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Abstract. Notions of equivalence which guarantee inter-
substitutability w.r.t. further modifications have received considerable
interest in nonmonotonic reasoning. This paper is within the context
of abstract argumentation and we focus on the most general form of a
dynamic scenarios, so-called updates as well as certain sub-classes,
namely local, normal and arbitrary deletions. We provide characteri-
zation theorems for the corresponding equivalence notions and draw
the relations to the recently proposed kinds of expansion equivalence
[15, 3]. Many of the results rely on abstract concepts like context-free
kernels or semantics satisfying isolate-inclusion. Therefore, the re-
sults may apply to future semantics as well as further equivalence
notions.

1 Introduction

In the last two decades argumentation theory has received growing in-
terest within the AI-community (cf. [17, 16] for excellent overviews).
Dung’s abstract argumentation frameworks (AFs) [11] play a domi-
nant role in this area. In AFs arguments and attacks between them are
treated as undefined primitives, i.e. the internal structure of arguments
is not considered. In order to determine acceptable sets of arguments
a huge variety of semantics were introduced. In 2007 Baroni and
Giacomin presented a first systematic classification of argumentation
semantics [2]. This paper was an important step since until its publica-
tion comparisons between semantics were almost exclusively example
driven.

More recently several problems regarding dynamic aspects of ab-
stract argumentation have been addressed in the literature [7, 5, 6, 4].
One exceptional work in this context is the characterization of strong
equivalence via so-called kernels which are purely syntactical con-
cepts [15]. Strong equivalence guarantees inter-substitutability in any
dynamic scenario, which is relevant, for instance, for simplification
issues. In case of instantiation-based argumentation [10], i.e. if ar-
guments and attacks stem from an underlying knowledge base we
observe that more restrictive kinds of expansions naturally appear. For
instance, normal and local expansions correspond to re-instantiations
if a new piece of information is added [3] or if we change to a less
restrictive notion of attack (see [13] for different attack relations).

In this paper we study the most general form of a dynamic sce-
nario, so-called update where adding as well as deleting of arguments
and attacks is allowed. Furthermore, we consider certain sub-classes,
namely local, normal as well as arbitrary deletions which naturally
complement the already existing expansion types.

Consider the following motivating example under preferred seman-
tics, which selects maximal conflict-free and self-defending sets of

1 The work on this paper was partially supported by Deutsche Forschungsge-
meinschaft (DFG) under grant BR 1817/7-1.

2 Leipzig University, Germany, email: baumann@informatik.uni-leipzig.de

arguments. The AF FU is an update of F which might stem from
a re-instantiation process where the underlying notion of attack is
changed.

aF ∶ b c aFU ∶ b c

At first glance it seems that there is no semantical impact of this
update since {a} is the unique preferred extension in both frameworks.
Retracting the argument c reveals the inherent difference between F
and FU .

aF ∖ {c} ∶ b aFU ∖ {c} ∶ b

Now {b} becomes preferred in FU ∖ {c} but still not in F ∖ {c}.
This leads to the open problem of characterizing update and deletion
equivalence. The study is motivated by the following observations.

● very nature of argumentation: Argumentation is inherently dy-
namic. During a discussion or dispute it is natural to come up with
new arguments interacting with the former and/or question old
arguments as well as attacks between them, respectively. Quite
surprisingly, the input of retracting arguments and attacks has not
yet received much attention, apart from [7, 6]. We provide novel
and complementing results for this line of research.

● instantiation-based argumentation: In general, changing the un-
derlying knowledge base cause an update on the abstract level.
Furthermore, deleting facts or changing to a more restrictive notion
of attack correspond to normal and local deletions. Consequently,
characterizations w.r.t. the mentioned dynamic scenarios may help
to identify redundant information on the underlying knowledge
base.

● implicit vs. explicit information: As demonstrated by the intro-
ductory example, an update does not necessarily influence the
semantics of an AF immediately but it may change the implicit
stored information. This means, further dynamic scenario like re-
tracting arguments may make the implicit difference explicit. The
equivalences studied in this paper characterize whether two AFs
share the same implicit information w.r.t. updates and deletions
completing the study in [15, 3].

Our main contributions can be summarized as follows:

● We formalize and characterize update, deletion and local deletion
equivalence for nine prominent semantics. In particular, we show
that all mentioned notions collapse to identity. Instead of proving
this one by one for any considered semantics we follow the line in
[2] and provide abstract criteria guaranteeing the coincidence with
syntactical identity.

● In this paper we start with a first systematic analysis of kernels. In
particular, we build a bridge between abstract properties of kernels
and features of equivalence notions characterizable through kernels.
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In this respect, the notion of context-free kernels plays a decisive
role to show commutativity of kernels and normal deletions. As a
by-product we obtain that normal expansion equivalence implies
normal deletion equivalence for any considered semantics.

● The second main part of the paper provides characterization the-
orems for normal deletion equivalence w.r.t. stable, admissible,
complete and grounded semantics. Quite surprisingly, the context-
sensitive σ-*-kernels originally introduced to characterize strong
expansion equivalence [3] are crucial to characterize normal dele-
tion equivalence.

The paper is organized as follows. The Section 2 reviews the neces-
sary definitions at work in abstract argumentation frameworks and
introduces the new dynamic concepts. In Section 3 we present charac-
terizations for update, deletion as well as local deletion equivalence
and introduce the notion of context-free and context-sensitive ker-
nels. Section 4, the second main part, contains the characterization
theorems for normal deletion equivalence w.r.t. stable, admissible,
complete and grounded semantics. Finally, in Section 5 we discuss
related results and present our conclusions. Due to the limited space
we omit all proofs.

2 Preliminaries

Argumentation frameworks (AFs) F = (A,R) are set-theoretically
just directed graphs whose nodes are interpreted as arguments and
whose edges represent conflicts between them. We assume a fixed
infinite set U of arguments, called universe. All AFs possess a finite
set of arguments A being a subset of the universe. The set of all AFs
is denoted by A . If (a, b) ∈ R holds we say that a attacks b, or b is
defeated by a in F . An argument a ∈ A is defended by a set A′ ⊆ A
in F if for each b ∈ A with (b, a) ∈ R, b is defeated by some a′ ∈ A′
in F . For a set E ⊆ A we use R+F(E) for E ∪{b ∣ (a, b) ∈ R,a ∈ E}.
This set is called the range of E in F . Furthermore, we say that a
set A′ ⊆ A is conflict-free in F if there are no arguments a, b ∈ A′
such that a attacks b. The set of all conflict-free sets of an AF F is
denoted by cf(F). We call an argument isolated if it neither attacks
an argument in F nor is defeated by an argument in F . For an AF
F = (B,S) we use A(F) to refer to B and R(F) to refer to S. We
use L(F) = {a ∣ (a, a) ∈ R(F)} for the set of all self-defeating
arguments and NL(F) = A(F) ∖L(F) for the set of non-looping
arguments in F . Finally, we introduce the union of F and G as well
as the restriction of F to a A as expected, namely F ∪ G = (A(F) ∪
A(G),R(F) ∪R(G) and F∣A = (A,R(F) ∩ (A ×A)).

2.1 Semantics

A semantics is a function σ which assigns to each F = (A,R) a set
σ(F) ⊆ P(A) of σ-extensions. Numerous semantics are available.
Each of them captures different intuitions about how to reason about
conflicting knowledge (see [1] for an excellent overview). We con-
sider here σ ∈ {stb, ad, pr, co, gr, ss, stg, id, eg} for stable, admissible,
preferred, complete, grounded, semi-stable, stage, ideal and eager
semantics [11, 8, 18, 12, 9].

Definition 1. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ stb(F) iff E ∈ cf(F) and for each a ∈ A ∖E, (E,a) ∈ R,
2. E ∈ ad(F) iff E ∈ cf(F) and each a ∈ E is defended by E in F ,
3. E ∈ pr(F) iff E ∈ ad(F) and for each E′ ∈ ad(F), E /⊂ E′,
4. E ∈ co(F) iff E ∈ ad(F) and if a ∈ A defended by E inF , a ∈ E,
5. E ∈ gr(F) iff E ∈ co(F) and for each E′ ∈ co(F), E′ /⊂ E,
6. E ∈ ss(F) iff E ∈ ad(F) and if E′ ∈ ad(F), R+F(E) /⊂ R+F(E′),
7. E ∈ stg(F) iff E ∈ cf(F) and if E′ ∈ cf(F), R+F(E) /⊂ R+F(E′),

8. E ∈ id(F) iff E ∈ ad(F), E ⊆ ⋂P ∈pr(F) P and for each A ∈
ad(F) satisfying A ⊆ ⋂P ∈pr(F) P we have E /⊂ A,

9. E ∈ eg(F) iff E ∈ ad(F), E ⊆ ⋂P ∈ss(F) P and for each A ∈
ad(F) satisfying A ⊆ ⋂P ∈ss(F) P we have E /⊂ A.

In the following we use the term any considered semantics (σ) as a
shorthand for any considered semantics (σ) introduced in Definition 1.
In [2] several general criteria for comparing and evaluating semantics
were introduced. One of those principles is the basic prerequisite of
conflict-freeness (CC). This principle requires σ(F) ⊆ cf(F) for each
AF F and is satisfied by any considered semantics σ.

2.2 Expansions, Equivalences and Kernels

In the following we introduce typical dynamic scenarios of argu-
mentation firstly introduced in [5, 15]. Normal expansions add new
arguments and possibly new attacks which concern at least one of the
fresh arguments. Strong expansions are normal and only add strong
arguments, i.e. the added arguments never are attacked by former argu-
ments. Finally, local expansions do not introduce any new arguments
but possibly new attacks among the old arguments.

Definition 2. An AF G is an expansion of AF F = (A,R) (for short,
F ⪯E G) iff G = (A ∪ B,R ∪ S) where A ∩ B = R ∩ S = ∅. An
expansion is called

1. normal (F ⪯N G) iff ∀ab ((a, b) ∈ S → a ∈ B ∨ b ∈ B),
2. strong (F ⪯S G) iff F ⪯N G,∀ab ((a, b) ∈ S → (a ∉ A ∨ b ∉ B)),
3. local (F ⪯L G) iff B = ∅.

Equivalence tells us whether two syntactically different object rep-
resent the same implicit information w.r.t. a certain property. The
decisive properties for the following notions of equivalence are pos-
sessing the same σ-extensions w.r.t. the dynamic scenarios introduced
above. For the sake of clarity and comprehensibility we use expansion
equivalence instead of strong equivalence (the term originally coined
in [15]) to indicate that arbitrary expansions are allowed.

Definition 3. Given a semantics σ. Two AFs F and G are

1. standard equivalent w.r.t. σ (F ≡σ G) iff σ(F) = σ(G),
2. expansion equivalent w.r.t. σ (F ≡σE G) iff for each AF H,
F ∪H ≡σ G ∪H holds,

3. normal expansion equivalent w.r.t. σ (F ≡σN G) iff for each AFH,
such that F ⪯N F ∪H and G ⪯N G ∪H, F ∪H ≡σ G ∪H holds,

4. strong expansion equivalent w.r.t. σ (F ≡σS G) iff for each AFH,
such that F ⪯S F ∪H and G ⪯S G ∪H, F ∪H ≡σ G ∪H holds,

5. local expansion equivalent w.r.t. σ (F ≡σL G) iff for each AF H,
such that A(H) ⊆ A(F ∪ G), F ∪H ≡σ G ∪H holds.

One main result in [15] is that expansion equivalence can be de-
cided via so-called kernels. A kernel is a function k ∶ A ↦ A where
each k(F) = Fk is obtained from F by deleting certain redundant
attacks. We say that a relation ≡ is characterizable through kernels if
there is a kernel k, s.t. F ≡ G iff Fk = Gk. In [3] it was shown that
even weaker notions like strong expansion equivalence are charac-
terizable through kernels. Therefore, more sophisticated definitions
were introduced, so-called σ-*-kernels. Here are the relevant kernel
definitions. Observe that kernels are efficiently computable concepts.

Definition 4. Given an AF F = (A,R) and a semantics σ. We define
σ-kernels Fk(σ) = (A,Rk(σ)) respectively σ-*-kernels Fk∗(σ) =
(A,Rk∗(σ)) whereby

1.Rk(stb) = R ∖ {(a, b) ∣a ≠ b, (a, a) ∈ R},
2.Rk(ad) = R ∖ {(a, b) ∣a ≠ b, (a, a) ∈ R,{(b, a), (b, b)} ∩R ≠ ∅},
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3.Rk(gr) = R ∖ {(a, b) ∣a ≠ b, (b, b) ∈ R,{(a, a), (b, a)} ∩R ≠ ∅},
4.Rk(co) = R ∖ {(a, b) ∣a ≠ b, (a, a), (b, b) ∈ R},
5.Rk∗(ad) = R ∖ {(a, b) ∣a ≠ b, ((a, a) ∈ R ∧ {(b, a), (b, b)} ∩R ≠ ∅) ,
∨((b, b) ∈ R ∧ ∀c ((b, c) ∈ R → {(a, c), (c, a), (c, c), (c, b)} ∩R ≠ ∅))},
6.Rk∗(gr) = R ∖ {(a, b) ∣ a ≠ b, ((b, b) ∈ R ∧ {(a, a), (b, a)} ∩R ≠ ∅)

∨((b, b) ∈ R ∧ ∀c ((b, c) ∈ R → {(a, c), (c, a), (c, c)} ∩R ≠ ∅))},
7.Rk∗(co) = R ∖ {(a, b) ∣a ≠ b, ((a, a), (b, b) ∈ R) ∨ ((b, b) ∈ R

∧(b, a) ∉ R ∧ ∀c ((b, c) ∈ R → {(a, c), (c, a), (c, c)} ∩R ≠ ∅))}.

A kernel k is said to be node- or loop-preserving iff for each AF
F , A(F) = A(Fk) or L(F) = L(Fk), respectively. Observe that
both properties are satisfied by any kernel introduced above. It will
not escape the attentive reader that no corresponding stb-*-kernel has
been introduced. The following theorem shows that there is no need
for this since even strong expansion equivalence is characterizable
through the traditional stb-kernel.

Theorem 1. [3, cf. Figure 2] Let σ ∈ {stb, ad, co, gr} and define
k∗(stb) = k(stb). For any AFs F and G we have:

F ≡σN G ⇔ Fk(σ) = Gk(σ) and F ≡σS G ⇔ Fk∗(σ) = Gk∗(σ).

2.3 New Concepts: Update and Deletion

We now introduce the most general form of dynamic scenarios, so-
called updates where arguments and attacks can be deleted and added.
Furthermore, we consider certain sub-classes of deletions3 represent-
ing the natural counter-parts (more precisely, inverse operations) to
arbitrary, normal and local expansions.

Definition 5. Given an AF F = (A,R), a set of arguments B and a
set of attacks S as well as a further AFH. The AF

G = (F ∖ [B,S]) ∪H ∶= ((A,R ∖ S)∣A∖B) ∪H

is called an update of F (for short, F ≍U G). An update is called a
1. deletion (F ⪰D G) iffH = ∅,
2. normal deletion (F ⪰ND G) iff (F ⪰D G) and S = ∅,
3. local deletion (F ⪰LD G) iff F ⪰D G and B = ∅.

Normal deletions retract arguments and their corresponding attacks.
Local deletions in contrast delete attacks only. Note that [B,S] does
not necessarily have to be an AF. Therefore we use [B,S] instead of
(B,S). If clear from context we use B and S instead of [B,∅] or
[∅, S].

Example 1. Let B = {a, c}, S = {(a, b), (b, d)} and H =
({d, e},{(d, e), (e, e)}). The AFs FLD = F ∖S, FND = F ∖B and
FU = (F ∖ [B,S]) ∪H represent a local deletion, a normal deletion
and an update of F . Conversely, F is a local resp. normal expansion
of FLD or FND .

aF ∶ b

c d

aFLD ∶ b

c d

bFND ∶

d

bFU ∶ e

d

We now introduce the corresponding equivalence notions.

Definition 6. Given a semantics σ. Two AFs F and G are

1. update equivalent w.r.t. σ (F ≡σU G) iff for any pair [B,S] and
any AFH we have: (F ∖ [B,S]) ∪H ≡σ (G ∖ [B,S]) ∪H,

2. deletion equivalent w.r.t. σ (F ≡σD G) iff for any pair [B,S] we
have: F ∖ [B,S] ≡σ G ∖ [B,S],

3 Boella et. al [7] called this kind of dynamic scenarios abstractions.

3. normal deletion equivalent w.r.t. σ (F ≡σND G) iff for any set of
arguments B we have: F ∖B ≡σ G ∖B,

4. local deletion equivalent w.r.t. σ (F ≡σLD G) iff for any set of
attacks S we have: F ∖ S ≡σ G ∖ S,

To familiarize the reader with the new notions we give the following
simple example.

Example 2. Consider the AFs F , G. Let S = {(a, b)} and B = {a}.
Thus, {a, b} ∈ σ(F ∖S)∖σ(G ∖S) and {b} ∈ σ(F ∖B)∖σ(G ∖B)
for any considered semantics, i.e. F /≡σLD G as well as F /≡σND G.

F ∶ a b G ∶ a b F ∖ S ∶ a b G ∖ S ∶ a b

The following figure provides a first overview about the interrela-
tions that arise from the definitions immediately. It strikes the eye that
the newly introduced notions complement the existing ones naturally.
For equivalences Φ and Ψ, Φ ⊆ Ψ iff there is a link between Φ and Ψ.

update

expansion

deletion
local

deletion

normal
deletion

local
expansion

normal
expansion

Figure 1. Preliminary Relations

We close this section with some further reflections on the relations
considered in this section. First of all, it is easy to see that any relation
introduced in Definition 3 and 6 is indeed an equivalence. As an
aside, expansion equivalence is even a congruence for the operator
∪. This means, F ≡σE G and F ′ ≡σE G′ implies F ∪ F ′ ≡σE G ∪
G′.4 Additionally, certain properties are implied by definition, e.g.
if F ≡σND G, then for any set of arguments B, F ∖B ≡σND G ∖B.
While this property (so-called subset-inheritance) is not surprising for
normal deletion equivalence it is not expected for normal expansion
equivalence. It is one main result of this paper to build a bridge
between abstract properties of kernels and the fulfillment of subset-
inheritance of the corresponding equivalence notions.

3 Comparing Update, Deletion and Expansion
Equivalence

The main goal of this section is to refine Figure 1. In particular we
will compare expansion and deletion equivalence as well as their
normal and local versions. We will see that the equivalences w.r.t.
update, deletion as well as local deletion coincide with identity for
any considered semantics. Moreover, we identified two weak criteria
for argumentation semantics guaranteeing such a behavior. In the
second part we show that any equivalence characterizable through a
context-free and node-preserving kernel satisfies subset-inheritance.
Context-free kernels allow to consider local parts of a given AF when
deciding redundancy of attacks. As a by-product we will show that
normal expansion equivalence implies normal deletion equivalence
for any considered semantics.
4 The proof is astonishing simple, namely F ∪F ′ ≡σE G ∪F ′ ≡σE G ∪ G′.
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3.1 (Weak) Requirements for Identity

It is the surprising result of this section that local deletion (and there-
fore deletion as well as update) equivalence collapse to identity for
any semantics satisfying conflict-freeness and the newly introduced
principle of isolate-inclusion (II). The latter is fulfilled by a seman-
tics σ iff for any AF F , the set of all isolated arguments is contained
in at least one σ-extension. Observe that any considered semantics
apart from stable semantics satisfy II.5

Theorem 2. Given a semantics σ satisfying CF and II. For any two
AFs F and G we have:

F ≡σU G ⇔ F ≡σD G ⇔ F ≡σLD G ⇔ F = G.

In order to refine Figure 1 we obtain the following relations.

Corollary 3. Given AFs F , G. For any considered semantics σ,

1. F ≡σU G ⇔ F ≡σD G ⇔ F ≡σLD G ⇔ F = G (k = id)
2. F ≡σD G ⇒ F ≡σE G, (deletion vs. expansion)
3. F ≡σLD G ⇒ F ≡σL G. (local versions)

3.2 Context-free Kernels

In this section we start with a first systematic analysis of equivalence
relations characterizable through context-free kernels. We start with
the formal definition.

Definition 7. A kernel k ∶ A ×A , F ↦ Fk is said to be context-
free iff (a, b) ∈ R (Fk) ⇔ (a, b) ∈ R ((F∣{a,b})k). Otherwise, k is
called context-sensitive.

This means, in case of context-free kernels the decision whether
(a, b) has to be deleted does not depend on further arguments than
a and b. Put differently, the reason of being redundant stems from
the arguments themselves. The following Example 3 shows that the
ad-*-kernel is context-sensitive.

Example 3. Consider the AF F . Applying Definition 4 we obtain
F = Fk∗(ad). We observe (a, b) ∈ Fk∗(ad). On the other hand,

(a, b) ∉ (F∣{a,b})k
∗(ad)

since (b, b) ∈ R (F∣{a,b}) and there are
no further c’s, s.t. (b, c) ∈ R (F∣{a,b}).

F ∶ a b c F∣{a,b} ∶ a b (F∣{a,b})
k∗(ad) ∶ a b

Context-sensitivity carries over to all σ-*-kernels. Furthermore, all
traditional σ-kernels are context-free as stated below.

Proposition 4. The σ-kernels k(stb), k(ad), k(gr) and k(co) are
context-free and the σ-*-kernels k∗(ad), k∗(gr) as well as k∗(co)
are context-sensitive.

We show now the decisive property of context-free and node-
preserving kernels paving the way for the main theorem. Loosely
speaking, equality of kernels of normal deletions guarantees equality
of normal deletions of kernels and vice versa. We point out that any
σ-*-kernel introduced in Definition 4 does not satisfy the mentioned
commutativity of applying kernels and normal deletions.6

Lemma 5. Given two AFs F ,G and a context-free as well as node-
preserving kernel k. For any set of arguments B we have,

(F ∖B)k = (G ∖B)k⇔Fk ∖B = Gk ∖B.

5 A counter-example is given by G ∖ S depicted in Example 2. Obviously, a
is isolated but stb(G ∖ S) = ∅. Nevertheless, Theorem 2 applies to stable
semantics too which can be shown with reasonable effort.

6 A counter-example is already given in Example 3. Set F = F , G = F∣{a,b},
B = {c} and k = k∗(ad), then (F∖B)k = (G∖B)k butFk∖B ≠ Gk∖B.

Now we are prepared to prove the main theorem showing subset-
inheritance of any equivalence relations characterizable through
context-free and node-preserving kernels.

Theorem 6. Given a context-free, node-preserving kernel k as well
as an equivalence ≡k⊆ A ×A characterizable through k, then

F ≡k G ⇔ for any B ∶ F ∖B ≡k G ∖B.

Since normal expansion equivalence w.r.t. any considered seman-
tics is characterizable through traditional σ-kernels we obtain subset-
inheritance. Remember that normal expansion equivalence is con-
cerned with dynamic scenarios where new arguments and attacks
come into play but former arguments and corresponding attacks re-
main unchanged. From this perspective satisfying subset-inheritance
constitutes a remarkable result. Furthermore we derive the missing
relation between normal expansion and normal deletion equivalence
completing statements 2 and 3 in Corollary 3.

Corollary 7. Given two AFs F and G and a set of arguments B, then
for any considered semantics σ, we have:

1. F ≡σN G ⇒ F ∖B ≡σN G ∖B (subset-inheritance)
2. F ≡σN G ⇒ F ≡σND G. (normal versions)

3.3 Summary

The following Figure 2 summarizes the results presented in this sec-
tion. In contrast to Figure 1 we obtain a more compact picture of the
interrelations between all considered equivalence notions. We men-
tion an interesting kind of inversion w.r.t. expansions and deletions.
It was one main result in [3] that expansion and normal expansion
equivalence coincide. Here, we have shown that deletion and local
deletion equivalence coincide. In [15] it was shown that local ex-
pansion equivalence needs a more involved characterization and in
the following we will see that the same applies to normal deletion
equivalence.

update
+

deletion
+

local
deletion

expansion
+

normal
expansion local

expansion

normal
deletion

Figure 2. Non-trivial Relations

4 Characterizing Normal Deletion Equivalence

In this section we present characterization theorems for normal dele-
tion equivalence w.r.t. stable, admissible, complete and grounded
semantics. We point out two special features of normal deletion equiv-
alence. Firstly, in contrast to all other dynamic equivalence notions
mentioned in this paper we have: for any AF F there exist infinitely
many normal deletion equivalent frameworks G. Secondly, it is the un-
expected result of this section that σ-*-kernels, originally introduced
to characterize strong expansion equivalence (compare Theorem 1),
play a decisive role w.r.t. characterizing normal deletion equivalence.

4.1 Stable Semantics

What are the characterizing properties for normal deletion equivalence
w.r.t. stable semantics? We already know that normal expansion equiv-
alence is sufficient for normal deletion equivalence for any considered
semantics (statement 2, Corollary 7). The converse does not hold as
shown by the example below.
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Example 4. Consider the following AFF and G. Obviously, A(F) ≠
A(G). Thus, F /≡stb

N G since the characterizing stb-kernel is node-
preserving (Theorem 1). Furthermore, we observe stb(F) = stb(G) =
{{a}}. Even more, for any set of arguments B we have7: F ∖B ≡stb

G ∖B. Consequently, F ≡stb
ND G.

F ∶ a b c

d

e

G ∶ a b c

f

What can we learn about normal deletion equivalence from these
two frameworks? One necessary condition is obviously standard
equivalence. A closer inspection of Example 4 reveals two promising
properties fulfilled by both AFs. Firstly, all non-shared arguments are
self-defeating (arguments e, d and f ) and secondly, all non-looping
arguments being simultaneously in F and G (arguments a and c)
attack all arguments in A(F) ∖A(G) or A(G) ∖A(F), respectively.
The following definition describes these two properties formally. We
use Δ for symmetric difference.

Definition 8. For any two AFs F = (A,R) and G = (A′,R′),
1. Loop(F ,G) ⇔def L (F ∪ G∣AΔA′) = AΔA′,
2. Attstb(F ,G) ⇔def ∀b ∈ A ∖A′ ∀a ∈ NL(F∣A∩A′) ∶ (a, b) ∈ R
∧ ∀b ∈ A′ ∖A ∀a ∈ NL(G∣A∩A′) ∶ (a, b) ∈ R′.
The following proposition states that the mentioned properties are

indeed necessary for being normal deletion equivalent.
Proposition 8. For any two AFs F and G we have:

F ≡stb
ND G ⇒ Loop(F ,G),Attstb(F ,G) and F ≡stb G.

The following simple AFs show that we still not reached a charac-
terization.

Example 5 (Example 4 continued). Let G′ = G ∪ ({b, c},{(c, b)}).
It easy to see that Loop(F ,G′) and Attstb(F ,G′). Furthermore, we
observe stb(F) = stb(G′) = {{a}}. Define B = {a, e, d, f}. Hence,
stb(F ∖B) = ∅ ≠ {{c}} = stb(G ∖B). This means, F /≡stb

ND G′.

F ∖B ∶ b c G ∖B ∶ b c

What is the decisive difference between Examples 4 and 5? The
crucial difference is that although the entire AFs F and G do not pos-
sess the same stable-kernels their restrictions to the shared arguments
do (i.e., (F∣{a,b,c})k(stb) = (G∣{a,b,c})k(stb)) in contrast to F and G′.
And indeed, this can be shown in general.

Proposition 9. For two AFs F = (A,R) and G = (A′,R′) we have:

F ≡stb
ND G ⇒ (F∣A∩A′)k(stb) = (G∣A∩A′)k(stb)

Finally, we are prepared to present the first characteriza-
tion theorem w.r.t. normal deletion equivalence. The follow-
ing theorem states that the stable-kernel-condition stated above
((F∣A∩A′)k(stb) = (G∣A∩A′)k(stb)), the loop-condition, i.e. any non-
shared argument has to be self-attacking (Loop(F ,G)) as well as the
attack-condition, i.e. all non-looping arguments being in F and G has
to attack arguments belonging exclusively to F or G (Attstb(F ,G))
are not only necessary but even sufficient if considered collectively.
We want to mention that all three relations satisfy subset-inheritance
which play a major role in the proof.
7 We encourage the reader to verify this assertion for some sets of arguments.

Theorem 10. Given two AFs F , G and define I = A(F) ∩A(G):
F ≡stb

ND G ⇔ Loop(F ,G), Attstb(F ,G), (F∣I)k(stb) = (G∣I)k(stb) .

Consequently, in the special case where both AFs share the same
arguments we obtain the coincidence of normal deletion and normal
expansion equivalence as well as strong expansion equivalence.

Corollary 11. For any two AFs F and G, s.t. A(F) = A(G)
F ≡stb

ND G ⇔ Fk(stb) = Gk(stb)⇔F ≡stb
N G ⇔ F ≡stb

S G.

4.2 The Role of Context-sensitive Kernels

Let us consider now admissible, complete and grounded semantics.
The following example gives the first hint that these semantics behave
differently compared with the characterization of stable semantics.
More precisely, traditional σ-kernels do not serve as parts of the
characterizations.

Example 6. Let σ ∈ {ad, co, gr} and consider the following AFs F
and G. We observe Fk(σ) = F ≠ G = Gk(σ). On the other hand, it is
easy to see that σ(F ∖B) = σ(G ∖B) for any set of arguments B.
This means, F ≡σND G /⇒ Fk(σ) = Gk(σ) even if the considered AFs
share the same arguments (compare Corollary 11).

F ∶ a b G ∶ a b

A detailed inspection of AFs F and G reveals that their correspond-
ing σ-*-kernels coincide (Fk∗(σ) = Gk∗(σ) = G) and surprisingly,
this observation holds in general as stated in the following proposition.
The proof contains very lengthy case-distinctions which has to be
done for any semantics separately.

Proposition 12. Let σ ∈ {ad, co, gr}. For any two AFs F and G:

F ≡σND G ⇒ (F∣A∩A′)k
∗(σ) = (G∣A∩A′)k

∗(σ) .

We have already shown that σ-*-kernels do not satisfy the ex-
changeability property stated in Lemma 5. Nevertheless, we can prove
the following characteristic needed to prove the main theorem.

Lemma 13. Let σ ∈ {ad, co, gr}. For any two AFs F and G and any
set of arguments B we have,

(F ∖B)k∗(σ) = (G ∖B)k∗(σ) ⇐Fk∗(σ) = Gk∗(σ).

Analogously to Theorem 6 we show subset-inheritance of any
equivalence characterizable through a certain σ-*-kernel. The proof
of Theorem 6 relies on abstract properties of kernels in contrast to
this theorem which has to be shown one by one for any kernel.

Theorem 14. Let σ ∈ {ad, co, gr}. Given an equivalence relation
≡k∗(σ)⊆ A ×A characterizable through k∗(σ), then

F ≡k∗(σ) G ⇔ for any B ∶ F ∖B ≡k∗(σ) G ∖B.

It was one main result in [3] that strong expansion equivalence
is characterized through σ-*-kernels for σ ∈ {ad, co, gr} (compare
Theorem 1). Consequently, we obtain subset-inheritance for strong
expansion equivalence. Furthermore, identical σ-*-kernels are suffi-
cient for normal deletion equivalence and even characterizing in case
AFs sharing the same arguments.

Corollary 15. Let σ ∈ {ad, co, gr}. Given two AFs F = (A,R) and
G = (A′,R′) and a set of arguments B, then:

1. F ≡σS G ⇒ F ∖B ≡σS G ∖B, (subset-inheritance)
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2. Fk∗(σ) = Gk∗(σ) ⇒F ≡σND G, (sufficient criterion)
3. If A = A′, then F ≡σND G ⇔ Fk∗(σ) = Gk∗(σ)⇔F ≡σS G.

(conditional coincidence)

In order to detect the missing ingredients for characterization theo-
rems consider the following example.

Example 7 (Example 6 continued). It can be checked that

1. F1 ≡σND G1 for any σ ∈ {ad, co, gr},
2. F1 ≡ad

ND G2 but F1 /≡τND G1 for any τ ∈ {co, gr} (set B = {a}),
3. F1 /≡σND G3 for any σ ∈ {ad, co, gr} (again, consider B = {a}).

F1 ∶ a b

c

G1 ∶ a b

d

G2 ∶ a b

e

G3 ∶ a b

f

The AFs presented in Example 7 give rise to the assumption that the
former loop-condition, i.e. all non-shared arguments are self-defeating
even applies to admissible, complete as well as grounded semantics.
Furthermore, the stable-attack-condition has to be weakened in accor-
dance with the less demanding semantics, namely instead of “attack
all non-shared arguments” we have “counter-attack if attacked” for ad-
missible semantics or “it is forbidden to be attacked” for complete and
grounded semantics. The following definition takes this observation
into account.

Definition 9. Let σ ∈ {co, gr}, F = (A,R) and G = (A′,R′), then

1. Attad(F ,G) ⇔def ∀b ∈ A ∖ A′ ∀a ∈ NL(F∣A∩A′) ∶
((b, a) ∈ R → (a, b) ∈ R) ∧ ∀b ∈ A′ ∖ A ∀a ∈ NL(G∣A∩A′) ∶
((b, a) ∈ R′ → (a, b) ∈ R′)

2. Attσ(F ,G) ⇔def ∀b ∈ A ∖A′ ∀a ∈ NL(F∣A∩A′) ∶ (b, a) ∉ R
∧ ∀b ∈ A′ ∖A ∀a ∈ NL(G∣A∩A′) ∶ (b, a) ∉ R′

Finally, we present the characterization theorems for admissible,
complete and grounded semantics.

Theorem 16. Let σ ∈ {ad, co, gr}. Given two AFs F = (A,R) and
G = (A′,R′) and let I = A ∩A′,
F ≡σND G ⇔ Loop(F ,G), Attσ(F ,G), (F∣I)k

∗(σ) = (G∣I)k
∗(σ) .

5 Conclusions and Related Work

We studied and characterized new dynamic notions of equivalence in
the context of Dung’s abstract AFs. In particular, we considered the
evolution of AFs in its most general form, so-called updates where
arguments and attacks can be deleted and added. In contrast to logic
programming where update equivalent programs are almost identical
[14] we prove their exact identity in case of AFs. The result was
shown for any semantics satisfying the basic requirements of conflict-
freeness and isolate-inclusion. Moreover, and quite surprisingly, these
weak properties guarantee that deletion equivalence and even local
deletion equivalence, where the retraction of attacks is considered,
collapse to identity. Put differently, any argument/attack may play a
crucial role with respect to further evaluations if updates, deletions or
local deletions are considered.

In contrast, normal deletion equivalence, where the retraction of
arguments is considered, is exceptional in several regards. Firstly,
the characterizations for stable, admissible, complete and grounded
semantics rely on kernel definitions originally introduced to deal
with certain kinds of expansions [15, 3]. Secondly, normal deletion

equivalent AFs do not even have to share the same arguments and
thus give space for simplifications.

Dynamic scenarios including retractions are addressed in few works
only. Boella et al. studied how the semantics of an AF remains un-
changed after the removal of a single argument or attack [7]. Their
results allow to identify redundant attacks in order to preserve ex-
isting extension. The approach does not handle multiple extension
semantics. In [6] the authors studied the impact of the removal of a
single argument together with its attacks. They introduced the notion
of narrowing as well as expansive change and provide some first con-
ditions for obtaining a certain kind of change. We believe that our
results complement this line of research.

There are at least two natural directions in which this research can
be further pursued. Due to the connection between abstract properties
of kernels and features of equivalence notions characterizable through
kernels it seems worthwhile to study and analyze further properties
of kernels. This line of research can be seen as an analogon to the
principle-based evaluation of semantics initiated in [2]. A further
future goal is to use our results in context of instantiation-based
argumentation [10]. Since normal deletions naturally occur if we
retract information from the underlying knowledge base we may
use normal deletion equivalence to identify redundant parts of the
knowledge base.
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