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Abstract. Faithfulness is one of the main hypotheses on which rely
most Bayesian network (BN) structure learning algorithms. When
some random variables are deterministically determined by others,
faithfulness is ruled out and classical learning algorithms fail to dis-
cover many dependences between variables, hence producing incor-
rect BNs. Even state-of-the-art algorithms dedicated to learning with
deterministic variables prove to be inefficient to discover many de-
pendences/independences. For critical applications, e.g., in nuclear
safety, such failure is a serious issue. This paper introduces a new hy-
brid algorithm, combining a constraint-based approach with a greedy
search, that includes specific rules dedicated to deterministic nodes
that significantly reduce the incorrect learning. Experiments show
that our method significantly outperforms state-of-the-art algorithms.

1 INTRODUCTION

Bayesian networks (BN) [18] are defined by a graphical structure
whose nodes represent random variables and by the set of condi-
tional probability tables of each node in the graph given its parents.
They encode the joint probability over all the nodes as the product
of these conditional probabilities. As such, they enable compact rep-
resentations of probabilities. In addition, they are supplied with fast
inference engines that enable to answer efficiently various types of
probabilistic queries (computation of marginal, a priori, a posteriori
probabilities [15, 4], of most probable explanations [16], of maxi-
mum a posteriori [17], etc.). This explains the reason why they are a
very popular framework for reasoning under uncertainty.

In the past twenty years, numerous efforts have been devoted to
learn both their graphical structure and the parameters of their con-
ditional probability tables from datasets [2, 9, 10, 19, 21, 23]. Differ-
ent contexts have led researchers to propose tailored learning algo-
rithms, e.g., algorithms taking into account monotonicity constraints
[5]. However, there exist important critical applications for which no
current BN learning algorithm proves to be satisfactory. Such a situ-
ation, which was actually our starting point, arises in nuclear safety,
notably in problems of nuclear accident scenario reconstruction from
sensors’ partial observations. In this context, BNs and their inference
engines seem well-suited for helping Decision Makers make the best
decisions to limit as much as possible the consequences of the acci-
dent [18]. But learning such BNs from datasets is a complex task due
to the presence of deterministic dependences between random vari-
ables that essentially represent equations modeling the various phe-
nomena occurring in a damaged nuclear power plant during a severe
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accident. These deterministic relations rule out the faithfulness prop-
erty on which rely the majority of learning algorithms. In essence,
the absence of an arc in the BN implies a conditional independence
in the underlying probability distribution. But learning algorithms
derive from the dataset independence statements and, then, induce
from them the absence of some arcs, hence exploiting the opposite
implication. Faithfulness states that both implications hold, i.e., that
the absence of an arc is equivalent to a probabilistic conditional in-
dependence. When there exist deterministic relations among random
variables this equivalence fails to hold and learning algorithms can
therefore fail to recover a correct BN structure.

Structure learning with deterministic relations has been tackled
in several papers. In [22], it is suggested to remove those random
variables that are deterministically determined by others. While this
method is simple, it does not work in many cases because this tends
to increase so much the sizes of the contingency tables used in the in-
dependence tests required to construct the BN’s structure that these
tests become meaningless. In addition, this can also induce undesir-
able changes in the independence model (e.g., creating new depen-
dences). Other more sophisticated methods have been provided in
the literature: in [20], the authors propose to modify the operators
of MMHC [23] to prevent that some arcs adjacent to deterministic
nodes be discarded from the BN’s graphical structure. But, by do-
ing so, they also add unnecessary arcs. [14] and [13] also either miss
some arcs or add unnecessary ones. Missing arcs is a serious failure
because the learnt model is inadequate and, in critical applications
like nuclear safety, this can have serious consequences. Adding too
many arcs is also an issue because it slows down probabilistic infer-
ence, which needs to be fast to help Decision Makers in real-time.

The approach we propose to overcome these problems first con-
structs the skeleton of the BN, i.e., its graphical structure in which
arcs are substituted by edges, and, then to convert it into a directed
graph which is refined by a greedy search. This kind of technique is
known to be very effective [23]. The originality of our algorithm lies
in the rules applied in its three steps, that exploit the features of the
deterministic relations: i) to discard arcs that should not belong to the
BN but that cannot be detected by scoring or independence tests; and
ii) to orient optimally the arcs adjacent to deterministic nodes. In ad-
dition, our algorithm uses an original way to compute the conditional
independences it needs to construct the BN’s graphical structure.

The rest of the paper is organized as follows. Section 2 recalls
the definitions and notations needed and explains why determinis-
tic relations make structure learning a challenging task. Section 3
presents learning algorithms of the literature suited for deterministic
relations. Then, in Section 4, we describe our approach and justify its
correctness. Its effectiveness is highlighted through experiments in
Section 5. Finally, some concluding remarks are given in Section 6.
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2 BAYES NET STRUCTURE LEARNING AND
DETERMINISTIC RELATIONS

In all the paper, boldface letters represent sets, and we only consider
discrete random variables and complete datasets. Our goal is to learn
from datasets the structure of a Bayesian network (BN):

Definition 1 A BN is a pair (G,Θ) where G = (V,A) is a directed
acyclic graph (DAG), V represents a set of random variables3, A
is a set of arcs, and Θ = {P (X|Pa(X))}X∈V is the set of the
conditional probability distributions of the nodes / random variables
X in G given their parents Pa(X) in G. The BN encodes the joint
probability over V as:

P (V) =
∏

X∈V

P (X|Pa(X)). (1)

In all the paper, V will represent the set of nodes / variables of
the BNs. By their graphical structure, BNs encode an independence
model, i.e., a set of conditional independences between random vari-
ables, characterized by d-separation [18]:

Definition 2 Two nodes X and Y are said to be d-separated in G by
a set of nodes Z ⊆ V \ {X,Y }, which is denoted by X ⊥G Y |Z, if,
for every trail (undirected path) linking X and Y in G, there exists a
node S on the trail such that one of the following conditions holds:

1. S has converging arrows on the trail and neither S nor any of its
descendants are in Z;

2. S does not have converging arrows on the trail and S ∈ Z.

Definition 2 induces an alternative definition for BNs: a pair
(G,Θ) is a BN if each node X ∈ V is probabilistically indepen-
dent of its non-descendants in G given its parents. This property is
called the local Markov property. In the rest of the paper, we will
denote by X ⊥P Y |Z the probabilistic independence of X and Y
given Z, i.e., the case when P (X|Y,Z) = P (X|Z).

Learning the graphical structure G of the BN from data consists
of learning its independence model, hence the set of conditional in-
dependences it models. These are determined by computing either
scores (BIC, BDeu, etc.) [9] or statistical independence tests (χ2,
G2, etc.) [21, 19] on the dataset. Of course, each such computation
only enables to determine whether two variables X and Y are prob-
abilistically independent given a set Z, but, per se, it does not de-
termines whether X and Y are d-separated by Z (since we do not
know yet graph G). Ideally, we would like to have X ⊥G Y |Z ⇐⇒
X ⊥P Y |Z because it would imply that G contains an arc between
X and Y if and only if X and Y are probabilistically dependent
given any set Z [18], which can be tested using the dataset.

Unfortunately, this equivalence, which is referred to in the litera-
ture as DAG-faithfulness, does not always hold. It is known to hold
for strictly positive probability distributions P but if V contains de-
terministic nodes, P cannot be strictly positive. As a matter of fact, a
random variable X is said to be deterministic if there exists a subset
W ⊆ V\{X} and a deterministic function f such that X = f(W).
Therefore, if X = f(W), then P (X = x,W = w) = 0 when-
ever x �= f(w). Actually, whenever a deterministic node has a
child in G, DAG-faithfulness is lost. As an example, consider the
BN of Fig. 1 where V = {X,Y, Z, U,W} and assume that X =
f(Y, Z, U) is the only deterministic node in V. By d-separation, we
have that X �⊥G W |{Y, Z, U}. However, X ⊥P W |{Y, Z, U} be-
cause the values of Y, Z, U determine that of X , hence inducing that
P (X|W,Y,Z, U) = P (X|Y, Z, U).
3 By abuse of notation, we use interchangeably X ∈ V to denote a node in

the BN and its corresponding random variable.
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Figure 1. A BN with one deterministic relation X = f(Y, Z, U)

Learning DAG-unfaithful BNs is more difficult than DAG-faithful
ones. Actually, under unfaithfulness, to keep the characterization of
the BN’s independence model by d-separation, it must be the case
that X ⊥G Y |Z =⇒ X ⊥P Y |Z. However, as mentioned above,
from the dataset, we can only infer statements of type X ⊥P Y |Z.
Hence, for learning, this is the converse implication which is needed.

3 RELATED WORKS

Several approaches have been proposed in the literature to address
the problem of structure identification when some random variables
are deterministic. For example, in [7], d-separation has been adapted
to cope with deterministic variables, hence resulting in D-separation.
The latter only adds in Definition 2 the third condition that, for a de-
terministic node S defined by S = f(W), with W ⊂ Z, S does
not have converging arrows on the trail. Unfortunately, applying this
definition instead of that of d-separation is not sufficient to decrease
the difficulty of learning the BN structure in the presence of deter-
ministic random variables.

In Spirtes et al. [22], it is considered that deterministic variables
are not essential for the independence model since they only ex-
press redundant information. Therefore, it is proposed to filter them
out from data before learning the structure of the BN. However, it
may be pointed out that, with datasets of limited sizes, such an ap-
proach can fail to learn correctly the structure of the BN. For in-
stance, assume that the graphical structure G of a BN is such that
V = {X,W, Y1, . . . , Yk, Z1, . . . , Zr} and that all these variables
are Boolean. Assume in addition that X is deterministically defined
as the exclusive OR of Y1, . . . , Yk and that W depends stochas-
tically on X,Z1, . . . , Zr . Then, by removing X , W depends on
Y1, . . . , Yk, Z1, . . . , Zr , which, to be detected, requires an inde-
pendence test over a contingency table of 2k+r+1 cells instead of
2r+2 cells for the dependence test of W with X,Z1, . . . , Zr . As an-
other example, consider a BN whose variables are X,Y, Z, T , with
X = f(Y, Z), and whose arcs are Y → X , Z → X , X → T .
Then X d-separates {Y, Z} from T whereas, by removing X , this
conditional independence cannot be taken into account in the BN.

Rodrigues de Morais et al. [20] addressed structure learning
through an original determination of the Markov blanket (MB) of
each node X of V, i.e., the minimal set of nodes Z s.t., given Z,
X is independent from the rest of the network (in a BN, the MB of
X is the set set of its parents, children and children’s other parents).
The idea relies on the identification of only the set of parents and
children (PC) of the nodes, as specified in [23], i.e., PC(X) is equal
to MB(X) minus the parents of the children of X . In Tsamardi-
nos et al. [23], PC(X) is constructed incrementally, starting from
an empty set and adding into it one by one new nodes Y such that
X �⊥P Y |Z for all sets Z included in the current set PC(X). In a
second step, for each variable Y ∈ PC(X), if there exists a set
Z ⊆ PC(X) \ {Y } such that X ⊥P Y |Z, then Y is removed from
PC(X). In a DAG-faithful context, two different BNs representing
the same independence model have precisely the same PC sets and
it is shown in [23] that a BN should contain an arc between nodes X
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Figure 2. An example where W ∈ PC(Y ) and Y �∈ PC(W )

and Y if and only if Y ∈ PC(X) and X ∈ PC(Y ). The and condi-
tion is necessary to avoid false positive problems: consider actually
the example of Fig. 2. Node Z cannot be added to PC(Y ) because, if
the BN is faithful, Y ⊥P Z. Node X is not d-separated of Y given
∅ and given {W}, so X ∈ PC(Y ). Similarly, W ∈ PC(Y ) be-
cause W and Y are not d-separated given ∅ and {X}. Conversely,
Y �∈ PC(W ) because X,Z ∈ PC(W ) and Y ⊥P W |{X,Z}. The
“and” condition is thus compulsory to avoid adding arc Y → W
in the graph. However, in a DAG-unfaithful context, this condition
fails to produce the correct BN. For instance, if X is a deterministic
node in Fig. 2, i.e., X = f(Y, Z), then Y, Z ∈ PC(X) but this will
rule out W belonging to PC(X) because X ⊥P W |{Y, Z} since X
does not bring any more information to W when Y and Z are already
known. Therefore the “and” condition will prevent the existence of
arc X → W . To avoid this problem, it is suggested in [20] to substi-
tute the “and” operator by an “or” operator. But as shown previously,
this “or” operator will add arc Y → W , which is not necessary.

In Luo [14], association rules miners are used to detect determin-
istic relations. Those are used in a constraint based algorithm (induc-
tive causation (IC)) to build the BN as follows:

1. X and Y are connected by an arc iff X �⊥P Y |Z for every set
Z ⊆ V \ {X,Y } such that neither X nor Y are determined by Z;

2. the unshielded triple (X → W ← Y ) is considered as a V-
structure iff the exists a set Z �⊇ {W} such that X ⊥P Y |Z and
neither X nor Y are determined by Z.

This method, while quite efficient, is unable to remove some arcs.
For instance, if V = {X,Y, Z, T}, with T = f(Y, Z) and if the BN
has a diamond shape with X at the top, T at bottom and Y, Z on the
middle, then rule 1 above prevents discarding arc X → T .

Finally, Lemeire et al. [13] provides the definition of a new class
of unfaithfulness called “Information Equivalence” that follows from
a broader class of relations than just deterministic ones. In addition
to the latter, this class also contains equivalence partitions where
each one is a source of unfaithfulness. Node sets X and Y are
called information equivalent w.r.t. node Z if there exists a subset
W ⊆ V \ (X ∪Y ∪ {Z}) for which:

X �⊥P Z|W, Y �⊥P Z|W, X ⊥P Z|Y ∪ W, Y ⊥P Z|X ∪ W. (2)

The algorithm developed in [13] consists of testing, for each inde-
pendence X ⊥P Y |Z observed, whether an equivalence information
can be found by testing additionally whether X ⊥P Z|{Y } ∪W
and Y ⊥P Z|{X} ∪W hold and whether Eq. (2) is satisfied. If this
is the case, the arc between X and Y is not removed from G. Infor-
mation equivalence encompasses dependences due to deterministic
relations but, in practice, we observed that independence tests often
fail to reveal true information equivalences.

To summarize, there exist algorithms that try to deal with deter-
ministic relations but all of them have serious shortcomings. In those
methods, deterministic relations are perceived as sources of prob-
lems. We developed our approach with an opposite view: we try to
exploit deterministic relations as new opportunities to help the learn-
ing algorithm to add or remove arcs in a principled manner.

4 A NEW LEARNING ALGORITHM SUITED
FOR DETERMINISTIC RELATIONS

Like several other BN learning algorithms, ours is an hybrid that
first determines the skeleton of the BN (or at least an approxima-
tion) and that, next, transforms it into a BN and refines it through
a score-based search algorithm. In all the steps, we dedicate spe-
cial rules to deterministic nodes. In the sequel, we will assume that
DAG-unfaithfulness results only from the deterministic nodes and
that, whenever X = f(Z), all Z ∈ Z are parents of X in the BN.

4.1 First phase: learning the BN’s skeleton

The skeleton of a BN is its graphical structure G in which the arcs
have been transformed into (undirected) edges. As a consequence,
there exists an arc X → Y in the BN if and only if there exists an
edge X − Y in the skeleton. Learning the skeleton prior to refine it
into a BN is computationally attractive because the skeleton’s undi-
rected nature makes it faster to learn than BNs. There exist several
algorithms for discovering the skeleton of a BN, for instance the PC
algorithm4 [21], Max-Min Parents Children [23] or Three-Phase De-
pendency Analysis [1]. For the first step of our method, we designed
a variant of PC adapted to exploit deterministic relations. We chose
PC because it is simple and efficient and also because the use of sta-
tistical independence tests are well suited for deterministic relations.
To test whether X ⊥P Y |Z, we compute a G2-statistics, i.e.,

G2(X,Y |Z) = 2
∑

x∈X

∑

y∈Y

∑

z∈Z

Nxyz ln
NxyzNz

NxzNyz
, (3)

where Nxyz, Nxz, Nyz, Nz represent the number of occurrences of
each tuple (x, y, z), (x, z), (y, z), z in an N -sized dataset respec-
tively. G2 is known to provide more robust independence tests than
χ2. Note that G2 also corresponds to 2N times the conditional mu-
tual information between X and Y given Z.

Basically, the idea of PC is to start with a complete undirected
graph G. Then, the algorithm iterates computations of independence
tests between pairs X,Y given sets Z that are adjacent to X or Y .
Whenever it finds that X ⊥P Y |Z, edge X − Y is removed from G.

However, as shown in the preceding section, when X = f(Z),
the G2-test always indicates that X ⊥P Y |Z, for any Y , even if Y
strongly depends on X (see Fig. 1). Therefore, such a G2-test should
never be used when X or Y is a deterministic node depending on
Z. This calls for a method to detect deterministic nodes. For this
purpose, we exploit the conditional entropy H(X|Z) of X given Z:

H(X|Z) = −
∑

x∈X

∑

z∈Z

P (x, z) logP (x|z)

= − 1

N

∑

x∈X

∑

z∈Z

Nxz log
Nxz

Nz
.

(4)

It is well known that X is a deterministic node defined by X = f(Z)
if and only if H(X|Z) = 0. Therefore our first adaptation of PC con-
sists of computing the conditional entropies H(X|Z) and H(Y |Z)
and, if one of them is equal to 0 (or is below a threshold), we just
do not use the G2-test over (X,Y |Z) to remove edge X − Y . It
should be noted here that computing these conditional entropies only
marginally increases the overall learning’s computation time. Actu-
ally, the most time consuming task is the parsing of the dataset in

4 Note that the PC algorithm is not related with the parent-child algorithm
PC mentioned in the preceding section.
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order to evaluate observation counts Nxyz, Nxz, Nyz, Nz. The com-
putations of Eqs. (3) and (4) are significantly faster than this task.

However, while the use of the conditional entropy overcomes the
problem of unfaithfulness due to erroneous inductions from G2-tests
performed on deterministic nodes, it can also raise another problem
of statistical indistinguishably [14]: there exist cases where condi-
tional independences can be explained by both d-separation and by
deterministic relations. For instance, in Fig. 3, the conditional inde-
pendence between B and D given {A,C} can result from B and D
being d-separated by {A,C} but also from D being a deterministic
node defined by D = f(A,C). By the preceding paragraph, our al-
gorithm first checks whether H(D|{A,C}) = 0. As this is the case
since D = f(A,C), edge B − D will not be removed from G due
to a G2 test involving D given {A,C}. In such a case, [14] keeps
this edge as well. However, as will be shown in Proposition 1, edge
B −D can always be safely removed from G:

Proposition 1 Let X be a deterministic node defined by X = f(Z)
and let Y be a node such that, in the skeleton G learnt by the algo-
rithm, Y �∈ Z and Z ⊆ Adj(Y ), where Adj(Y ) refers to the set of
neighbors of Y in G. Then edge X − Y can be removed from G.

Proof. Our goal is to learn a skeleton G. Hence to any of its edges
must correspond an arc in the BN. Three cases can obtain:

• assume that, in the BN, there exists an arc X → Y and that all
the nodes, say Z, of Z are such that Z → Y . Then {X} ∪ Z ⊆
Pa(Y ). Define K as Pa(Y ) \ ({X} ∪ Z). Then P (Y |Pa(Y )) =
P (Y |{X}∪Z∪K) = P (Y |Z∪K) because X does not bring any
additional information once Z is known. Therefore arc X → Y
can be removed from the BN as well as edge X − Y from G.

• assume that, in the BN, there exists an arc X → Y and that there
exists at least one node Z ∈ Z such that Y → Z. Then X,Y, Z
forms a directed cycle since Z ∈ Z is also a parent of X as X =
f(Z). This is impossible since BNs are DAGs.

• assume that, in the BN, there exists an arc Y → X . Then
{Y } ∪ Z ⊆ Pa(X). Define K as Pa(X) \ ({Y } ∪ Z). Then
P (X|Pa(X)) = P (X|{Y } ∪Z ∪K) = P (X|Z) because, once
Z is known, X is determined. Hence arc Y → X can be removed
from the BN as well as edge X − Y from G. �

At the end of the first phase of our algorithm, for each determinis-
tic node X , all edges X − Y for nodes Y satisfying the conditions
of Proposition 1 are discarded. This proposition is applied only at the
end of the learning phase because we start with a complete graph G
hence, at the beginning, every node Y satisfies the conditions.

Another variant with the original PC algorithm that was already
advocated in [21] and [11] is the use of min cutsets to determine the
conditioning sets in our independence tests: PC usually tests the inde-
pendence between X and Y first by computing G2(X,Y |∅) then, if
this test fails (i.e., if it does not provides evidence that X is indepen-
dent of Y ), conditional tests G2(X,Y |Z) are performed iteratively
with sets Z, adjacent to X or Y , of increasing sizes until either a

A

B

C

D

E

Figure 3. A BN with a deterministic relation D = f(A,C)

conditional independence is proved or the size of the database does
not allow any more meaningful statistical test. In our algorithm, we
not only performed these tests with Z of increasing sizes, we also
computed a minimal cutset CutXY in G separating X and Y , i.e.,
a set of nodes CutXY which, when removed from G make X and
Y belong to two different connected components. This can be eas-
ily done by computing a min cut in a max-flow problem. If the size
of CutXY is smaller than that of sets Z PC would have used, we
just perform G2(X,Y |CutXY ). This results in the construction of
smaller contingency tables and, as such, this increases the accuracy
of the statistical test. Moreover, the additional time required to com-
pute CutXY can be balanced by the number of G2-tests it allows
to avoid. Of course, for large graphs, computing min cutsets can be
expensive. In this case, we resort to a technique advocated in [8]:
basically, graph G is incrementally triangulated, hence resulting in a
junction tree incrementally constructed [6]. Then, some cliques CX

and CY containing X and Y are identified as well as the minimal-
size separator SXY on the trail between CX and CY . Set SXY is
a cutset and, thus, to test the independence between X and Y , it is
sufficient to compute G2(X,Y |SXY ). In practice, incremental trian-
gulations are very fast to perform and sets SXY are relatively small.

The last variant we introduced concerns deterministic variables:
the proposition below shows that some edges can be removed from
G without requiring the computation of a G2-independence test:

Proposition 2 Let X and Y be two deterministic nodes, i.e., X =
f(W) and Y = f(Z). Assume that X �∈ Z and that Y �∈ W. Then
edge X − Y can be safely removed from G.

Proof. Let us assume that the BN we learn contains arc X → Y .
Then, {X} ∪ Z ⊆ Pa(Y ). But then, P (Y |Pa(Y )) = P (Y |Z)
since Y = f(Z). Therefore, removing from the BN all the arcs in
Pa(Y ) \Z results in a new BN that represents the same distribution.
Therefore, it is safe to discard arc X → Y . By symmetry, it would
also be safe to discard arc Y → X . G being a skeleton, it is thus safe
to remove edge X − Y from G. �

Therefore, each time our algorithm discovers a new deterministic
node, it applies Proposition 2 to remove all the edges between this
node and the previously discovered deterministic nodes satisfying the
conditions. Overall, our algorithm for computing the BN’s skeleton
when there exist deterministic nodes is described in Algo. 1.

4.2 Second phase: orientation and refinement

The next step of our learning algorithm consists of orienting the
edges in order to get an initial BN that will subsequently be refined.
In [21], PC first identifies using the computed “SepSet” the BN’s
V-structures, i.e., triples of nodes (X,Y, Z) that are connected as
X − Y − Z and such that X �⊥P Z|Y and X ⊥P Z|W for some
W �⊇ {Y }. For these triples, the BN should contain the following
arcs: X → Y ← Z. A BN is fully characterized by its skeleton
and the set of its V-structures. When deterministic nodes exist, it is
suggested in [14] to add a extra condition on sets W: if X or Y
is a deterministic node defined by some set S, then W �⊇ S. Our
algorithm follows the same rule.

In our framework, we add, prior to the V-structures orientation,
the following “causal” constraint: for each deterministic node X =
f(W), all the edges W − X , for W ∈ W, are converted into arcs
W → X5. But deterministic relations can be further exploited; ex-

5 If we detect two deterministic nodes that are in a one-to-one mapping, we
simply discard one of them to avoid redundancies.
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Input: a dataset D
Output: a skeleton G
Start with a complete undirected graph G = (V,A)
DR ← ∅ // the set of deterministic relations found so far
SepSet ← ∅ // the set of independences X ⊥P Y |Z found so far
i ← 0 // the size of the conditioning sets tested
repeat

foreach edge X − Y in G do
if there exists a set Z = CutXY or SXY of size ≤ i, or Z
adjacent to X or to Y of size i, s.t. X ⊥P Y |Z then

if � ∃ S,T ⊆ Z s.t. (X|S) ∈ DR or (Y |T) ∈ DR then
NewDeterministicRelation ← false
if H(X|Z) = 0 then

find the smallest S ⊆ Z s.t. H(X|S) = 0
DR ← DR ∪ {(X|S)}
apply Proposition 2 to remove edges
NewDeterministicRelation ← true

if H(Y |Z) = 0 then
find the smallest T ⊆ Z s.t. H(Y |T) = 0
DR ← DR ∪ {(Y |T)}
apply Proposition 2 to remove edges
NewDeterministicRelation ← true

if NewDeterministicRelation = false then
A ← A \ {X − Y }
SepSet ← SepSet ∪ {(X,Y |Z)}

until all nodes in V have at most i neighbors;
use Proposition 1 to remove unnecessary edges
return undirected graph G = (V,A)

Algorithm 1: Learning the skeleton of the BN

amples of such exploitation can be found, e.g., in [12] and [3]. Here,
we propose to leverage deterministic relation features to deduce some
orientations that are necessary. As an illustration, consider skeleton
G of Fig. 4.a where X = f(U, Y, Z) is a deterministic node. Our
“causal” constraint imposes the orientation of Fig. 4.b. But, as shown
in the proposition below, the only reasonable orientation for the re-
maining edges adjacent to X are those given in Fig. 4.c.

Proposition 3 Let G be a skeleton and let X be a deterministic node
defined by X = f(W). Let Z = Adj(X) \W in G. Then for each
Z ∈ Z, edge X − Z must be oriented as X → Z.

Proof. Assume that the BN contains arc Z → X . In the BN, let
K = Pa(X) \ (W ∪ {Z}). Then the joint probability modeled by
the BN is P (V) = P (X|Pa(X)) × ∏

V ∈V\{X} P (V |Pa(V )) =

P (X|W)×∏
V ∈V\{X} P (V |Pa(V )) because, once W is known,

K and Z do not bring any additional information on X . Therefore arc
Z → X can be removed from the BN without altering the probability
distribution. But this is impossible because edge X−Z belonging to
skeleton G implies that X and Z are conditionally dependent given
any other set of nodes. Hence, the arc between X and Z in the BN is
necessarily X → Z. �

With all those rules, our algorithm converts the skeleton into a
Completed Partially Directed Acyclic Graph (CPDAG). The remain-
ing edges are then converted in a similar fashion as PC does (when
PC is unable to orient edges, we select arbitrarily an orientation). At
this point, our algorithm has constructed an initial BN. This one is
then refined using any search algorithm [23]. The only constraint we
add on this algorithm is that it never modifies the arcs adjacent to the

X

Y Z U

W V

X

Y Z U

W V

X

Y Z U

W V

(a) (b) (c)

Figure 4. A skeleton G with a deterministic node X = f(Y, Z, U)

deterministic nodes nor add new ones. As a matter of fact, due to un-
faithfulness induced by determinism, classical algorithms will tend
to erroneously modify the neighborhood of the deterministic nodes.

5 EXPERIMENTATIONS

In this section, we highlight the effectiveness of our method by com-
paring it with MMHC [23] (which is not suited to cope with deter-
ministic nodes), “OR+Inter.IAMB” [20] and the algorithm of Luo
[14] (substituting its association rule miners by conditional entropy
tests to detect deterministic nodes, in order to improve its effec-
tiveness). For this purpose, we generated randomly BNs contain-
ing 10 to 50 nodes and 12 to 92 arcs. Nodes had at most 6 parents
and their domain size was randomly set between 2 and 6. Finally,
the number of deterministic nodes was chosen arbitrarily between
1 and 15. From these BNs, we generated samples of sizes ranging
from 1000 to 50000. Overall, 750 datasets were generated. Each BN
produced by MMHC, OR+Inter.IAMB, Luo and our algorithm on
these dataset has been converted into a CPDAG corresponding to its
Markov equivalence class (i.e., a skeleton in which V-structures are
oriented). This makes comparisons more meaningful since two BNs
represent exactly the same independence model iff they belong to the
same Markov equivalence class, i.e., they have the same CPDAGs.
Finally, the CPDAGs were compared against those of the true BNs
using two metrics: the true positive rate (TPR) and the “accuracy”.
TPR is defined as the number of arcs / edges present in the learnt
CPDAG that also exist in the true BN’s CPDAG (with the same ori-
entations for arcs) divided by the number of arcs / edges in the true
BN’s CPDAG. This metric thus describes the power of the learning
algorithm to correctly recover the dependences between the random
variables. The accuracy is defined as the number of dependences and
independences correctly recovered, i.e., the number of pairs of vari-
ables which are either unlinked or linked similarly in both CPDAGs,
divided by the number of pairs of random variables. This metric thus
quantifies how good is the learning algorithm to both discover de-
pendences and independences.

Figure 5 displays the averages and standard deviations (error bars)
over the 750 datasets of the TPR and accuracy metrics for the four al-
gorithms. Curves being similar, we averaged the results for BNs with
10, 15, 25 nodes on the left and 35, 40, 50 nodes on the right. As
can be seen, our algorithm always substantially outperform the other
two, even asymptotically for large datasets. The TPR of our method
is actually about 15% and 25% higher than that of Or+Inter.Iamb and
Luo respectively. The overall accuracy is slightly lower but still sig-
nificant. The performance of our algorithm follows mainly from its
rules dedicated to deterministic nodes: by using conditional entropy,
it avoids discarding edges that are needed and, by Proposition 3, it
correctly orient the edges in the neighborhood of deterministic nodes.
This explains why its TPR is higher than the other methods. For the
accuracy, in addition to correctly recovering dependences, Proposi-
tions 1 and 2 enabled our algorithm to remove arcs that the other
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Figure 5. Averages (and standard deviations) of the TPR and accuracy
metrics for BNs with 10 to 50 nodes in function of the sample sizes.
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Figure 6. Averages of the TPRs computed only around deterministic
nodes, for all the BNs, in function of the sample sizes.

methods were unable to remove, hence making it more suited for
recovering independences. Finally, our original selection of the con-
ditioning sets in the G2-tests also helped discovering conditional in-
dependences.

Figure 6 provides TPRs around deterministic nodes, i.e., TPRs
computed only with the edges / arcs for which at least one extremal
node is deterministic. Again, our algorithm significantly outperforms
the others, hence highlighting the efficiency of our rules, notably that
of Proposition 3.

6 CONCLUSION

In this paper, we have proposed a new algorithm for learning the
structure of BNs when some variables are deterministic. This algo-
rithm relies on very effective dedicated rules whose mathematical
correctness has been proved. As shown in the experimentations, these
rules enable our algorithm to significantly outperform state-of-the-
art algorithms. For future works, we plan to extend our algorithm

for learning the structures of dynamic Bayesian networks, notably
non-stationary ones, and to adapt it to other sources of unfaithfulness
(e.g., equivalence partitions[13]).
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