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Abstract. The paper provides an attempt at bridging formal concept
analysis and the modeling of analogical proportions (i.e., statements
of the form “a is to b as c is to d”). A suitable definition for analogical
proportions in non distributive lattices is proposed and then applied
to concept lattices. This enables us to compute what we call pro-
portional analogies that establish analogies on a proportional basis
between pairs (a, b) and (c, d) when a and c belong to a domain and
b and d to another domain (as in “Moby Dick is to Herman Melville
as Alice in Wonderland is to Lewis Carroll”).

1 Introduction

Aristotle [1] discussed metaphors as particular forms of analogies.
Let us quote an excerpt that includes often cited examples:

Thus the cup is to Dionysus as the shield to Ares. The cup may,
therefore, be called ’the shield of Dionysus,’ and the shield ’the cup
of Ares.’ Or, again, as old age is to life, so is evening to day. Evening
may therefore be called ’the old age of the day,’ and old age, ’the
evening of life,’or, in the phrase of Empedocles,’life’s setting sun.’

The sentence “the cup is to Dionysus as the shield to Ares” is
an example of analogies between the two pairs (cup, Dionysus) and
(shield, Ares), where each pair is made of two elements belonging
to two different categories, namely objects and (Greek) gods respec-
tively. This example may suggest a linkage between two particular
areas of research in artificial intelligence, namely, on the one hand,
formal concept analysis [6] where formal concepts are extracted from
a formal context which is nothing but a binary relation linking two
distinct universes, and on the other hand, analogical reasoning, in
particular based on analogical proportions [7, 15]. It is worth not-
ing that these two areas are respectively related to two basic mental
activities: categorization and analogy making.

An analogical proportion is a statement of the form “x is to y as
z is to t”, which may be denoted x : y :: z : t. The formal mod-
eling of analogical proportions has raised the interest of some re-
searchers for more than a decade now, who have proposed algebraic
[9, 17] or logical [11] approaches. In the latter view, the analogical
proportion is understood as “x differs from y as z differs from t”,
and “y differs from x as t differs from z”. This is closely related
to the idea that the pair (x, y) is analogous to the pair (z, t) [8],
both pairs playing a symmetrical role. Analogical proportions have
been proved to be a fruitful basis for an original approach to clas-
sification in machine learning [10] where the analogical proportions
that are looked for stand between vectors of attributes values describ-
ing objects. The analogical proportions that are considered are then
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between four (Boolean) values pertaining to the same attribute and
referring to four objects.

As already illustrated by the Aristotle’s example, x, y, z, t in an
analogical proportion may not belong to the same domain; namely,
x and z may belong to a domain clearly distinct from the one to
which y and t belong. We shall simply call this latter type of pro-
portion proportional analogy, or more shortly analogy. While it is
natural that analogical proportions on a unique domain satisfies cen-
tral permutation (x : y :: z : t is equivalent to x : z :: y : t) as a
numerical proportion does, central permutation seems debatable for
proportional analogies. Indeed, while “the cup is to Dionysus as the
shield to Ares” sounds right, “the cup is to the shield as Dionysus to
Ares” seems a bit strange.

Such proportional analogies can be looked for in a formal context,
that is the Cartesian product of two sets, usually understood as a set
of objects and a set of attributes. Then a formal concept is a pair
(o,a), where o is a subset of objects and a is a subset of properties.
The set of formal concepts associated with a formal context can be
organized in a lattice structure [6]. This is a non-distributive lattice
in general. Interestingly enough, Mary Hesse in an early, visionary
paper [8] foresaw the interest of looking for analogical proportions in
non-distributive lattices, at a time where formal concept analysis was
not existing and where the formal modeling of analogical proportions
was still in its infancy.

Analogical proportions have been defined not only on Boolean
lattices, but also in general lattices [17, 2], and studied in distribu-
tive lattices [2]. The present paper investigates the notion of analogi-
cal proportions in non-distributive lattices (where some equivalences
between different views no longer hold), and then studies analogi-
cal proportions in concept lattices, before discussing how to produce
proportional analogies and being able to answer questions like “what
is the cup of Ares?” by “the shield”. The ambition of this paper is thus
to build a formal bridge between analogical proportions and formal
concepts. Some preliminary work connecting the two areas can be
found in [12], but where analogical proportions were not considered
between concepts, but only between objects.

The paper is organized as follows. Section 2 provides the basics
about the formal modeling of analogical proportions in lattices. Sec-
tion 3 introduces weak analogical proportions (WAP) that still make
sense in non-distributive lattices. Section 4 studies WAP in con-
cept lattices, and then describes the process of building proportional
analogies, before concluding in Section 5.

2 Background

Since the paper deals with analogical proportions in concept lattices,
we first introduce analogical proportions before providing a short re-
fresher on lattice structures.
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2.1 Analogical proportions

2.1.1 Axiomatic definition

Analogical proportions are characterized by three axioms. The first
two axioms acknowledge the symmetrical role played by the pairs
(x, y) and (z, t) in the proportion ‘x is to y as z is to t’, and enforce
the idea that y and z can be interchanged if the proportion is valid,
just as in the equality of two numerical ratios where means can be
exchanged. A third (optional) axiom, called determinism, insists on
the unicity of the solution t = y to the analogical proportion equation
in t: x : y :: x : t . These axioms are studied in [9].

Definition 1 (Analogical proportion) An analogical proportion3

(AP ) on a set X is a quaternary relation on X , i.e. a subset of X4.
An element of this subset, written x : y :: z : t, which reads ‘x is to
y as z is to t’, must obey the following two axioms:

1) Symmetry of ‘as’: x : y :: z : t ⇔ z : t :: x : y
2) Exchange of means: x : y :: z : t ⇔ x : z :: y : t

Then, thanks to symmetry and central permutation, it can be easily
seen that x : y :: z : t ⇔ t : y :: z : x should also hold (exchange
of the extremes). From the first two axioms, seven other formulations
are equivalent to the canonical form x : y :: z : t, namely z : t ::
x : y, , y : x :: t : z, t : z :: y : x, z : x :: t : y, , t : y :: z : x,
x : z :: y : t and y : t :: x : z.

2.1.2 Definition by factorization

Stroppa and Yvon [16, 18] have given another definition of the ana-
logical proportion, based on the notion of factorization, when the set
of objects is a commutative semigroup (X,⊕).

Definition 2 (x, y, z, t) ∈ X4 is an AP (x : y :: z : t) if:

1) either (y, z) ∈ {(x, t), (t, x)},
2) or there exists (x1, x2, t1, t2) ∈ X4 such that x = x1 ⊕ x2,

y = x1 ⊕ t2, z = t1 ⊕ x2 and t = t1 ⊕ t2.

This definition satisfies the two basic axioms of the analogical
proportion (Definition 1). For example, in (X,⊕) = (N+,×), with
x1 = 2, x2 = 3, t1 = 5 and t2 = 7, one has (2 × 3) : (2 × 7) ::
(5 × 3) :: (5 × 7), i.e. 6 : 14 :: 15 : 35, a numerical ge-
ometric analogical proportion. Note that this particular proportion
corresponds equivalently to the equality: 6× 35 = 14× 15.

2.2 Lattices

Lattices are mathematical structures commonly encountered in the
semantics of representation and programming languages, in formal
concept analysis, machine learning, data mining, and in other areas
of computer sciences.

Definition 3 (L,∨,∧,≤) is a lattice when [5]:

i) L has at least two elements,
ii) ∧ and ∨ are two binary internal operations, both idempotent,

commutative, associative, and satisfying the absorption laws:
u ∨ (u ∧ v) = u ∧ (u ∨ v) = u for all u and v in L.

3 When there is no ambiguity, an analogical proportion is also called a pro-
portion.

Equivalently (L,∨,∧,≤) can be defined as a poset in which every
couple of elements has a supremum and an infimum according to ≤.
We have in particular x ∧ y ≤ x ≤ x ∨ y for every (x, y) ∈ L2.

A lattice is distributive when u∨ (v ∧w) = (u∨ v)∧ (u∨w), or
equivalently u∧ (v ∨w) = (u∧ v)∨ (u∧w) for every (u, v, w) ∈
L3. A bounded lattice has a greatest (or maximum) and least (or
minimum) element, denoted � and ⊥. It is complemented if each
element x has a complementary y such that x∧y = ⊥ and x∨y = �.
A distributive, bounded and complemented lattice is called a Boolean
lattice. A lattice is complete when all its subsets have a supremum
and an infimum.

Examples. (a) (2Σ,∩,∪,⊆), where Σ is a finite set, is a Boolean
lattice. (b) (N+, gcd, lcm, |) where (x | y) iff x divides y is a dis-
tributive lattice, with the minimum element 1 but no maximum ele-
ment. (c) The set S of closed intervals on R, including ∅ and R, is a
non-distributive lattice when ∧ is the intersection and [a, b]∨ [c, d] =
[min(a, c),max(b, d)].

3 Analogical proportions in lattices: Basics

In this section, we are interested in studying how the definition of an
analogical proportion by factorization applies to lattices. In particular
we are wondering whether the equivalence of the two formulations in
the preceding examples can be transposed to this algebraic structure.

3.1 Definition

As in a lattice (L,∨,∧,≤), both (L,∨) and (L,∧) are commutative
semigroups, we can derive the following result from Definition 2.

Proposition 1 (x, y, z, t) ∈ L4 is an AP (x : y :: z : t) iff:

1) there exists (x1, x2, t1, t2) ∈ L4 such that x = x1 ∨ x2, y =
x1 ∨ t2, z = t1 ∨ x2 and t = t1 ∨ t2,

2) and there exists (x′
1, x

′
2, t

′
1, t

′
2) ∈ L4 such that x = x′

1 ∧ x′
2,

y = x′
1 ∧ t′2, z = t′1 ∧ x′

2 and t = t′1 ∧ t′2.

Note that if x2 = t2 then y = x and z = t and if x1 = t1 then y = t
and z = x. Hence we can have (y, z) = (x, t) or (y, z) = (t, x).

Examples. (a) In (N+, gcd, lcm, |), we have (20 : 4 :: 60 : 12),
with x1 = 20, x2 = t1 = 60, t2 = 12, x′

1 = t′2 = 4, x′
2 = 20

and t′1 = 12. (b) In the lattice S of closed intervals on R, we have
([0, 3] : {3} :: [0, 4] : [3, 4]) with x1 = {3}, x2 = {0}, t1 =
[3, 4], t2 = ∅, x′

1 = [0, 3], x′
2 = [0, 4], t′1 = [0, 4] and t′2 = [3, 4].

Proposition 2 (x, y, z, t) in L4 is an AP (x : y :: z : t) iff:

x = (x ∧ y) ∨ (x ∧ z) x = (x ∨ y) ∧ (x ∨ z)
y = (x ∧ y) ∨ (y ∧ t) y = (x ∨ y) ∧ (y ∨ t)
z = (z ∧ t) ∨ (x ∧ z) z = (z ∨ t) ∧ (x ∨ z)
t = (z ∧ t) ∨ (y ∧ t) t = (z ∨ t) ∧ (y ∨ t)

Proof. (⇒). Let us show that x = (x∧y)∨(x∧z). Since x = x1∨
x2 and y = x1 ∨ t2, we have x1 ≤ x and x1 ≤ y. Then x1 ≤ x∧ y.
Similarly, factor x2 satisfies x2 ≤ x∧z. Hence, x ≤ (x∧y)∨(x∧z).
Besides, x being greater than (x∧y) and (x∧z), (x∧y)∨(x∧z) ≤ x.
The antisymmetry of ≤ implies that x = (x∧y)∨ (x∧ z). We show
the other equalities in the same manner.
(⇐). Taking x1 = x ∧ y, x2 = x ∧ z, t1 = z ∧ t and t2 = y ∧ t
show directly that there exist factors satisfying Proposition 1. �

Proposition 3 Let (x, y, z, t) ∈ L4, if (x : y :: z : t) then

x ∨ t = y ∨ z and x ∧ t = y ∧ z. (1)

If (L,∨,∧,≤) is distributive, the converse is true.
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Proof. Equation (1) can be easily checked using the factorisations
given by Proposition 2. Conversely, by absorption law and distribu-
tivity, we have x = x∧(x∨t) = x∧(y∨z) = (x∧y)∨(x∧z). The
other equations of Proposition 2 can be obtained in a similar way. �

Comment. Proposition 3 is not an equivalence in general. For exam-
ple, in the lattice S, x = [2, 3], y = [2, 6], z = [8, 9] and t = [6, 9]
satisfy x ∨ t = y ∨ z and x ∧ t = y ∧ z but x �= (x ∨ y) ∧ (x ∨ z).

3.2 Determinism

The first and second axioms of Definition 1 are straightforwardly
verified by Proposition 1. What about the third axiom?

Proposition 4 (determinism) Let x and y be two elements of a lat-
tice, the equation in z: (x : x :: y : z) has the unique solution
z = y. This is also true for the equation (x : y :: x : z).

Proof. Let z be such that (x : x :: y : z), we have

y = (y ∧ z) ∨ (x ∧ y) (2)
y = (y ∨ z) ∧ (x ∨ y) (3)
z = (y ∧ z) ∨ (x ∧ z) (4)
z = (y ∨ z) ∧ (x ∨ z) (5)

from Proposition 2. Consequently, using (3) and absorption law,

x ∧ y = x ∧ (y ∨ z) ∧ (x ∨ y)

= x ∧ (y ∨ z)

and similarly, using (5)

x ∧ z = x ∧ (y ∨ z) ∧ (x ∨ z)

= x ∧ (y ∨ z)

Therefore, x ∧ y = x ∧ z. From (2) and (4), we obtain that y = z.�

3.3 Canonical proportions and transitivity

In distributive lattices, it turns out that a basic form of AP, named
canonical proportion, offers interesting properties, like being a basic
factor of any AP. In non distributive lattices, these canonical propor-
tions are also transitive, as proved below.

Proposition 5 Let y and z be two elements of a lattice, the following
AP, named canonical proportion, is true:

y : y ∨ z :: y ∧ z : z

Proof. The equalities of Proposition 2 can be easily checked using
the absorption laws. �

Proposition 6 (Transitivity of canonical proportion) If x : y ::
z : t and z : t :: u : v are two canonical proportions in a lattice,
then x : y :: u : v is a canonical proportion.

Proof. We know that y = x∨t, z = x∧t, t = z∨v and u = z∧v.
Hence, v ≤ t and u = x ∧ t ∧ v = x ∧ v. Similarly, z ≤ x and
y = x ∨ z ∨ v = x ∨ v. Then, x : y :: u : v is a canonical
proportion. �

Comment. In general, transitivity does not hold, as shown in the
following example. In S, [0, 3] : {3} :: {0} : ∅ and {0} : ∅ ::
[0, 4] : {4} follow from Proposition 2, but [0, 3] : {3} :: [0, 4] : {4}
is wrong since {4} is not equal to ([0, 4]∨{4})∧({3}∨{4}) = [3, 4].

3.4 Weak analogical proportions

As previously remarked in Proposition 3, the AP x : y :: z : t
implies x ∧ t = y ∧ z and x ∨ t = y ∨ z but the reverse is generally
false in a non distributive lattice. Since the 8 equalities of Proposition
2 are quite restrictive to derive AP in such a lattice, we propose to
introduce a weaker notion of analogical proportion.

Definition 4 An element (x, y, z, t) of L4 is a Weak Analogical Pro-
portion (WAP) (or Piaget Proportion, see appendix of [13] and [14])
when x∧ t = y ∧ z and x∨ t = y ∨ z. It is denoted (x, t) �� (y, z).

Comments. (a) Note that �� is an equivalence relation between non
ordered pairs of elements. (b) In a case of WAP, determinism is not
true any more: in the lattice S, one has ([2, 3], [8, 9])�� ([2, 3], [7, 9]).

4 Analogical proportions between formal concepts

The formal concepts that can be associated to a relation object-
attribute can be organized into a lattice structure that is not distribu-
tive in general. Let us recall what are formal concepts.

4.1 Basics on formal concept analysis

Formal concept analysis starts with a binary relation R, called formal
context, defined between a set O of objects and a set A of attributes
(or Boolean properties). The notation (o, a) ∈ R means that object
o has the attribute a. R↑(o) = {a ∈ A|(o, a) ∈ R} is the set of
attributes of object o and R↓(a) = {o ∈ O|(o, a) ∈ R} is the set of
objects having attribute a.

Given a subset a of attributes, one can define the set R↓(a) =
{o ∈ O|R↑(o) ⊇ a} which is the set of objects sharing all attributes
in a (and having maybe some others) [6]. Similarly, for any subset o
of objects, R↑(o) is defined as {a ∈ A|R↓(a) ⊇ o}. Then a formal
concept is defined as a pair (o,a) made of its extension o and its
intension a such that R↓(a) = o and R↑(o) = a. It can be also
shown that formal concepts are maximal pairs (o,a) (in the sense of
inclusion) such that o× a ⊆ R.

Moreover, the set of all formal concepts is equipped with a par-
tial order (denoted ≤) defined as: (o1,a1) ≤ (o2,a2) iff o1 ⊆ o2

(or, equivalently, a2 ⊆ a1), and forms a complete lattice, called the
concept lattice of R.

a1 a2 a3 a4 a5 a6 a7 a8

o1 × ×
o2 × ×
o3 × × × ×
o4 × × × ×
o5 × × × ×
o6 × ×
o7 × × × ×
o8 × ×
o9 × ×

Figure 1: A context with 7 formal
concepts

Let us consider an example
where R is a relation between
eight attributes a1, . . . , a8 and
nine objects o1, . . . , o9. The re-
lation R is shown in Figure 1.
There is a “×” in the cell corre-
sponding to an object o and to
an attribute a iff o has attribute
a, in other words the “×”s de-
scribe the relation R (or con-
text). There are 7 formal con-
cepts in R. For instance, con-
sider o = {o1, o2, o3, o4, o5}.
Then R↑(o) = {a7, a8} ;
likewise if a = {7, 8}. Then
R↓(a) = {o1, o2, o3, o4, o5}.
The concept lattice of R is displayed on Figure 2.
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∅

{a1, a2, a3, a4, a5, a6, a7, a8}

{o3, o4, o5}
{a5, a6, a7, a8}

{o7}
{a1, a2, a3, a4}

{o1, o2, o3, o4, o5}
{a7, a8}

{o3, o4, o5, o6}
{a5, a6}

{o7, o8, o9}
{a3, a4}

{o1, o2, o3, o4, o5, o6, o7, o8, o9}
∅

Figure 2: The formal concept lattice of R

4.2 Weak analogical proportions in concept lattices

Preliminary 1. Given two concepts x = (ox,ax) and y = (oy,ay)
of a formal concept lattice, one has:

ox ∪ oy ⊆ ox∨y, ox ∩ oy = ox∧y,

ax ∪ ay ⊆ ax∧y, ax ∩ ay = ax∨y .

Preliminary 2 Let o be a subset of O, there exists at most one con-
cept x such that ox = o.

These properties are directly derivated from the definition of Con-
cept Lattices and the Main Theorem of Formal Concepts [6, 4]. They
allow for a quick demonstration of the following proposition.

Proposition 7 (Characterization of a WAP in a concept lattice)

Four elements x = (ox,ax), y = (oy,ay), z = (oz,az) and
t = (ot,at) of a concept lattice are in WAP iff they are such that

ox ∩ ot = oy ∩ oz and ax ∩ at = ay ∩ az

Proof.

1. Suppose that (x, t)�� (y, z). Then x ∨ t = y ∨ z, which implies,
according to Preliminary 1, ax∩at = ay∩az . Similarly, we have
x ∧ t = y ∧ z that implies ox ∩ ot = oy ∩ oz .

2. Suppose that ox ∩ ot = oy ∩ oz . Then, ox∧t = ox ∩ ot, by
Preliminary 1. But there exists at most one concept for which the
set of objects is ox∩ot. Therefore, this concept is x∧t. The same
reasoning shows that it is also y ∧ z. Therefore, x ∧ t = y ∧ z.
We prove similarly that ax ∩ at = ay ∩ az implies x ∨ t =
y ∨ z. Hence, ox ∩ ot = oy ∩ oz and ax ∩ at = ay ∩ az imply
(x, t)�� (y, z).

�

Comment. Suppose there are four distinct elements x, y, z and t of
a concept lattice such that |ox| = |oy| = |oz| = |ot| = 1. These
concepts are in WAP iff ax ∩ at = ay ∩ az , since the associated
sets of objects are pairwise disjoint. However, this condition is not
sufficient to obtain an AP between the four objects, considered as
subsets of attributes. For example, in the following context, o1, o2,
o3 and o4 are not in AP (due to attribute 5), while the concepts x =
({o1}, {a3, a4}), y = ({o2}, {a1, a3}), z = ({o3}, {a2, a4}) and
t = ({o4}, {a1, a2, a5}) are in WAP.

a1 a2 a3 a4 a5

o1 × ×
o2 × ×
o3 × ×
o4 × × ×

Let us consider some examples of lattices and their associated
WAP. Firstly, we define a (p, n)−regular context as a (n×n) context

with exactly p occurences of × on each line and on each column, and
such that all lines are different, as well as all columns.

The following context corresponds to the (1, 4)-regular one. Ad-
ditionally to the canonical proportions, several WAP can be derived:
(x, t)�� (y, z), (x, y)�� (z, t) and (x, t)�� (y, t). These WAP are de-
generated cases since they link some concepts that are independent,
regarding the associated context. In order to discard too simple or
degenerated WAP, we introduce the following definition.

a1 a2 a3 a4

o1 ×
o2 ×
o3 ×
o4 ×

∅

{a1, a2, a3, a4}

{o1}
{a1}

{o2}
{a2}

{o3}
{a3}

{o4}
{a4}

{o1, o2, o3, o4}
∅

x y z t

�

⊥

Definition 5 A Full Weak Analogical Proportion (FWAP) is a WAP
(x, t) �� (y, z) where x, y, z and t are incomparable for ≤ and
(x, y) �� (z, t) and (x, z) �� (y, t) are both false.

Comment. Let us notice that trivial AP are not FWAP, like x : y :: x
: y. Besides, if (x, t) �� (y, z) is a FWAP, the object sets ox, oy , oz ,
ot (resp. attribute sets ax, ay , az , at) are incomparable for ⊆.

Proposition 8 The (2, 4)-regular context, described in Figure 3, is
the smallest (in terms of number of concepts as well as in size of
context) concept lattice in which there is a FWAP.

Proof. A context corresponding to a lattice with a FWAP must have
at least four objects and four attributes. A systematic investigation of
the (4, 4) context gives the result. �

{o1}{a3, a4}

{o2}{a1, a3}

{o3}{a2, a4}

{o4}{a1, a2}

{o1, o2}{a3}

{o1, o3}{a4}

{o2, o4}{a1}

{o3, o4}{a2}

{o1, o2, o3, o4}
∅

y

ytyt

y

x z

t

xz

xy zt

�

⊥

a1 a2 a3 a4
o1 × ×
o2 × ×
o3 × ×
o4 × × ∅

{a1, a2, a3, a4}

Figure 3: The (2, 4)-regular context and the associated concept lattice. The
two FWAP’s between concepts are indicated by white lined parallelograms.
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The (2, 4)-regular context actually has two FWAP’s:
(x, t)�� (y, z) and (xy, zt)�� (xz, yt). This lattice is not dis-
tributive, since (⊥, x, t, xy,�) is a pentagonal sublattice. Some
(but not all) of the eight equalities of Proposition 2 are verified. For
example: (x ∧ y) ∨ (x ∧ z) = x, but (x ∨ y) ∧ (x ∨ z) = ⊥. It
displays 30 non canonical non full WAP, like x : y :: xz : zt.

As for the following (3, 4)-regular context, it contains 16 concepts
and exhibits three FWAP’s (xy, zt)�� (xz, yt)�� (xz, yz).

a1 a2 a3 a4

o1 × × ×
o2 × × ×
o3 × × ×
o4 × × ×

∅

{a1, a2, a3, a4}

{o1}
{a2, a3, a4}

{o2}
{a1, a3, a4}

{o3}
{a1, a2, a4}

{o4}
{a1, a2, a3}

{o2, o4}
{a1, a3}

{o3, o4}
{a1, a2}

{o1, o3}
{a2, a4}

{o1, o2}
{a3, a4}

{o1, o4}
{a2, a3}

{o2, o3}
{a1, a4}

{o1, o2, o3, o4}
∅

{o2, o3, o4}
{a1}

{o1, o3, o4}
{a2}

{o1, o2, o4}
{a3}

{o1, o2, o3}
{a4}

xy xz yt ztxt yz

5 Proportional analogy

In this section, we are investigating whether we can establish a cor-
respondance between a FWAP in a concept lattice and the notion of
proportional analogy. In other words, having (x, t) and (y, z) four
concepts in weak analogical proportion, we wonder whether there
could be some expression "o1 is to a1 as o2 is to a2" that could be
syntactically extracted from a FWAP in a concept lattice, with a se-
mantic connexion to the ordinary meaning of an analogy, where o1,
o2 are objects and a1, a2 are attributes, all concerned by the FWAP.

Let us start from the example "the fins are to the fish as the wings
are to the bird", which can also be expressed as "the fins are the wings
of the fish"4. How can this analogy be expressed in the framework of
formal concept analysis ? Firstly, "fins" and "wings" are comparable,
since they are organs useful to move in a fluid. They however are
different since "fins" is related to a "fish" and "wings" to a "bird"
(this last word does not appear in the phrase "the fins are the wings
of the fish", but is implicit). Hence, it is natural to consider "wings"
and "fins" as objects and "bird" and "fish" as attributes.

A fish and a bird are not only distinguished by the way they move.
They don’t breathe in the same manner, either. Oxygen in air is tran-
fered in the blood by the means of lungs, while in water it is trans-
fered by gills. Also, the skin of a fish is protected by scales, while
that of a bird is protected by feathers.
A formal context can be now extracted from this knowledge, namely:

a1 a2 a3 a4 a5

o1: Fins × ×
o2: Wings × ×
o3: Gills × ×
o4: Lungs × ×
o5: Scales × ×
o6: Feathers × ×

a1: Part of a fish
a2: Part of a bird
a3: Mobility part
a4: Breathing part
a5: Covering part

4 The first expression is a plain analogy, the second is a metaphorical expres-
sion of the same analogy

We have now three similar analogies: "the fins are to the fish as the
wings are to the bird", "the scales are to the fish as the feathers are to
the bird" and "the gills are to the fish as the the lungs are to the bird".
Let us draw the corresponding lattice (Figure 4).

∅

{a1, a2, a3, a4, a5}

{o1}
{a1, a3}

{o2}
{a2, a3}

{o3}
{a1, a4}

{o4}
{a2, a4}

{o5}
{a1, a5}

{o6}
{a2, a5}

{o1, o3, o5}
{a1}

{o2, o4, o6}
{a2}

{o1, o2}
{a3}

{o3, o4}
{a4}

{o5, o6}
{a5}

{o1, o2, o3, o4}
∅

x y z t

Figure 4

What is the common graphic structure to the three analogies "o1
is to a1 as o2 is to a2", "o3 is to a1 as o4 is to a2" and "o5 is to a1 as
o6 is to a2"? Consider the sublattice in dashed lines in which one has
the analogy "o1 is to a1 as o2 is to a2". The basic remarks are that:

• The couples of concepts
(
({o1}, {a1, a3}), ({o4}, {a2, a4})

)

and
(
({o2}, {a2, a3}), ({o3}, {a1, a4})

)
are in FWAP,

• {a1} = {a1, a3}\{a2, a3},
• {a2} = {a2, a3}\{a1, a3}.

And these remarks can be transposed exactly to the other analogies.
Hence, we can tentatively say "o1 is to a1 as o2 is to a2" when

• {o1} and {o2} are the sets of objects of two concepts x and y of
a FWAP (x, t)�� (y, z),

• {a1} = ax\ay .
• {a2} = ay\ax.

However, this definition has to be made precise to include more com-
plex cases.

We denote an analogy "o1 is to a1 as o2 is to a2" such as:

o1 ˜ a1 ˜̃ o2 ˜ a2

and we note that the ˜̃ operator is commutative, but that permuting
the extreme or the means makes no sense. This leads to the following
definition.

Definition 6 (Proportional analogy) A proportional analogy is a
relation between objects and attributes, derived from a FWAP
(x, t)�� (y, z) between concepts in the following manner:

(ox\oy) ˜ (ax\ay) ˜̃ (oy\ox) ˜ (ay\ax) .

This definition makes clear that in order to build a proportional
analogy on the basis of two formal concepts x and y, we need a for-
mal context which there exist other concepts z and t involving other
objects and attributes, in such a way that (x, y, z, t) makes a FWAP,
i.e., a form of analogical proportion not trivialized by dependence or
independence relations.

Example. Let us illustrate the above definition by the following con-
text
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a1 a2 a3 a4 a5 a6 a7 a8

o1 × × ×
o2 × × ×
o3 × × ×
o4 × × ×
o5 ×
o6 ×
o7 ×
o8 ×

with this interpretation of the objects and attributes:

o1 : Fins a1 : Part of a Whale
o2 : Wings a2 : Part of a Bat

o3 : Scales a3 : Part of a Snake
o4 : Feathers a4 : Part of a Deinonychus

o5 : Gills a5 : Part of a Fish
o6 : Beak a6 : Part of a Bird
o7 : Hooves a7 : Cymbulia peroni

o8 : Thick fur a8 : Chimera

A Cymbulia peroni is a shell-less pteropod with a large hoof-like
pseudoconch. Its fins look like wings. For enriching the formal con-
text of the example, we have also introduced an imaginary animal,
known as Chimera.

We can construct the corresponding lattice (see Figure 5) and ex-
tract the FWAP (x, t)�� (y, z) with x = ({o1}, {a1, a5, a7, a9}),
y = ({o2}, {a2, a6, a7, a9}), z = ({o3}, {a3, a5, a8, a9}) and
t = ({o4}, {a4, a6, a8, a9}).

According to our definition, the relation
"{o1} ˜ {a1, a5} ˜̃ {o2} ˜ {a2, a6}" is a formal analogy,
i.e. "the fins are to the fish and the whale as the wings are to the
bird and the bat". The symmetry property of the WAP gives other
proportional analogies as "{o3} ˜ {a3, a5} ˜̃ {o4} ˜ {a4, a6}".

Similarly, from Figure 5 and the FWAP (x′, t′)�� (y′, z′) where
x′ = ({o1, o3, o5}, {a5}), y′ = ({o3, o4, o8}, {a8})), z′ =
({o1, o2, o8}, {a7}) and t′ = ({o2, o4, o6}, {a6}), we obtain among
other proportional analogies "{o1, o5} ˜ {a5} ˜̃ {o4, o8} ˜ {a8}".

∅

{a1, a2, a3, a4, a5, a6, a7, a8}

{ o1 }
{a1,a5 , a7}

{ o2 }
{a2,a6 , a7}

{o3}
{a3, a5, a8}

{o4}
{a4, a6, a8}

{o1, o2, o7}
{a7}

{o1, o3, o5}
{a5}

{o2, o4, o6}
{a6}

{o3, o4, o8}
{a8}

{o1, o2, o3, o4, o5, o6, o7, o8}
∅

Figure 5: Construction of the analogy {a} ˜ {1, 5} ˜̃ {b} ˜ {2, 6} or "the
fins are to the fish as the wings are to the bird" from the lattice corresponding
to the example context.

Starting with the notion of analogical proportion defined in a lat-
tice structure, and choosing the most compatible form with a non-
ditributive lattice, we have applied this definition to formal concept
lattices and focused on the meaningful analogical proportions in such
a setting, in order to finally define the notion of proportional analogy,
by sort-of projecting such analogical proportions on the objects and
attributes of a formal context. The properties of proportional analo-
gies remain to be investigated.

6 Conclusion

It is only recently that analogical proportions have been formalized
in various settings. When applied to classification, analogical propor-
tions hold between examples described by vectors of Boolean fea-
tures, i.e. between items of the same nature. However, statements
having the form of analogical proportions often involve both ob-
jects and attributes. This has led us to the question of relating for-
mal concept analysis and analogical proportions. In this paper, we
have proposed a definition of analogical proportion which is suit-
able for a non-distributive lattice structure as the one underlying for-
mal concepts. We have shown that it was then possible to extract,
from a concept lattice, proportional analogies pairing two (object,
attribute)-pairs. It thus provides a new view of the idea of analogy
that is worth investigating. Besides, analogical proportions when de-
fined on a unique domain have been proved to be fruitful in classifi-
cation tasks [10, 15, 3], while formal concept analysis underlies data
mining, which suggests that in the long range the ideas presented
here may have some impact in machine learning.
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