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Abstract. Approaches for extending logic to deal with uncertainty
immanent to many real-world problems are often on the one side
purely qualitative, such as modal logics, or on the other side quan-
titative, such as probabilistic logics. Research on combinations of
qualitative and quantitative extensions to logic which put qualitative
constraints on probability distributions, has mainly remained theo-
retical until now. In this paper, we propose a practically useful logic,
which supports qualitative as well as quantitative uncertainty and can
be extended with modalities with varying level of quantitative preci-
sion. This language has a solid semantic foundation based on im-
precise probability theory. While in general imprecise probabilistic
inference is much harder than the precise case, this is the first expres-
sive imprecise probabilistic formalism for which probabilistic infer-
ence is shown to be as hard as corresponding precise probabilistic
problems. A second contribution of this paper is an inference algo-
rithm for this language based on the translation to a weighted model
counting (WMC) problem, an approach also taken by state-of-the-art
probabilistic inference methods for precise problems.

1 INTRODUCTION

The use of knowledge representation and reasoning methods to cope
with the uncertainty that comes with real-world problems has be-
come a crucial element in the development of intelligent systems.
The way in which this uncertainty presents itself varies from prob-
lem to problem; in some cases precise probabilistic information is
available, whereas in other cases the best that can be achieved is qual-
itative uncertainty.

Probabilistic logics, which use the structure of a logic theory to
define a probability distributions, are the state-of-the-art for knowl-
edge representation when precise probabilistic information is avail-
able. Alethic modal logics, which extend logic with purely qualita-
tive modalities, such as that something is possible, allow dealing
with uncertainty that is merely qualitative in nature. Alternatively,
one can handle lack of precise probabilistic information by putting
constraints on a probability distribution, as in the probabilistic belief
logic of Bacchus [1].

In this paper we propose a new language that integrates these dif-
ferent approaches. It supports qualitative as well as quantitative un-
certainty and can also be extended with modalities with varying level
of quantitative precision. This is achieved by the well-defined seman-
tic basis of imprecise probability theory [18], specifically interval
probabilities. This semantics allows to exactly define the semantics
of qualitative modalities in terms of probability intervals and also
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provides precise probabilistic logic as a special case. The language is
designed with particular guarantees for computational tractability in
mind.

In general, computing marginal probabilities of imprecise prob-
ability distributions is more complex than inference for their pre-
cise counterparts. For instance, it is known that inference in credal
networks [5] is much harder (NPPP-hard) than for the correspond-
ing precise case of Bayesian networks [15]. However, as we claim
our language to be practically useful, we designed an expressive lan-
guage in such a way that inference has the same complexity as corre-
sponding precise probabilistic inference problems, making it the first
imprecise probabilistic language that offers such guarantees. This is
the best we can hope for, as the language supports precise probabili-
ties as a special case. While inference is still NP-hard in general, one
can often make use of the problem’s structure to perform more effi-
cient inference. For example, it is well-known that inference is linear
for problems corresponding to singly-connected Bayesian networks
with a bounded indegree.

We further propose a concrete inference mechanism based on the
translation to a weighted model counting (WMC) problem, an ap-
proach also taken by state-of-the-art probabilistic inference methods
for precise problems. The approach has successfully been used in the
context of probabilistic logic programming [7] and can exploit local
structure, such as determinism, which is often present in logic the-
ories. We have already shown in previous work that WMC can be
used to compute marginals for certain classes of credal sets, which
we used to approximate continuous distributions [11].

The paper is structured as follows. We first provide some back-
ground in Section 2. Then the language is defined formally (Sec-
tion 3) and the inference approach is discussed (Section 4). Finally,
related work is discussed in Section 5 and Section 6 concludes the
paper.

2 BACKGROUND

We first give some background and focus on properties and limita-
tions of existing languages.

2.1 Logic programming

As the work described in this paper builds upon probabilistic logic
programming, we will first introduce some basic logic programming
(LP) concepts. The idea of LP is to use predicate logic as program-
ming language [10], with programs consisting of rules, in this paper
Horn clauses. They are (implicitly universally quantified) expres-
sions of the form: h ← b1, . . . , bn, where h is called the head and
b1, . . . , bn is called the body of the rule, representing a conjunction.
The head h and elements of the body bi, 1 ≤ i ≤ n are atoms,
i.e. expressions of the form p(t1, . . . , tm) with p a predicate, and
t1, . . . , tn are terms.
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In the remainder of this paper, we assume the traditional least
model semantics of LP. This semantics implies the closed world as-
sumption (CWA), which states that statements that do not follow
from the rules are false.

Example 1. To illustrate the different formalisms and their proper-
ties, we make use of the following running example originating from
the maritime safety and security domain, in which we already suc-
cessfully applied precise probabilistic logics [12].

Suppose we want to model in which cases a vessel is an environ-
mental hazard and may for instance not enter certain restricted ar-
eas. One reason for a vessel being an environmental hazard is that it
has some chemical substances loaded. We could model this using LP
as:

env hazard ← chemicals

The problem is that the model actually expresses that in case we know
the vessel has chemicals loaded it certainly is an environmental haz-
ard and otherwise it is certainly not, using the CWA. Clearly, there
are vessels with chemicals which are no environmental hazard, for
instance because the amount is not significant, and ships without
chemicals on board which still are an environmental hazard.

2.2 Modal logic

The idea of modal logics is to lift the restrictions that propositional
statements are certainly true or false, by including operators that ex-
press modalities. Several practical implementations of programming
languages based on modal logic are available [14]. There are differ-
ent ways to define and interpret those modalities, but we restrict to
classical alethic modalities, which express that something is possibly
(♦) or necessarily true (�).

Example 2. Example 1 can be made more precise using modal op-
erators. For example, we could model the fact that having chemicals
loaded makes it possible that the vessel is an environmental hazard
with:

♦env hazard ← chemicals

However, using the CWA, this rule alone implies that if the vessel
has no chemicals on board, then it is not an environmental hazard.
While we could try to sum up all the reasons for a vessel being an
environmental hazard, it is a reasonable assumption that in reality
we can never observe or even know all of those reasons. A possible
solution is adding the rule which states that it is always possibly true
that a vessel is an environmental hazard:

♦env hazard ← �

where� denotes true. This is not useful in practice, since these rules
imply that env hazard is possible whether or not the vessel is car-
rying chemicals. The knowledge that chemicals are a risk factor, in-
creasing the likelihood of environmental hazard, cannot be expressed
in the language.

Generally, modal logics can only be used to represent and rea-
son about qualitative uncertainty, whereas the available quantitative
knowledge cannot be used.

2.3 Probabilistic logic programming

Probability theory offers an alternative widely used and well-founded
basis for representing and reasoning with uncertainty. Combining

logic with probability theory is a subject gaining increasing inter-
est and various approaches and their implementations have been de-
veloped. We focus on logic programming extended with probabilities
associated to atoms or rules, for which efficient inference mechanism
are available (see e.g. [7]).

Example 3. To include degrees of uncertainty, we extend Example 2
with probabilities as follows:

0.1: env hazard ← �
0.4: env hazard ← chemicals

This states that the fact that if a vessel has chemicals loaded, then
it will cause an environmental hazard with a probability of 0.4. The
first rule represents other causes we do not model explicitly with a
low probability.

This basic language serves as a basis for the work described in this
paper. The semantics of this language is a variant of Sato’s distribu-
tion semantics [16], which we introduce next.

First, if R is a set of probability-rule pairs, then to each subset
S ⊆ R, a probability is assigned:

PS
def
=

∏

p : (h←b1,...,bn)∈S
p

∏

p : (h←b1,...,bn)∈R\S
1− p (1)

In this paper, we will assume that there are a finite number of ground
terms, which means that we can look upon each program as a propo-
sitional one by replacing all variables by all ground terms. As a result,
there will be a finite number of subsets; however, the approach can be
easily generalised to the full first-order case with an infinite number
of constants, as shown in the original distribution semantics [16].

For each such subset we can determine whether a query q holds
(S |= q) under the least model semantics of logic programming.
Then, the probability of a query q given the rules of a program R is
defined as the sum of the probabilities of all rule subsets for which
the query can be derived:

PR(q)
def
=

∑

S|=q
S⊆R

PS (2)

Example 4. The query env hazard can be derived for the following
subsets of rules in Example 3 assuming chemicals is true:

S1 =
{

0.1: env hazard ← �}

S2 =
{

0.4: env hazard ← chemicals
}

S3 =
{

0.1: env hazard ← �
0.4: env hazard ← chemicals

}

We have the following probabilities: PS1 = 0.1 · (1− 0.4) = 0.06,
PS2 = 0.36 and PS3 = 0.04. Therefore PR(env hazard) = 0.06+
0.36 + 0.04 = 0.46.

A limitation of such probabilistic approaches is that they require
the precise quantification of likelihoods. This is often infeasible, for
instance in domains dealing with very rare events. For instance, esti-
mations of the probability that a vessel without chemicals on board
is an environmental hazard are unreliable, as there are few of such
cases. The consequence is that predictions suggest more precision
than can be provided by the knowledge available, which may lead to
wrong decisions.
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2.4 Imprecise probabilities

Imprecise probability theory is a generalisation of probability theory,
which allows to express different levels of ignorance regarding the
likelihoods of events. There are different approaches with varying
expressiveness [18]. In this paper we follow the approach of using
sets of probability distributions, called credal sets. In the remainder,
we only deal with binary logic statements and convex credal sets,
which makes it possible to denote and define credal sets in terms
of probability intervals. For instance, this allows to express that the
probability that a ship is an environmental hazard is in the interval
[0.3, 0.6]. In this way, we can differentiate between cases in which
the best decision can be made based on the available knowledge and
cases more knowledge is required to take the optimal decision.

3 IMPRECISE PROBABILISTIC HORN
CLAUSE LOGIC

We introduce the idea of the language and then formally develop its
semantics.

3.1 Basic idea

The basic idea of the language is to extend logic programming with
probability interval annotations, such as probabilistic logic program-
ming extends logic programming with point probabilities. Our lan-
guage supports two possible interpretations of rules as p : h ←
b1, . . . , bn with p a probability interval, which can be closed, open,
or half-closed. We refer to those different interpretations as differ-
ent kinds of imprecisions, rule-imprecisions and head-imprecisions,
which come into play when there are multiple rules with the
same head. Formally, we say an imprecise probabilistic horn clause
logic (IPHL) program P = (RR,RH), where RR models rule-
imprecisions and RH models head-imprecisions. The heads occur-
ring in RR and RH are disjoint.

Rules in RR are denoted by p : (h← b1, . . . , bn) with p a proba-
bility interval. The interpretation of these rules is that the probability
that b1, . . . , bn leads to h is in p, which corresponds to the semantics
of precise probabilistic programming as given in Section 2.3. Multi-
ple rules with the same head are combined using a noisy-OR operator
for probability intervals.

Example 5. Consider an imprecise version of Example 3:

[0.05, 0.15] : (env hazard ← �)
[0.4, 0.6] : (env hazard ← chemicals)

This means that carrying chemicals causes a vessel to be an envi-
ronmental hazard with probability between 0.4 and 0.6, while it is
unlikely that other reasons cause a ship to be an environmental haz-
ard.

In case a vessel has no chemicals on board the probability of it
being an environmental hazard is between 0.05 and 0.15. Otherwise,
we consider the probabilities one gets for all possible choices of
probabilities from the intervals given the semantics of point prob-
abilities (Section 2.3). These probabilities are within the interval
[0.43, 0.66].

Rules in RH are denoted by (p : h) ← b1, . . . , bn. As indicated
by the brackets, in this case, the probability interval only applies
to the head. The rules are interpreted as follows: in case b1, . . . , bn
holds the probability of h is in p. This means that rules do not repre-
sent independent causes for the head, but conditions under which the

knowledge about the head’s probability becomes more precise. If no
rule applies, there is complete ignorance about the head’s probabil-
ity, i.e. it is in [0.0, 1.0]. While this interpretation makes no sense for
the precise case, it can conveniently express certain kinds of impre-
cise knowledge. Note that this kind of rules can lead to inconsistent
definitions, while the former kind cannot.

Example 6. Suppose we have statistical knowledge about tankers,
for example because all tankers have to register their cargo due to
safety regulations, and can estimate the likelihood of tankers having
chemicals loaded as 0.3. For a random vessel, we do not have that in-
formation, for instance because we do not have data about all ships,
and only express that it is possibly carrying chemicals, we interpret
as the probability interval (0.0, 1.0], i.e. the probability is greater
0.0. We can model this with head-imprecisions:

(
(0.0, 1.0] : chemicals

)← �
(
[0.3, 0.3] : chemicals

)← tanker

Given the rules above, if we do not know the ship is a tanker, its
probability of having chemicals on board is in (0.0, 1.0]. In the case
it is a tanker it is in (0.0, 1.0] and in [0.3, 0.3], which means it is in
(0.0, 1.0] ∩ [0.3, 0.3] = [0.3, 0.3].

3.2 Qualitative interpretation

Given the basic language defined above, we can give various intervals
a qualitative interpretation. For example, special cases of intervals
include determinism ([0.0, 0.0] and [1.0, 1.0]), complete ignorance
as in 3-valued logics ([0.0, 1.0]) and precise probabilities ([p, p] with
p some probability).

IPHL can also be seen as a basic language to define various modal-
ities in terms of probability intervals. For example, notice that the
interval [1.0, 1.0] corresponds to the modality that something is nec-
essarily true: �. Furthermore, the modality ♦ expressing that some
statement is possible, in its least strict interpretation, means that the
probability is greater than 0.0, i.e. it is in the interval (0.0, 1.0].
Analogously one could introduce the modality ♦¬ as the interval
[0.0, 1.0). One could however more carefully only consider state-
ments possible in case their probability is above a certain threshold
and define for instance ♦0.05 as (0.05, 1.0]. One could also introduce
linguistic modalities, for instance unlikely as [0.05, 0.15]. Note that
in order to differentiate between complete ignorance ([0.0, 1.0]) and
possibility ((0.0, 1.0]) the distinction between open and closed in-
tervals is necessary, which cannot be made in common imprecise
formalisms as credal networks [5].

Similar to a qualitative specification of the IPHL program,
marginal probability intervals of arbitrary atoms can also be given
a qualitative interpretation, which implies that the language supports
qualitative reasoning as a special case. For instance, a probability in-
terval of [1.0, 1.0] means a particular statement is necessarily true
and a probability greater 0.0 implies that the statement is possible.
Furthermore, given the lowerbound of a probability interval, we may
conclude whether or not the probability is possibly or necessarily
larger than a given threshold. Finally, one can also qualitatively com-
pare the likelihood of two statements, for instance in case the prob-
ability intervals of two statements are disjoint, one can determine
which one is more likely than the other.

3.3 Semantics

In accordance with probabilistic logics programming, the semantics
of IPHL programs is defined in terms of the marginal probability
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intervals of arbitrary query atoms. This semantics is defined incre-
mentally, by first extending the semantics for precise logic programs
given in Section 2.3 for rules with rule-imprecision. Then, we also
show how to deal with head-imprecisions.

3.3.1 Rules with rule-imprecision

We first develop a semantics assuming the program only consists
of rules with rule-imprecision. The semantics of rules with rule-
imprecision is defined in terms of a set of programs obtained by re-
placing the intervals with point probabilities. Let R be the set of all
programs where each rule p : (h← b1, . . . , bn) from RR is replaced
by p : (h ← b1, . . . , bn) such that p ∈ p. In other words, we con-
sider all programs for all possible choices of probabilities for each
interval.

Example 7. The precise program of Example 3 is one example of an
element ofR given the imprecise program of Example 5.

We can then define the probability range of a query q given a pro-
gram as:

P (q)
def∈ {PR(q) | R ∈ R} (3)

where PR(q) is defined as in (2). This set of probabilities is convex
and can therefore be expressed as interval.

Example 8. For Example 5 we get P (env hazard) ∈ [0.05, 0.15],
since there is no rule with head chemicals its probability is 0.0 and
the second rule never applies. In case we assume we know the vessel
is carrying chemical and add [1.0, 1.0] : (chemicals ← �) to the
rules, the probability is in [0.43, 0.66].

3.3.2 Rules with head-imprecision

Next, we extend the semantics with head-imprecisions. Probability
intervals on heads have a different characteristic as probability inter-
vals on rules. Head-imprecisions can be looked upon as constraints
that exclude programs for which the probability distribution does not
obey the specified bounds. Therefore, we first generate rules allow-
ing for all possible probabilities and then enforce the constraints on
the set of programs.

Example 9. As example we use the following program, which is a
combination of the rules of Examples 5 and 6:

RR =
{

[0.05, 0.15] : (env hazard ← �)
[0.4 , 0.6 ] : (env hazard ← chemicals)

}

RH =
{ (

(0.0 , 1.0 ] : chemicals
)← �

(
[0.3 , 0.3 ] : chemicals

)← tanker
}

To allow all possible probabilities for rules with head-imprecision,
we add for each head h occurring in the rules RH a rule
[0.0, 1.0] : (h← �) to RR and call the resulting set of rules R′R.

Example 10. For the above example we get the following trans-
formed set of rules:

R′R =
{

[0.05, 0.15] : (env hazard ← �)
(0.4 , 0.6 ] : (env hazard ← chemicals)

[0.0 , 1.0 ] : (chemicals ← �) }

We can now consider a set of programsR with point probabilities
generated by R′R, under the semantics of rule-imprecision. To in-
corporate the constraints given by the probability intervals on heads,
we define a set of programs R′, by including only those programs
obeying all constraints given by RH :

R′ def= {R ∈ R | ∀R ∈ RH : obeys(R, R)} (4)

where obeys
(
R, (p : h)← b1, . . . , bn

)
= PR(h | b1, . . . , bn) ∈ p.

Example 11. Consider the rules with head-imprecision of Exam-
ple 9. The restricted set of rulesR′ given those constraints is:

R′ = {R ∈ R |PR(chemicals | tanker) = 0.3∧
0 < PR(chemicals) ≤ 1}

In case R′ becomes the empty set, the entire program is called
inconsistent. Otherwise, the probability of a query q is defined as in
Eq. (3) usingR′ instead ofR.

4 INFERENCE

In this section, an inference mechanism is introduced which trans-
lates the problem of computing a bound to a precise probabilistic
inference problem without changing the complexity of the problem.
We only deal with exact inference, as approximate inference could
change the qualitative nature of the answer. For instance, there is
a qualitative difference of a probability greater zero and greater or
equal to zero, which cannot be made by sampling algorithms. Sim-
ilarly to the semantics, we introduce the inference approach incre-
mentally, starting with point probabilities. Therefore, first, we briefly
discuss probabilistic inference by WMC.

4.1 Probabilistic Inference by Weighted Model
Counting

Various inference approaches have been proposed to exploit the
structure of probabilistic inference problems. We focus on perform-
ing probabilistic inference by translation to a WMC problem, which
has been shown to be an efficient inference method for probabilistic
logic programming [7]. In contrast to other approaches, WMC not
only exploits topological structure, but also local structure as deter-
minism and context-specific independence.

The problem of model counting is to find the number of models
of a propositional knowledge base. WMC is a straightforward gen-
eralisation of the problem, where each model has a weight. Those
weights are defined in terms of weights attached to the literals. The
weight of a model is the product of the weights of all literals in-
cluded. In the following we denote the weight of a literal l with W (l)
and the weighted model count of a weighted knowledge base Δ with
WMC (Δ).

4.2 Rules with point probabilities

WMC is defined for propositional knowledge bases without the
CWA assumption. We therefore translate the rules to propositional
logic and make the heads equivalent to the combination of all rules
defining it to capture the CWA. This is known as Clark’s comple-
tion [4] and a similar approach for probabilistic inference it taken by
Problog [7].

Probabilities are added by introducing auxiliary atoms for each
rule. So in the first step each rule R = p : (h ← b1, . . . , bn) is
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Algorithm 1: Imprecise inference (lower bound)
Input: Query q and IPHL program (RR,RH)
Result: The lower probability bound of q

1 R = ∅
2 for

(
p : (h← b1, . . . , bn)

) ∈ RR

3 R← �

(
lower(p) : (h← b1, . . . , bn)

)

4 for all heads h in RH

5 for {b1, . . . , bn} ⊆ B, with B all body-atoms defining h
6 R← �

(
subset lowerh(b1, . . . , bn) : (h← b1, . . . , bn)

)

7 return WMC (ΔR ∧ q)

translated to h ← auxR, b1, . . . , bn, before Clark’s completion is
performed. The weight p is assigned to auxR and 1 − p to its nega-
tion. All other literals get weight 1. We denote the resulting weighted
knowledge base with ΔR. The probability can then be computed as
PR(q) = WMC (ΔR ∧ q).

Example 12. Consider the rules of Example 3 and the assumption
the vessel is carrying chemicals (1.0: chemicals ← �). The result-
ing weighted knowledge base ΔR is:

(
env hazard ↔ aux1 ∨ (aux2 ∧ chemicals)

) ∧ chemicals

Note that for brevity we added chemicals as fact instead of mak-
ing it equivalent to an auxiliary literal with weight 1.0. The weights
are: W (aux1 ) = 0.1, W (¬aux 1) = 0.9, W (aux2 ) = 0.4,
W (¬aux2) = 0.6, W (env hazard) = W (¬env hazard) = 1.0,
W (chemicals) = 1.0 and W (¬chemicals) = 0.0.

To compute the probability of env hazard , we consider the mod-
els of the knowledge base in which env hazard holds, with corre-
sponding weights:

0.04: env hazard , aux1, aux2, chemicals

0.06: env hazard , aux1,¬aux2, chemicals

0.36: env hazard ,¬aux1, aux2, chemicals

The sum of those weights is 0.46, which corresponds to the probabil-
ity according to the semantic definition as illustrated in Example 4.

4.3 Imprecise inference

Given the fact that we only make use of intervals, the set of proba-
bilities of a query is always convex. We can therefore represent the
semantically infinite set of programs R by its extreme points. We
denote the lower and upper bounds of the result probability as P (q)
and P (q) respectively. The basic idea of the inference algorithm is
to translate the problem to a precise probabilistic inference problem,
for both bounds. An algorithm for the lower bound is given in Algo-
rithm 1.

The fact that we use horn clauses, thus bodies consist of positive
atoms only, makes it possible to locally determine the extreme points
of each rule independent of the query. In fact, taking the minimum or
maximum probability for all rules determines the minimal or maxi-
mal probability for all possible queries, respectively. This is the key
insight which makes the inference problem tractable: without the re-
striction to horn clauses, the combination of all rules’ extreme points
would have to be considered. This requires an exponential number
of precise probabilistic programs which heavily increases the com-
plexity of the inference problem. Therefore, for the rules with rule-
imprecision the translation is straightforward: for each rule we just
use its lower bound probability (Lines 2, 3).

In order to represent open as well as closed intervals, we make
use of a calculus for hyperreal numbers [8]. For instance, the in-
terval (0.2, 0.7) can be represented by the extreme points 0.2 + d
and 0.7− d, where d represents an infinitesimal number. WMC can
straightforwardly be extended with hyperreal weights, by making use
of addition and multiplication as defined for the hyperreal calculus.
In Algorithm 1, the function lower(p), is defined as minp in case
the lower bound is closed and supp+ d otherwise.

Example 13. Consider the rules of Example 5. For each query the
lower bound of the probability is the probability given the following
program:

0.05: (env hazard ← �)
0.4 : (env hazard ← chemicals)

Theorem 1. For any IPHL program P = (RR,∅), the computa-
tional complexity of computing any query is the same as for a prob-
abilistic logic program consisting of RR where all intervals are re-
placed by point probabilities.

The theorem obviously holds as replacing imprecisions with point
probabilities is a simple linear transformation. In practice, inference
could even be less expensive if the extremes of some intervals are 0.0
and 1.0, introducing additional determinism, which can be exploited
by WMC algorithms.

The translation of rules with head-imprecision is more involved
(Lines 4 – 6). For each head h (Line 4) we have to consider all cases
of truth assignments to the atoms in the bodies of the rules defining
h (Line 5). Each of those cases corresponds to a subset B of those
atoms. We can define the probability interval in which h must be
in that case by the intersection of all intervals of rules which apply
given the set of atoms:

Ph(B) =
⋂

{b1,...,bn}⊆B
(p : h)←b1,...,bn∈Rh

p (5)

where Rh are all rules with head h. Ph(B) is never the empty set
for consistent programs.

Naively translating to rules with all possible B as body and using
the lower bounds of such intervals, i.e. lower(Ph(B)) : (h ← B),
results in incorrect probabilities, since all rules with a subset of B as
body also contribute to the probability of h in case B holds. To solve
that problem we make use of the property that with increasing cardi-
nality of B, the number of satisfied bodies also increases. Therefore
with increasing cardinality of B the probability is restricted to a more
tight interval, as it is restricted to the intersection of all such rules’
intervals. This implies that the lower bound monotonically increases
with the cardinality of B.

For the correct transformation of the probabilities we use in Line 6
of the algorithm the function subset lower , which computes the cor-
rect probabilities for each subset B. The idea is to consider the prob-
ability already given by the rules corresponding to proper subsets of
B and only add as much probability mass as is needed to get the
desired lower bound of the probability Ph(B):

subset lowerh(B) = 1− 1− lower(Ph(B))∏
B′⊂B

1− subset lowerh(B′)
(6)

where the denominator is 1 for the empty set.

Theorem 2. For any IPHL P and any query q, Algorithm 1 computes
the correct lower probability bound of q, as defined by (3) and (4).
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The proof of this theorem is not provided due to lack of space.

Example 14. The rules for chemicals in Example 9 are translated
to:

(d: chemicals)← �
(1− (0.7/(1− d)) : chemicals)← tanker

Note that in case tanker holds, the probability of chemicals accord-
ing to (2) is: (1−(0.7/(1−d)))d+(0.7/(1−d))d+(1−(0.7/(1−
d)))(1 − d) = 0.3, which is equal to the lower bound for that case
defined by RH .

A similar transformation of rules with head-imprecision is incor-
rect for the upper bound, because it decreases with larger cardinality
of B and additional rules of which the body holds can only increase,
but not decrease, the probability. This problem is solved by actually
computing the lower bound of the query’s negation and computing
the upper bound of the original query as P (q) = 1 − P (¬q). To
compute the lower bound of the negation we transform the knowl-
edge base, such that each atom actually represents its negation. This
can be achieved by just swapping ∧ and ∨ in Clark’s completion and
use as weight for auxiliary atoms 1− upper(p).

To characterize the computational complexity of a full IPHL pro-
gram, it makes no sense to speak about a corresponding precise prob-
abilistic logic program for IPHLs with head-impressions as in Theo-
rem 1, since it makes no sense to replace all probabilities with point
probabilities for such rules. However, we still get the following guar-
antee in terms of complexity compared to programs with a similar
structure.

Theorem 3. Inference for a IPHL programs has the same com-
plexity in terms of the treewidth, as a corresponding precise prob-
abilistic logic program, where each head is defined in terms of the
same body atoms as in the IPHL program. That is, the complexity
is O(n2w), where n is the number of variables and w the program
CNF’s treewidth.

Proof. This follows from the complexity of WMC [3] and the fact
that the translation in Algorithm 1 does not change the program’s
treewidth.

5 RELATED WORK

Several approaches have been proposed to combine probability the-
ory and qualitative modalities. One example is the logic of Bac-
chus [1], which makes it possible to put constraints on probabili-
ties as ‘the agent believes ϕ with probability greater than 0.5’. The
connection to imprecise probability theory is not made in this work.
There are also approaches allowing for higher-order probabilistic
statements [9], such as ‘the probability that the probability of ϕ is
larger 0.5 is 0.9’. This work is mainly theoretical in nature and effi-
cient inference mechanisms are not provided.

The epistemic logic approaches of Milch and Koller [13] and Shi-
razi and Amir [17], deal with beliefs of multiple agents and also
higher-order beliefs about beliefs, and therefore have a different goal
as our approach. They provide mechanisms for exact inference, based
on Bayesian networks. However, this probabilistic inference is only
a subroutine of the complete inference method whereas the complete
inference is strictly more expensive than ordinary probabilistic infer-
ence.

There is some work on inference for imprecise formalisms such as
locally defined credal networks (LDCNs) [5]. All exact approaches,

such as [2, 6], suffer from the worst-case complexity of the prob-
lem. We do not discuss approximate methods here, since they are not
suited for qualitative inference, as we discussed before.

6 CONCLUSIONS

We introduced an imprecise probabilistic horn clause logic language,
which makes it possible to express and unambiguously define qual-
itative statements with varying level of precision, with as special
cases complete ignorance, point probabilities and determinism. This
is made possible by a solid semantic foundation based on imprecise
probability theory. We have furthermore shown that it is possible to
provide inference for an imprecise language, which is as expensive
as its precise counterpart, while in general imprecise inference prob-
lems are more complex. Finally, the approach shows that it is pos-
sible to employ state-of-the-art probabilistic inference methods for
imprecise problems.
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