ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and I1OS Press.

57

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-57

Effective and Robust Natural Language Understanding
for Human-Robot Interaction

Emanuele Bastianelli(}), Giuseppe Castellucci(®), Danilo Croce() , Roberto Basili(), Daniele Nardi(*)
(1) DIL, (f) DICIL, (o) DIE - University of Rome Tor Vergata - Rome, Italy

{bastianelli,castellucci}@ing.uniroma2.it,

{basili,croce}@info.uniroma2.it

(%) DIAG - Sapienza University of Rome - Rome, Italy

nardi@dis.uniromal.it

Abstract. Robots are slowly becoming part of everyday life, as
they are being marketed for commercial applications (viz. telepres-
ence, cleaning or entertainment). Thus, the ability to interact with
non-expert users is becoming a key requirement. Even if user ut-
terances can be efficiently recognized and transcribed by Automatic
Speech Recognition systems, several issues arise in translating them
into suitable robotic actions. In this paper, we will discuss both ap-
proaches providing two existing Natural Language Understanding
workflows for Human Robot Interaction. First, we discuss a gram-
mar based approach: it is based on grammars thus recognizing a re-
stricted set of commands. Then, a data driven approach, based on a
free-from speech recognizer and a statistical semantic parser, is dis-
cussed. The main advantages of both approaches are discussed, also
from an engineering perspective, i.e. considering the effort of realiz-
ing HRI systems, as well as their reusability and robustness. An em-
pirical evaluation of the proposed approaches is carried out on several
datasets, in order to understand performances and identify possible
improvements towards the design of NLP components in HRI.

1 Natural Language Processing and Human Robot
Interaction

Human Robot Interaction (HRI) is a novel research field aiming at
providing robots with the ability of interacting in the most similar
way the humans do. Such ability has become a key issue since robots
are nowadays attracting the interesting of commercial and public ap-
plications, e.g. viz. telepresence, cleaning or entertainment. In this
context, Natural Language HRI studies the interaction between hu-
mans and robots focusing on natural language. Ideally, robots should
be able to solve human language references to the real world appli-
cation contexts (e.g. find the place of the can in a map against the
phrase bring the can in the trash bin) or in abstract dimensions (e.g.
solving anaphoric references).

Natural Language Processing techniques can be heavily applied
in this context. Even if Automatic Speech Recognition (ASR) sys-
tems can be used to recognize user utterances, several issues arise
in obtaining the suitable mapping between language and the relative
robotic actions. First, we need to capture the intended meaning of the
utterance, and then map it into robot-specific commands. This task,
that is filling the gap between the robot world representation and the
linguistic information, is a typical form of semantic parsing. Seman-
tics is the crucial support for grounding linguistic expressions into
objects, as they are represented in the robot set of beliefs (i.e. robot

knowledge). Moreover, in HRI, different scenarios need to be con-
sidered. In some situations, e.g. rescue robotic tasks, the precision is
crucial and no command misunderstanding is allowed.

Recently, works in the interpretation of natural language instruc-
tions for robots in controlled environments have been focused on
specific subsets of the human language. The interpretation process
is mainly carried out through the adoption of specific grammars that
describe the human language allowed. It gives, for example, a robotic
platform the capability to speak about routes and navigation across
maps [18, 7]. Grammar based approaches lead often to very powerful
and formalized systems that are, at the same time, very constrained,
and focused onto a limited domain. However, the development of
wide coverage grammars require skilled profiles and may be very
expensive.

On the opposite, in more complex and less restricted scenarios,
such as house serving tasks, people do not follow a-priori known
subsets of linguistic expressions. This requires robust command un-
derstanding processes, in order to face the flexibility of natural lan-
guage and the use of more general approaches, able to adjust the
language models through observations. In many Natural Language
Processing tasks, where robustness and domain adaptation are cru-
cial, e.g. Question Answering as discussed in [13], methods based
on Statistical Learning (SL) theory have been successfully applied.
They allow to cover more natural language phenomena with respect
to rule based approaches. This paradigm has been applied in the HRI
field by researches with different background, e.g. Robotics or NLP
[9, 16, 21]. Language learning systems usually generalize linguis-
tic observations, i.e. annotated examples, into rules and patterns that
are statistical models of higher level semantic inferences. As a re-
sult, these approaches aim at shifting the attention from the explicit
definition of the system behavior, e.g. the definition of large scale
knowledge bases, to the characterization of the expected behavior of
the system through the manual development of realistic examples.
This is very appealing from an engineering perspective as complex
systems can be specialized by people that are only expert of the tar-
geted domain. In this paper, we will discuss both approaches pro-
viding two existing Natural Language Understanding workflows for
HRI, and attempting to answer to the following research questions:

e how are the performances of the two approaches affected by the
open scenarios that are typical of HRI in service robotics? how are
they adaptive to the language and how are they robust to the noise
in speech acquisition?

e how do the approaches compare in terms of ease of implementa-
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tion and extensibility?

e which improvements should be addressed in order to obtain better
performances?

We investigate the above issues by discussing two different archi-
tecture for HRI command parsing. First, we discuss a grammar based
approach: it is based on grammars developed in the context of the
Speaky For Robots' [8] project. Then, a modular approach, based
on a free-from speech recognizer and a statistical semantic parser
presented in [10], is discussed. An empirical evaluation of the pro-
posed solutions is carried out on several datasets, each characterizing
a different scenario as well as command complexity. First, we will
measure the quality of the command recognition capability of both
architectures, to evaluate the respective robustness. Then the modu-
lar workflow will be evaluated by using general purpose and publicly
available resource, as well as by extending the training material with
ad-hoc examples. Finally, the modular processing chain will be un-
folded in order to measure the specific sources of error.

In the rest of the paper, Section 2 presents previous works about
NL for HRI. Section 3 discusses the proposed framework. In Section
4 the experimental evaluation is presented, while Section 5 discusses
the possible future directions of this work.

2 Existing NLU approaches for HRI

The ability of executing a command given by a user depends directly
on the robot capability of understanding the human language. A se-
quence of non-trivial steps are required to obtain the actual action
to perform. The audio signals of user utterances must first be tran-
scribed into text; then this is analyzed at different linguistic levels.

Regarding the Speech Processing stage, grammar based ap-
proaches, as discussed in [6, 7, 18] can be applied. The grammars
define the controlled language handled by the system (i.e. all the rec-
ognizable sentences). With a grammar-based specification of the lan-
guage, it is possible to attach semantic actions to individual rules
and the semantic interpretation of the target commands is built via
the composition of the semantic actions, as in [6]. Grammar-based
Speech Recognition has been adopted also in [4] in the context of
a Human-Augmented Mapping task. In this work, recognition gram-
mars are augmented with semantic attachments, enabling the compo-
sition of a linguistically motivated representation of the commands
expressed as output of the recognizer. Where the speech transcrip-
tion is already provided, grammars have been also used to parse the
admissible sentences, as in [12]. Here, a general POS-tagger is ap-
plied on the input string; then, the grammar is used to identify the
proper POS sequences, defining the subset of possible recognized
commands according to the tagging. Grammars are the traditional
NLP approaches to text analysis aimed at driving the semantic in-
terpretations of user utterances. NLP approaches based on formal
languages have thus been widely employed in many HRI systems,
such as the semantic parsing proposed in [7], where a meaning rep-
resentation based on Discourse Representation Structures [11] is ob-
tained directly from the speech recognition phase. Similarly, in [18],
Combinatory Categorial Grammar (CCG) are used to produce a rep-
resentation in terms of Hybrid Logics Dependency Semantics [17]
logic form.

Grammar based approaches usually guarantee good performances
(especially high precision) over the natural language fragment they
have been designed for. However, general HRI systems tend to face
a wider range of linguistic phenomena, and need to exhibit high flex-
ibility and robustness. In the last decade, Statistical Learning (SL)

1 http://labrococo.dis.uniromal.it/?g=s4r

techniques have been successfully applied to NLP, and a set of gen-
eral purpose robust technologies have been developed, as discussed
in [19]. Free-form speech recognition engines, syntactic as well as
semantic parsers, based on different SL approaches are today avail-
able. Moreover, their application in different NL processing chains
for complex tasks makes them suitable for application also in HRI.
The work by Chen and Mooney [9] is an example of this approach,
dealing with a simulated robotic system able to follow route instruc-
tions in a virtual environment. A NLP processing chain is built, that
learns how to map commands in the corresponding verb-argument
structure using String Kernel-based SVMs. The work in [23] pro-
poses a system that learns to follow NL-directions for navigation,
by apprenticeship from routes through a map paired with English
descriptions. A reinforcement learning algorithm is applied to deter-
mine what portions of the language describe which aspects of the
route. In [16] the problem of executing natural language directions
is formalized through Spatial Description Clauses (SDCs), a struc-
ture that can hold the result of the spatial semantic parsing in terms
of spatial roles. The SDCs are extracted from the text using Condi-
tional Random Fields that exploit grammatical information obtained
after a POS-tagging process. The same representation is employed
in [21], where the probabilistic graphical model theory is applied to
parse each instruction into a structure called Generalized Grounding
Graph (G®). Here SDCs are the base component of the more general
structure of the G3, representing the semantic and syntactic informa-
tion of the spoken sentence.

In order to address the research question arising in the develop-
ment of a spoken language interface in the context of HRI, in the
paper, we evaluate two independent processing frameworks: one ded-
icated grammar-based system and a second, general approach, based
on a cascade of existing and data-driven NLP components. The two
systems use different technologies for speech recognition and lin-
guistic analysis, while sharing the same semantic representation for
encoding user commands, inspired by Fillmore’s Frame semantics
[14]. This enables us to investigate the reuse of available and domain-
independent resources for training, such as FrameNet [2]. Accuracy
of the resulting interpretation process is thus studied across a wide
range of phenomena in HRI, whose coverage is critical and may be
improved by general purpose (off-the-shelf) NLP tools.

3 Understanding NL. Commands

In this section, design of our processing frameworks related to the
target robotic platform and the application scenario are first pre-
sented, then a detailed description of the two systems and the design
of their specific workflows is provided. Existing methodological re-
sults and tools can be used to acquire useful semantic representations
to understand robot commands. Let us consider a house environment
where a robot receives vocal instructions. First, such a command can
be expressed just in agreement with existing linguistic and cognitive
theories. Moreover, aspects of the obtained representation can be fur-
ther specified to better reflect the targeted human instructions of the
robotic environment. In this work, we use Frames Semantics [14]
as a meaning representation language for the different commands. It
generalizes the actions or, more generally, the agent experiences into
Semantic Frames. Each frame corresponds to a (physical) situation
(e.g. a general concept or an action/event), and it is fully expressed
in terms of its participating entities, i.e. its semantic arguments. Ar-
guments play specific roles with respect to the situation described by
the frame, so that a full (i.e. understood) situation requires a core set
of arguments to be all recognized.
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The reference to general theories is also interesting in an empir-
ical perspective: large scale resources are usually associated with
them (e.g. annotated corpora) so that a cost-effective acquisition of
data-driven models is enabled. In the FrameNet corpus [2] lexical en-
tries (e.g. verbs, nouns and adjectives) are linked to Frames, and the
arguments, expressing the participants in the underlying event, are
defined by different Frame Elements (i.e. the semantic arguments).
FrameNet provides an extensive collection of frames associated to
a large scale annotated corpus of 150k sentences. For example, ac-
cording to the FrameNet paradigm, the sentence “Bring the can in the
trash bin” is annotated as follows: [bring]ringing [the canlrheme
[in the trash bin]Goq: Where BRINGING is the communicated event,
and its frame elements THEME and GOAL are both detected and com-
piled into the input command for the robot.

Table 1. Semantic Frames investigated in a home environment

ATTACHING CLOSURE PERCEPTION_ACTIVE
BEING_IN_CATEGORY ENTERING PLACING
BEING_LOCATED FOLLOWING RELEASING
BRINGING GIVING SEARCHING
CHANGE_DIRECTION INSPECTING TAKING
CHANGE_OPERATIONAL_STATE MOTION

As the set of possible commands corresponds to what the targeted
real robot can accomplish in the home environment [8], we can ef-
fectively proceed by mapping each command to a semantic frame,
i.e. conveniently selected among the FrameNet frame system. This
selected subset of FrameNet-inspired frames is shown in Table 1,
where each frame corresponds to a set of robot commands. Through
a static mapping from the frame semantics to the corresponding syn-
tactic structure, also the syntax for every commands is made avail-
able.

The final target of the interpretation process of the utterance “bring
the can in the trash bin” (whatever NLU framework is applied) is
thus the semantic analysis and the extraction of the command:

BRINGING(theme : [the,can],goal : [in, the, trash, bin])

In the experimental scenario, we consider a wheeled robot capable
of moving freely in a known environment (i.e. the related map is pre-
viously acquired). The two NLP chains both generate the above final
command and submit it to the robot, that makes use of its knowledge
about the allowed frame structures for the grounding and planning
stages. The environment is represented in the robot as a Semantic
Map (SM) [4] describing accessible rooms and objects. It also con-
tains terminological facts defining spatial relations between objects.
It is worth noting that the selected frames derives from the analysis
made for the Speaky for Robots project, that defines a set of actions a
general house service robot could perform. For this reason, since our
robot is not provided with any gripper, we consider just the implied
movement actions for those frames that foresee grasping or other ca-
pabilities. As a consequence, the bringing action will correspond for
our robot into the motion from its actual position to the position of
the (known) trash bin object of the scene. Accordingly, the selected
commands may refer to actions that are complex or still ambiguous
from a robotic point of view. The final grounding (e.g. computing
the destination coordinates) is realized by interpreting the objects re-
ferred by the related semantic role (i.e. the GOAL role in most cases):
a Prolog interpreter translates the command into a logical form and
execute it against the KB. More details about the two workflows are
hereafter provided.

3.1 A grammar-based workflow

The system based on speech recognition grammars is an extension
of the one presented in [8] and lately improved in [4]. It relies on a
speech engine whose grammar is extended according to the Frame
Semantics.

From Voice to Semantic Interpretation. The first process is speech
recognition whose module yields a parse tree that encodes both syn-
tactic and semantic information based on FrameNet. The tree corre-
sponds to the grammar rules activated during the recognition, aug-
mented through post-processing by an instantiation of the corre-
sponding semantic frame. The compilation of the suitable robot com-
mand proceeds by visiting the tree and mapping each recognized
frame: this final command is then interpreted by the robot.

Jointly modeling the syntactic-semantic phenomena. The recog-
nition grammar targets the syntactic and semantic phenomena that
arise in the typical sentences of home HRI applications. In prelimi-
nary experimental stages, these sentences have been gathered by di-
rect interviews to the robot users, i.e. people well aware of the set of
the actions executable by the robot. The resulting grammar encodes
a set of imperative and descriptive commands in a verb-arguments
structure. Each verb is retained as it directly evokes a frame, and each
(syntactic) verb argument corresponds to a semantic argument. The
lexicon of arguments is semantically characterized, as words playing
argument roles are constrained by one or more semantic types. For
example, for the semantic argument THEME of BRINGING only the
type Transportable Object is allowed so that a subset of words re-
ferring to things transportable for the robots (e.g. can, mobile phone,
bottle) are accepted. Figure 1 shows a segment of the grammar de-
fined for BRINGING.

Moreover, wildcards element are used (i.e. terminal symbols that
enable the grammar to skip irrelevant segments). This increases the
grammar flexibility against phenomena such “could you please bring
the can in the trash bin” vs. “bring the can in the trash bin”, from
which the same frame is derived.

Bringing — Target Theme Goal |
Target — bring | carry |

Theme — Transportable_objects
Transportable_objects — can | book | bottle |

Figure 1. A subset of the BRINGING grammar

The grammar allows the designer to fully control the supported
language and to constrain the commands handled by the robot. How-
ever, it requires ad hoc rules, limiting the use of heterogeneous lin-
guistic phenomena.

3.2 A general purpose and modular workflow

As shown in Figure 2, a general workflow can be devised from exist-
ing tools, such as a free-form ASR, generic morpho-syntactic parser
and statistical semantic parser. In the rest of this section, a specific
chain is discussed in terms of its three main modules.

Voice to Text Transcription. A free-form speech-to-text engine is
employed, i.e. an engine mainly based on statistical analysis of very
large corpora. We used the official Google speech APIs of an Android
environment to obtain the transcriptions of an audio dataset.
Grammatical Analysis. The last two decades of NLP research have
seen the proliferation of tools and resources that reached a significant
maturity after 90’s. We decided to perform a morpho-syntactic anal-
ysis with a State-of-the-Art natural language parser, i.e. the Stanford
Core NLP platform?. It includes tokenization, POS tagging, Named

2 http://nlp.stanford.edu/software/corenlp.shtml
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Figure 2. The free-form workflow

Entity Recognition as well as parsing and it is mostly based on statis-
tical language processing models. Information extracted by the NL
Parser, e.g. the grammatical category of a word (Part of Speech),
are crucial for the later stages, in order to achieve a good command
recognition accuracy.

Extracting commands through Semantic Arguments. Semantic
Role Labeling is carried out through Babel, a general purpose sys-
tem [10] based on FrameNet. The Semantic Parser realized by the
Babel platform performs three main tasks: Frame Prediction (FP),
Boundary Detection (BD) and Argument Classification (AC). Given
a sentence s, FP is the task responsible of recognizing the type of
the intended action, reflected by the event evoked by s. A multi-
classification schema, based on the SV M™u#elass approach by
[15], is applied over the selected ad-hoc morpho-syntactic features,
e.g. Part-of-Speech sequences. BD is the task of recognizing the
spans of the arguments of an action, i.e. what we call its semantic
arguments. From a computational perspective, we model this prob-
lem as the recognition of the boundaries of the arguments involved
in a given sentence and frame. For example, with respect to “bring
the can in the trash bin” and the frame BRINGING, the BD module
should recognize the boundaries bring [the can] [in the trash bin]
as two different arguments by identifying the start and the end of
each chunk. Here, a different classification schema has been adopted,
based on a Markovian formulation of a structured Support Vector
Machine, i.e. SV M"™™ proposed in [1]. The SV M"™™ algorithm
learns a model isomorphic to a k-order Hidden Markov Model. The
BD phase is then modeled as a sequence labeling task over sentence
observations, such as lexical properties (i.e. words) and syntactic
properties (e.g. Part-of-Speech tags). The classifier associates a spe-
cial tag to each word in the sentence, suggesting that it is a Begin (B),
Internal (I) or Outer (O) token with respect to the argument bound-
aries: a correct labeling of the example sentence is represented as O-
bring B-the I-can B-in I-the I-trash I-bin. Finally, the AC task aims
at assigning a label to each recognized span from the BD phase, e.g.
THEME to the can and Goal to in the trash bin. Again, the structured
formulation of SV M"™™ is applied with different target classes, i.e.
the role labels.

With respect to the previous grammar-based workflow, this solu-
tion requires labeled data for the final system development. However,
the proposed workflow can be plugged in different scenarios, only
adapting the training material: this activity can be accomplished also
from people not aware of the system architecture. The labeled exam-
ples can be directly derived from already existing resources, e.g. the
FrameNet corpus, or can be easily extended with ad-hoc material.

4 Experimental evaluation

An in depth evaluation of the two workflows has been carried out to
address the main research questions posed in Section 1.

4.1 Experimental Setup

Three datasets representing different working conditions have been
employed. Each dataset includes a set of audio recordings paired with
the correct transcriptions. Utterances have been pronounced by dif-
ferent users, so that multiple audio versions of the same sentence are
included. Table 2 reports the number of audio files, sentences and
commands of the three datasets’.

The Grammar Generated (GG) dataset refers to sentences gen-
erated by the grammar used by the grammar-based workflow of Sec-
tion 3.1. Even if all sentences are grammatically and lexically cov-
ered by the grammar, speech imperfections and noise may signifi-
cantly affect limit the quality of the transcription step.

The Speaky 4 Robots Experiment (S4R) dataset contains sen-
tences pronounced by people in the context of the Speaky for Robots
project experiments. Speakers were all aware about the lexicon han-
dled by the grammar. They used free spoken English, including richer
syntactic structures. These commands thus exhibit linguistic phe-
nomena only partially covered by the grammar.

The Robocup (RC) dataset has been gathered during the
Robocup@Home 2013 competition, presented in [24]. A Web por-
tal describing home situations, enriched by images, has been used to
suggest the home scenario: users were asked to input realistic robot
commands. Expressions uttered here exhibit large flexibility in lexi-
cal choices and syntactic structure. This dataset is much more vari-
able representing a realistic application for the two workflows.

The three corpora have been manually labeled with syntactic
(Part-of-Speech tags and dependency trees) as well as semantic (i.e.
Frames and Frame Elements) information, according to the set de-
fined in Table 1. More details about the annotation process can be
found in [5]. The grammar-based workflow follows the experimental
setup discussed in [8]. About 1,67 different argument structures per
frame are modeled in the grammar, through entries such as the ones
shown in Figure 1. The free-form workflow consists in the chain in-
cluding the Google Android ASR*, the CoreNLP 3.3.0 for syntactic
processing and Babel as the SRL system, configured as in [10].

Table 2. The evaluation annotated corpora

#audio files #sentences #commands
GG 137 48 48
S4R 141 96 99
RC 292 177 195

In order to study the performance of the data-driven component of
the free-form workflow (i.e. the SRL system), different experimen-
tal settings, i.e. including (or not) additional training material, have
been employed. In the only FrameNet setting (FN), the SRL system
is only trained on the labeled sentences from the FrameNet corpus
and tested on the HRI corpus (see Table 2). Only examples of frames
appearing in Table 1 and evoked by verbs have been selected, for a
total of 5,162 FrameNet sentences, used for the parameter estimation
through a 5-fold policy. In the Hybrid setting (H), 66% of annotated
examples in each HRI corpus of Table 2 are added to the FrameNet
material for training. In this way a 3-fold evaluation schema is en-
abled: cyclically, three different tests are made on the remaining 33%
of each test corpus. The macro-average achieved over three measures
is thus computed as the final performance. Notice that the Google
API or the CoreNLP processing chain were not re-trained, as the for-
mer was out of our control, while re-training the syntactic parser was
not considered effective, as confirmed by the data in Table 5.

3 A single sentence may contains different commands provided in sequence.
4 Transcription of the datasets has been carried out on February 24th, 2014
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4.2 Evaluating the workflows

In order to address the question “how are the performances of the two
approaches affected by the open scenarios?”’, we evaluated the two
workflows on the task of recognizing the complete robot command
from an audio stream. We expect a robust system to provide good re-
sults across the different conditions, ranging from the restricted GG
dataset, to the more complex S4R and RC ones. We evaluated both
systems on two variants of the task. First, we measure the Action
Recognition (AR) capability, shown in Table 3, as the ability to de-
tect just the command without its potential arguments. In the full
Command Recognition (CR) measure, instead, the command as well
as all its argument are to be exactly recognized, as reported in Table
3. This is a far more complex task, as individual words must be as-
signed to their correct argument and a single error in a word of an ar-
gument transcribed by the ASR may invalidate the recognized com-
mand. The performances are measured through the F1-Measure over
sentences: to the harmonic mean between Precision, i.e. the percent-
age of commands correctly detected by the system®, and the Recall,
i.e. the percentage of commands correctly recognized in the dataset.

The grammar-based approach (the Grammar column) achieves
best results on the GG (F1=0.78) in the AC and full CR (F1=0.42)
tasks. Of course the grammar is accurate in sentences of its own de-
sign domain. However, when the syntactic complexity grows, e.g.
in the S4R dataset, performance drops of the F1 are observed (0.63
and 0.25). The drop is even more noticeable in RC, where richer lex-
ical information was employed. The results are quite different for the
free-form workflow (i.e. columns FN and H). When only FrameNet
(i.e. general resources) is used, performances over the GG corpus
decrease, i.e. 0.62 and 0.18. In S4R results improve, especially in
the CR task, as confirmed by the F1 scores in Table 3. The results
exhibited by the FN setting are noticeable, as only general purpose
resources have been here used. Moreover, when ad-hoc material is
added in the training phase, performances still improve: the H setting
achieves F1 of 0.53 and 0.18 on RC.

Table 3. Recognition performance starting from the audio file

Action Recognition

Grammar FN H

P R Fl1 P R Fl1 P R Fl1

GG 0.80 | 0.77 | 0.78 | 0.86 | 048 | 0.62 | 0.86 | 0.48 | 0.62

S4R | 0.69 | 0.57 | 0.63 | 0.86 | 047 | 0.61 | 0.86 | 0.47 | 0.61

RC 0.21 0.07 | 0.11 079 | 034 | 048 | 0.76 | 041 0.53

Command Recognition

Grammar FN H

P R F1 P R F1 P R F1

GG 0.43 | 041 042 | 025 | 0.14 | 0.18 | 029 | 0.16 | 0.21

S4R | 028 | 023 | 025 | 036 | 0.20 | 026 | 044 | 024 | 0.31

RC 0.04 | 0.02 | 0.02 | 025 | 0.11 | 0.15 | 026 | 0.14 | 0.18

In order to study sources of error in our chain, we measured
the Word Error Rate (WER, as in [20]) of the speech transcription,
as reported in Table 4. It confirms the robustness of the free-form
approach against complexity. In the RC' corpus, the WER of the
grammar-based approach is 0.801 as most of words are wrongly tran-
scribed. The WER of the Google API is 0.362. We also measured the
accuracy of the POS tagging phase (see Table 5), that triggers Babel
SRL. Accuracy of the assigned POS tags is very high for commands,
in line with the results discussed in [22].

5 Notice that both the grammar and the free-form workflow may provide null
answers, i.e. no labeling, in several situations, e.g. when the quality of the
transcription is too low.

Major source of error is the Speech recognition that is amplified
along the chain. Manual inspection of transcriptions revealed that
many, apparently minimal, errors can compromise the entire chain.
In the sentence “bring the paper near the television” transcribed as
“ring the paper near the television”, the main verb is poorly recog-
nized, i.e. ring vs. bring, so that no frame can be recognized.

Table 4. Speech Recognition Table 5. CoreNLP Pos-Tagging

Word Error Rate Accuracy
GramBased | Google Accuracy
GG 0.165 0.176 GG 0.963
S4R 0.434 0.379 S4R 0.946
RC 0.801 0.362 RC 0.951

In order to avoid the bias introduced by the limited performance
of the ASR stage, the semantic parsing chain is evaluated alone pro-
viding gold information as input to every module. Table 6 shows
the results of the AC and the CR tasks of the free-form workflow.
It is worth noticing that a similar evaluation of the grammar based
workflow is not possible as in that case the action and command
are computed jointly during the speech recognition phase. If com-
pared with the previous settings, the F1 score are in general signif-
icantly higher. An interesting result in Table 6 is the fact that the
F1 of the H setting is alway over 0.6 and stable across all corpora.
It is an important finding that addresses the question “how do the
approaches compare in terms of ease of implementation and exten-
sibility?”. The free-form and trainable workflow seems much more
portable across the working conditions, as shown by the F1 results
on the S4R and RC' corpora: these are comparable or higher with
respect to the grammar-based method, although the FN chain makes
no use of domain specific resources. The performance drops of the
grammar-based workflow outside the GG corpus may affects its ap-
plicability. Finally, optimization of the data driven modules allows
the Hybrid settings to outperform the other workflows.

Table 6. Recognition performances from gold standard transcriptions

Action Recognition
FN H
P R F1 P R F1
GG | 0.842 | 0.701 | 0.765 | 0.825 | 0.825 | 0.825
S4R | 0.815 | 0.748 | 0.780 | 0.821 | 0.844 | 0.832
RC 0.838 | 0.629 | 0.719 | 0.926 | 0.912 | 0.919

Full Command Recognition
EN H
P R Fl1 P R Fl1
GG 0.325 | 0.270 | 0.295 | 0.613 | 0.613 | 0.613
S4R | 0496 | 0456 | 0475 | 0.642 | 0.660 | 0.651
RC 0.462 | 0.347 | 0.396 | 0.657 | 0.647 | 0.652

4.3 Measuring the error propagation

In order to address the question “which improvements should be ad-
dressed in order to obtain better performances?”, an in-depth analy-
sis of the Babel system is reported. The sources of error within its
free-form workflow are discussed. In particular, we are interested
in analyzing the error propagation through the chain under differ-
ent conditions. First of all, we need to verify how errors propagate
across the chain. This is obtained by feeding each module both with
gold standard input information and non-gold input. Again, we eval-
uated the method by using only FrameNet (FN) to train the system
or by retraining with HRI material as in the Hybrid (H) setting.

In the Frame Prediction (FP) phase, F1 measures the system qual-
ity in correctly recognizing the frame(s), i.e. the robotic action, of
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each sentence. In the Boundary Detection (BD) phase, F1 quantifies
the system ability in recognizing the boundaries of each argument:
every token (i.e. span) of every argument must be properly detected.
In the Argument Classification (AC) phase, F1 measures the correct-
ness of the role label assignment to each span. Table 7 reports the per-
formance drop due to the error propagation in Babel. For example,
if we consider the BD phase, a F1 score of 0.684 achieved in the FN
setting with gold-standard information from the FP; it then drops to
0.560 when error propagates. Here, the most significant performance
drops are observed in the BD and AC phase of the FN setting. It is
a true bottleneck for system performance. This problem is overcome
when HRI examples are used to re-training, as in the H setting that
exhibit a stable improvement in F1. The benefits of the Hybrid set-
ting can be seen in the sentence grab the cigarettes next to the phone.
While the FN setting incorrectly classifies the arguments of the TAK-
ING event, in TAKING(theme:[the,phone], source:nil), the H set-
ting recognizes the more complete TAKING(t heme:[the,cigarettes],
source:[next,to,the,phone]).

Table 7. Babel chain analysis

Gold information at each step
FP BD AC
FN H FN H FN H
GG 0.826 | 0.833 | 0.684 | 0.871 0.589 | 0.822
S4R | 0.812 | 0.817 | 0.743 | 0.872 | 0.736 | 0.912
RC 0.732 | 0.758 | 0.696 | 0.817 | 0.701 | 0.898

on-Gold information at each step
FP BD AC
FN H FN H FN H

GG 0.826 | 0.833 | 0.560 | 0.680 | 0.373 | 0.612
S4R | 0.812 | 0.817 | 0.598 | 0.712 | 0.502 | 0.688
RC 0.732 | 0.758 | 0.527 | 0.635 | 0.451 | 0.597

Z

5 Conclusion

This paper proposes the study and comparison of two paradigms for
the development of automatic Natural Language Understanding sys-
tems for Human Robot Interaction. First, we discussed the applica-
tion of a grammar-based system. Then, a data driven approach, based
on a free-from speech recognizer and a statistical semantic parser, is
examined. We analyzed both solutions also from an engineering per-
spective, considering the system robustness as well as the effort of
its realization and adaptability across different domains. As expected,
experimental results show a good performance of the grammar-based
method in controlled data. However a significant performance drop is
experimented as the linguistic phenomena change and the complex-
ity grows. This lack of robustness is compensated in the data driven
approach. More important, this method enables a portable solution
that significantly improves performance by adding a restrained num-
ber of annotated examples.

This is our first investigation in the Natural Language HRI field,
but results clearly show possible research directions. In order to im-
prove the overall system robustness, a deeper analysis of the speech
recognition step is required as suggested by the results achieved in
[3]. Moreover, the availability of more domain-dependent resources,
as the corpora used in these experiments and presented in [5], re-
sulted to be beneficial. The obtained results confirmed the impor-
tance of exploiting such datasets, allowing future HRI system to ex-
ploit them as a benchmark for a comparable evaluation. Other lin-
guistic semantics theories should be investigated, e.g. Spatial Se-
mantics especially to study the relationships between the output of
the processing chain and the final command. Moreover, the role of

visual features is here not considered, but it is certainly a future di-
rection to be investigated.
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