR, 39,
51–126, (2010).

[23] M. Katz and C. Domshlak, ‘Optimal admissible composition of abstrac-
tion heuristics’, AIJ, 174, 767–798, (2010).

[24] E. Keyder and H. Geffner, ‘Soft goals can be compiled away’, JAIR, 36,
547–556, (2009).

[25] V. Mirkis and C. Domshlak, ‘Abstractions for oversubscription plan-
ning’, in ICAPS, (2013).

[26] V. Mirkis and C. Domshlak, ‘Landmarks in oversubscription planning’,
Technical Report IE/IS-2014-01, Technion, (2014).

[27] H. Nakhost, J. Hoffmann, and M. Müller, ‘Resource-constrained plan-
ning: A Monte Carlo random walk approach’, in ICAPS, (2012).

[28] F. Pommerening and M. Helmert, ‘Incremental LM-Cut’, in ICAPS,
(2013).

[29] J. Porteous, L. Sebastia, and J. Hoffmann, ‘On the extraction, ordering,
and usage of landmarks in planning’, in ECP, (2001).

[30] S. Richter, M. Helmert, and M. Westphal, ‘Landmarks revisited’, in
AAAI, pp. 975–982, (2008).

[31] R. Sanchez and S. Kambhampati, ‘Planning graph heuristics for select-
ing objectives in over-subscription planning problems’, in ICAPS, pp.
192–201, (2005).

[32] D. Smith, ‘Choosing objectives in over-subscription planning’, in
ICAPS, pp. 393–401, (2004).

[33] J. T. Thayer and W. Ruml, ‘Bounded suboptimal search: A direct ap-
proach using inadmissible estimates’, in IJCAI, pp. 674–679, (2011).

[34] J. T. Thayer, R. T. Stern, A. Felner, and W. Ruml, ‘Faster bounded-cost
search using inadmissible estimates’, in ICAPS, (2012).

V. Mirkis and C. Domshlak / Landmarks in Oversubscription Planning638


