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Probabilistic Preference Logic Networks

Thomas Lukasiewicz !

Abstract. Reasoning about an entity’s preferences (be it a user of
an application, an individual targeted for marketing, or a group of
people whose choices are of interest) has a long history in different
areas of study. In this paper, we adopt the point of view that grows
out of the intersection of databases and knowledge representation,
where preferences are usually represented as strict partial orders over
the set of tuples in a database or the consequences of a knowledge
base. We introduce probabilistic preference logic networks (PPLNs),
which flexibly combine such preferences with probabilistic uncer-
tainty. Their applications are clear in domains such as the Social Se-
mantic Web, where users often express preferences in an incomplete
manner and through different means, many times in contradiction
with each other. We show that the basic problems associated with rea-
soning with PPLNs (computing the probability of a world or a given
query) are #P-hard, and then explore ways to make these computa-
tions tractable by: (i) leveraging results from order theory to obtain
a polynomial-time randomized approximation scheme (FPRAS) un-
der fixed-parameter assumptions; and (ii) studying a fragment of the
language of PPLNs for which exact computations can be performed
in fixed-parameter polynomial time.

1 Introduction

Interest in the Social Semantic Web has been growing recently as
users continue to spend increasing amounts of time on platforms that
allow sharing of different kinds of content, both conventional as well
as user-generated. This poses a new challenge to knowledge repre-
sentation and reasoning formalisms that are tasked with both model-
ing this kind of data as well as querying it in useful ways. One of the
central aspects of this effort lies in reasoning about preferences.

Consider the case in which we want to model a user’s food prefer-
ences: given the user’s statements on his/her favorite social network-
ing site, we have learned that (i) the user usually prefers tortellini
over ravioli; (ii) with greater likelihood, the user prefers ravioli over
lasagna; and (iii) the user is less likely to prefer ravioli over mine-
strone. We are interested in leveraging this incomplete and uncertain
information to reason about cases for which no (direct) information is
available—for instance, how likely is it that the user prefers tortellini
over lasagna? How about tortellini over minestrone? Perhaps even
more interestingly, what are the user’s preferences regarding mine-
strone and lasagna, for which not even transitive preferences have
been expressed? This situation is formalized as a probabilistic pref-
erence logic network (PPLN) in Example 5.

We would like to be able to model this kind of situation, which is
characterized by: (i) the fact that we only have information on certain
pairs of elements; and (ii) the uncertainty underlying the information
provided—users are much more likely to express preferences that
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are subject to exceptions than ones that hold all the time. The main
contributions of this paper are summarized as follows:

e We show that the main computational problems associated with
reasoning with PPLNs (computing the probability of a world or a
query in the form of a preference statement) are #P-hard.

e We leverage results from order theory to develop the anytimeQE-
approx algorithm, a (fixed-parameter) fully polynomial-time ran-
domized approximation scheme (FPRAS), in the form of an any-
time algorithm, for computing the probability of a query.

e We study a fragment of the language of PPLNs, called k-decom-
posable PPLNs, for which exact computations can be performed
in fixed-parameter polynomial time.

The rest of this paper is organized as follows. Section 2 introduces
preliminaries on Markov random fields (the basis of the probabilis-
tic semantics of PPLNSs). In Section 3, we introduce PPLNs. Sec-
tion 4 develops the concept of equivalence classes and studies its
properties—this machinery is necessary to show how algorithms for
counting linear extensions of strict partial orders can be leveraged
in answering queries to PPLNs. Section 5 presents k-decomposable
PPLNSs, a subset of the full language that affords query answering in
polynomial time assuming that both k and the size of the PPLN are
bounded by a constant. Finally, Section 6 discusses related work, and
Section 7 provides some concluding remarks.

2 Preliminaries on Markov Random Fields

We first recall the concept of Markov random field, on which the
probabilistic semantics of PPLNs rests.

A Markov random field (MRF) is a probabilistic model that rep-
resents a joint probability distribution over a (finite) set of random
variables X = {X,..., X, }. Each X; may take on values from a
finite domain Dom/(X;). A value for X = {X1,..., X, } is a map-
ping z: X — (U, Dom(X;) such that z(X;) € Dom(X;); the
domain of X, denoted Dom(X), is the set of all values for X. An
MREF is similar to a Bayesian network (BN) in that it includes a graph
G = (V, E) in which each node corresponds to a variable. Differently
from a BN, the graph is undirected; also, in an MRF, two variables
are connected by an edge in G iff they are conditionally dependent.
Furthermore, the model contains a potential function ¢; for each
(maximal) clique in the graph; potential functions are non-negative
real-valued functions of the values of the variables in each clique
(called the state of the clique). Here, we assume the log-linear repre-
sentation of MRFs, which involves defining a set of features of such
states; a feature is a real-valued function of the state of a clique (we
only consider binary features here). Given a value x € Dom/(X) and
a feature f; for clique j, the probability distribution represented by
an MRF is given by P(X =x) =  exp (3, wj - fj(x)), where j
ranges over the set of cliques in the graph G, and w; = log ¢; (x(;})
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(here, xy;y is the state of the j-th clique). The term Z is a nor-
malization constant to ensure that P(X =z) € [0,1], and is given
bY Z= 3" c pom(x) €XP (22, w; - fi(x)). Probabilistic inference
in MRFs is intractable [23]; however, approximate inference mecha-
nisms, such as Markov Chain Monte Carlo, have been developed and
successfully applied in practice.

3 PPLNSs: Probabilistic Preference Logic Networks

In this section, we introduce our knowledge representation formalism
for expressing preferences under probabilistic uncertainty over a set
of objects; its probabilistic semantics is based on MRFs.

Syntax. We denote by A and R the finite sets of constants and pred-
icate symbols, respectively, in the language over which preferences
are defined—i.e., we are interested in establishing preferences over
the elements of the Herbrand base H induced by these sets.

Definition 1 A possible world is any permutation of the elements in
the Herbrand base /. We denote by WV the set of all possible worlds.

Given atom a appearing in world X, we use pos(a, \) to denote the
natural number corresponding to the position of a in the sequence A.
Clearly, we have [W| = |H]|!.

Intuitively, in the context of reasoning about preferences, the set
of all possible worlds consists of all ways in which the elements in
question can be (linearly) ordered—extending the formalism to con-
template more complex possible worlds (such as trees) is out of the
scope of this paper, and will be tackled in future work.

The basic building block in the construction of our framework is
the concept of preference statement, which is defined next.

Definition 2 A (ground) preference statement is either of the form:
(i) a > b (called atomic preference statement (or (preference) atom)),
where a and b are atoms over A and R, or (i) f A g, f V g, or
—f, where f and g are (ground) preference statements. We denote
by Apy the set of all preference atoms over A and R. For (a > b) €
Apre, statements (b > a) and —(a > b) are equivalent.

Note. For ease of presentation, we assume that all PPLNs are ground;
extending the definition to non-ground preference statements is sim-
ple. This is without loss of generality, since groundings can be com-
puted in polynomial time assuming bounded predicate arities.

Satisfaction of a preference statement ¢ by a world A is defined as
usual: (i) if = a > b such that ¢ € App, then A = ¢ iff a,b € A
and pos(a,\) < pos(b,\); (i) if = ¢1 A ¢2, then X |= ¢ iff
A E ¢ and A = ¢o; (iii) if ¢ = @1 V 2, then A |= @ iff A |= ¢1 or
A E ¢o; and (iv) if ¢ = —¢', then X |= @ iff A = ¢'.

Definition 3 A probabilistic preference logic network (PPLN) is a
finite set P of pairs (F, w), where F' is a preference statement over
Aand R, and w € RU{oco}. We refer to | P| as the size of the PPLN.

The symbol “oco0” denotes a number large enough to outweigh the
values arising from other weights in the computation of probabilities
and partition function in the MRF.

Semantics. In the following, we assume that there is an arbitrary
(but fixed) order over the atoms in H, denoted by the symbol “<”.
The probabilistic semantics of a PPLN P is given by the Markov
random field that is defined as follows:

(i) For each a,b € H such that a < b, there exists a (binary) node
(a,b); the node’s value is 1, if @ > b is true, and 0, otherwise;

(ii) one feature is defined for each statement in P, with value 1 iff
the corresponding statement is true (and 0, otherwise); the weight of
this feature is the weight associated with the statement in P; and
(iii) additional infinite weight features defined according to the fol-
lowing templates. For each X,Y, Z € H suchthat X <Y < Z:

(X,Y)=D)A((Y,2) =1) = (X,2) = ;

(X,Y) = 1) A ((X, 2) = 0) = (V. 2) = 0;
(X, 2)=0)A((Y,Z2) =1) = (X,Y) = 0;
(X,Y) = 0) A ((Y, 2) = 0) = (X, Z) =0.

Recall that MRFs do not contain logical variables—these features are
simply described in this way to show how they are built. Intuitively,
these features impose a probability of zero on assignments of values
to random variables that cause transitivity to be violated.

This characterization implies that the MRF contains (‘7;‘) nodes,
and an edge between nodes iff the preference atoms associated with
such nodes appear together in a feature. Condition (iii) effectively
provides a 1-to-1 mapping between PPLN worlds and value assign-
ments to random variables in the underlying MRF with non-zero
probability.

Example 4 Let 1 ={a, b, c} (where “<” is the lexicographical or-
der), and P={(b > a,1),(b > ¢, 1)} be a PPLN. The following
table illustrates the mapping between the values of the variables in
the induced MRF and the PPLN worlds (linear extensions).

(a,b) (b,¢) (a,c)

Pairwise preferences Linear extension

1 1 1 a-b b>c a>c a,b,c
1 1 0 a>b, b>c c>a -

1 0 1 a>b, c~b a>c (a,c, b)
1 0 0 a>b, c~b, c>a (c,a,b)
0 1 1 b=a, b-c, arc (b,a,c)
0 1 0 b>=a, b=c, c>a (b, ¢, a)
0 0 1 b>=a, ¢c>=b, a>c -

0 0 0 b=a, c>=b, c>a (c,b,a)

Out of 2° = 8 possible truth assignments to MRF variables, we have
|H|! = 6 possible PPLN worlds— the other two (lines 2 and 7 above)
violate the infinite weight features and thus have probability zero. m

Thus, given this setup, we can compute probabilities over possi-
ble worlds analogously to Markov logic [22]—the probability of a
world A is given by the expression:

Pr(A) = £ -exp (X, wi - sati(N)), (1)

where sat;(x) = 1 iff the formula F; such that (F;,w;) € P is
satisfied by A (zero otherwise). The term Z is defined analogously as
above for MRFs:

Z:Z/\ewexp(ziwi-sati(/\)). )

Queries. Computing the probability that a preference statement
@ holds is then based on the worlds that @ satisfies: Pr(Q) =
2 xew a0 Pr(A). The following is a simple example.

Example 5 Suppose a user has expressed the following preferences
via the PPLN:

¢1: (tortellini = ravioli, 3),
¢3: (ravioli > minestrone,2.1).

¢2: (ravioli > lasagna, 4.2),

These formulas express that the user prefers tortellini over ravioli,
ravioli over lasagna, and ravioli over minestrone, each with a corre-
sponding weight. There are thus 4! = 24 possible worlds (cf. Fig-
ure 1—initials used to save space).
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Worlds Satisfies Potential Probability Worlds Satisfies  Potential Probability
A (G, l,m)  ¢1,b2,¢3 3+42+21=93 €23/7 Az (,t,r,m) @1, d3 3+21=51 €2/7
Ao {t,r,m, D) p1,de, 3 3+4.2421=93 €23/Z Mg {(Lt,m,ry @1 3 e3/Z
Az {t,L,m,m)  é1, ¢3 3421=5.1 e>l/7 A5 {Lrt,m) @3 2.1 e2l/z
A (LLmyr)y ¢y 3 S04 Mo (I,r,m,t) @3 2.1 e2l/z
X5 ({t,m,r 1) @1, bo 34+42=172 e’2/7 Mz (I,m,t,ry 1 3 e?/Z
Xe  {t,m,l,ry  H1 3 ez Mg {L,m,rt) - 0 /7
X7 (rtl,m)  ¢o, b3 42+421=6.3 eb3/7 Ao (myt,r 1) @1, de 3+42=172 €72/7
As  (rt,m,l)  ¢o, d3 42421=6.3 eb3/7 Ao (myt LTy @1 3 IS4
Xo  (rlt,m)  ¢o, ¢3 42+421=6.3 e83/7 Ao1 {m,mt 1) ¢o 4.2 e’2/7
Ao (rl,m,t) ¢, ¢3 42+421=6.3 e83/7 Xo2  (m,r 0 t) @2 4.2 e’2/Z
A (rm, Lt ¢a, ¢3 42421=6.3 eb3/7 Xos  (m, Lty @1 3 e3/Z
A12 <T, m,t, l> b2, ¢3 42421=6.3 66'3/Z A24 <m,l,7‘, t> - 0 eO/Z

Figure 1. The value of Z (computed as the sum of all the numbers in the “Potential” columns) is approximately 28,422.59.

The probability of a query is given by summing the probabilities
of the worlds that satisfy it—for instance, the probability that mine-
strone will be preferred over lasagna is computed as:

Pr(m >=1) = Pr(A2) 4+ Pr(xs) +Pr(Xe) + Pr(Xs) +
Pr(Ai1) + Pr(Ai2) + Pr(A1g) + Pr(A20) +
PI‘()\Ql) + Pr()\22) + PI‘(AQg) + PI‘()\24)
~ 0.5434. L]

Complexity Results. The following theorem shows that computing
the probability of a preference statement is #P-hard.

Theorem 1 Given a PPLN P and a preference statement S relative
to P, computing the probability of S is #P-hard.

Proof. Let ® be a 3SAT formula in CNF with variables V1,...,V,.
Create a PPLN with H = {v1,...,v,} U{01,...,0n} and a single
preference statement S built in the following manner: for each clause
Q1VQ2V Qs in O create a corresponding clause P; V P>V P, where
P, = (’U]' - ’l_)]'), if Qz = ‘/j, and P; = (’l_}j - ’U]‘), if QZ = —|Vj, for
every i € {1,2,3} and some j € {1,...,n}. The PPLN then consists
of a single preference statement comprised of the conjunction S’ of
all such clauses, with weight 1.

Given a world \, we can define a corresponding world Asar defined
as a truth assignment to the variables Vi,...,V,, as follows: V; is
true iff pos(v;, A) < pos(vj, ). This implies that A = .S < Aur =
®. Therefore, if we compute the probability of S relative to PPLN
P,weget: Pr(S) =3, g e'/Z, with Z = 2 oxew exp(l-n(N)),
where n(A) = 1if A E S and n(\) = 0 otherwise. But this means
that: Pr(S) = W’M = p, where k is the number of worlds
in W that satisfy S. Thus, solving for k, we conclude that Pr(S) =p
iff there are k = (p_(zl% worlds in W that satisfy .S, which means
that ® has precisely & - 2" /(2n)! satisfying assignments. This con-
cludes the reduction from #3SAT. m]

The following result can be shown using a reduction similar to the
one used in the proof of Theorem 1.

Theorem 2 Given a PPLN P and a world X relative to P, comput-
ing the probability of X\ is #P-hard.

As in similar probabilistic knowledge representation forma-
lisms [19, 22], one way to tackle this intractability is by means of
random sampling methods, as described next.

Markov Chain Monte Carlo Approaches. Since the semantics of
PPLNs is given by MRFs, the most basic approach to perform ap-
proximate computations over our model is to directly construct the

corresponding MRF and apply the standard MCMC methods that
have been developed and studied for decades now (see [9] for a sur-
vey of such methods). Such an approach, however, is likely to be
suboptimal, since the MRF contains (g) nodes whenever the PPLN
contains n atoms and, apart from this, the state space is broken into
many pieces by the constraints described in point (iii) above, so the
connectedness condition required for MCMC is violated—methods
such as slice sampling [17] are thus needed.

A more direct application of MCMC methods would involve sam-
pling directly from the set of PPLN worlds (permutations of atoms).
Setting up a Markov Chain in such a way that its stationary distribu-
tion allows us to sample worlds from a distribution that follows the
one described by Equations 1 and 2 is the topic of future work—
related work in order theory has approached the task in the non-
probabilistic setting with promising results [20, 6].

4 Approximations via Approximate Counting

We now investigate ways in which the intractability of computing
entailment probabilities can be tackled by leveraging algorithms for
counting linear extensions (topological sortings) of strict partial or-
ders (referred to as SPOs from now on), which are simply irreflexive
and transitive binary relations. To do this, we first present some basic
machinery that is based on the division of such linear extensions into
equivalence classes; this suggestion is not new in the literature on
probabilistic reasoning—it has been suggested in approaches rang-
ing from basic probabilistic logic [18] to probabilistic ontology lan-
guages [13]. In the following, given PPLN P and world A, sat(X, P)
denotes the set of statements in P that are satisfied by A.

Definition 6 Let P be a PPLN. Worlds A1 and A2 are equivalent
relative to P, denoted A1 ~p A2, iff sat(A\1, P) = sat(A2, P).

We use equiv(P) ={C1, Ca, . ..,Cn} to denote the set of equiva-
lence classes induced by equivalence relation ~ p. Essentially, equiv-
alence classes can be characterized by a preference statement com-
posed of the conjunction of each preference statement in P either as
it appears in P or negated—note that this directly implies that, in the
worst case, there are an exponential number of such classes.

An interesting and useful property of equivalence classes is stated
next. It arises from the fact that the probability of a world is deter-
mined by what formulas it satisfies; since equivalent worlds satisfy
the same formulas, the result follows.

Theorem 3 If A1 ~p X2, then Pr(A1) = Pr(\2).

The following example illustrates the equivalence class approach.
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Class PPLN Worlds Aggregate Probability
C1 {1, A2} 2*69'3/2

Coq {3, A13} 2*65'1/Z

C3 {4, X6, A14, A17, A20, A2z} 6% €2/Z

Cy {25, A0} 2xe"2/7

Cs {7, 28, A9, A0, A11, A2} 6%e63/Z

Cs {\15, 16} 2xe2l/Z

Cr {18, A2s} 2xe0/7

Cs {21, A22} 2xet2/7

Figure 2. Equivalence classes of Example 7.

Example 7 Consider again the PPLN from Example 5. The equiv-
alence classes of possible worlds are determined by the following
preference statements (names abbreviated to single letters):

Cr: (t>=r) A (r>=0) A (r = m),
Ca: (t>=r) AN =(r=1) A (r > m),
Cs: (t>=r) AN (=1 AN —(r=m),
Cy: (t>=r) A (r>=10) A =(r>=m),
Cs: =(ts>=r) A (r>=0) A (r > m),
Ce: —(ts=r) AN =(r=1) A (r > m),
Cr —t>=r) A o(r>=1) A (r>=m),
Cs —(t=-r) A (r>=10) A =(r=m).

The composition of each class is shown in Figure 2. Here, all classes
are non-empty; this is not always so, as the statements describing a
class may be unsatisfiable, e.g., (a > b) A (b c) A= (a > ¢). [

Another useful property of equivalence classes is that we can de-
cide their emptiness in polynomial time.

Theorem 4 Given a PPLN P and an equivalence class C' relative
to P, deciding whether |C| = 0 can be done in polynomial time.

Intuitively, a class induces a directed graph—constructing it and test-
ing for cycles suffices to decide emptiness of the class, and this can
be done in polynomial time.

Theorems 3 and 4 suggest that, if we can count the number of
worlds that satisfy the preference statement describing a class (its
linear extensions), we are well on our way to saving steps in the
computation of probabilities of queries—instead of iterating through
all n! worlds, we can inspect the equivalence classes and simply
compute: Pr(Q) = 3. opuiv(pry. cee (IC] - Pr(C)), where P' =
PU{(Q,0)} (the weight here is irrelevant). Unfortunately, the prob-
lem of counting linear extensions of an SPO is #P-hard as well [5].
There are, however, several algorithms developed in the order theory
literature that approximate this computation [5, 20, 6, 1].

The best known algorithm to date is called TPA [1]—it is a fully
polynomial randomized approximation scheme (FPRAS) that, given
an SPO O, approximates £(O) (the number of linear extensions
of O) to within a factor of 1 + € with probability at least 1 — §,
using an expected number of random bits and comparisons, in time
at most O((In £(0))?-n®- (Inn) - e~ 2 - In(1/5))—we refer to this
expression as Cost(TPA). In the worst case, In(£(0)) is O(n-1nn),
and the worst case complexity is the same as in the first FPRAS pre-
sented in [5] (the authors of the TPA approach claim, however, that
the hidden constants in the worst case are about 1,000 times smaller).
On the other hand, in cases in which £(O) is small compared to n!,
the TPA algorithm is much faster.

Thus, we can compute the probability of a query by adding it to
the set of preference statements and defining the equivalence classes
over the set of resulting statements—if Cost(TPA) - O(2/71%1) is
“smaller than” O(n!), this approach will be faster than ones based
on iterating through all possible worlds. There is one more result that
can be leveraged in designing an algorithm along these lines.

Class PPLN Worlds  Score CEm>I)?
Cl {)\1} 1 % 69'3 No
o {2} 1%e%3  Yes
Cy 0 0xe”2 No
Céll {)\5, )\19} 2 % 67'2 Yes

Cs {A7,29,A10}  3x¢e53  No
Ci {A8,M1,M12}  3xe83  Yes

Figure 3. Classes from Example 8, sorted by score.

Theorem 5 Given a PPLN P, the ~ p-equivalence classes can be
listed in output-polynomial time in descending order of probability
of their individual worlds.

This result follows from the fact that the values arising from the sec-
ond term in Eq. 1, i.e., without dividing by Z (let’s call this the score
of a world or class) can be enumerated in descending order by sorting
the formulas in P in descending order of weight and iterating through
the truth values of each formula to generate all possible classes.
This insight is the basis of Algorithm anytimeQE-approx (Fig-
ure 4), which approximates the probability with which a PPLN en-
tails a query. The main while-loop iterates through the classes in de-
scending order of probability as discussed above; for each non-empty
one, it runs the approximation algorithm to compute its size and then
checks if the worlds in the class entail the query or not, updating the
corresponding score mass. Whenever the loop is interrupted (or fin-
ished), the algorithm outputs the current estimation of the probability
value. The following shows this process over the running example.

Example 8 Returning to Example 7 and Figure 2, note that the state-
ments that are not negated in the class are the ones that contribute to
the probability. Thus, to iterate in descending order of probability
we start from the class with all non-negated statements and then it-
eratively negate the statements with lowest weight in the PPLN, the
two statements with lowest weight, and so forth. Figure 3 shows the
top three most probable classes produced in this manner, where the
classes are numbered as in Figure 2, but each is split into two (C;
and C}) according to their satisfaction of the query.

Suppose that we run Algorithm 4 on this PPLN, with the query
(m > 1) (“is minestrone preferred over lasagna?”); suppose further
that, for the purpose of this example, the TPA approximations yield
exact counts, and that the stopping predicate causes the algorithm to
inspect six classes. The algorithm updates the values of score-pos
and score-neg, which at the end of the run receive values of ap-
proximately 15,250.59 and 12, 571.73—this causes the algorithm
to return 15, 250.59/(15250.59 + 12571.73) = 0.5481; recall from
Example 5 that the exact value is &~ 0.5434. [ ]

The next result states two interesting properties of our algorithm.

Theorem 6 Algorithm anytimeQE-approx(P, Q, stopPred, €, §)
enjoys the following properties:

(a) Its running time is O(m * poly(n)), where n is the size of the
input, and m is the number of equivalence classes inspected before
the stopping condition becomes true.

(b) If the algorithm inspects all classes, and |P| is considered fixed,
the algorithm is a fully polynomial-time approximation scheme—we
are guaranteed an approximation of Pr(Q) such that:

(146~ 2P < approx(Q) < (1 +¢) - 2711

with probability at least (1 — 6)2‘PH1.



T. Lukasiewicz et al. / Probabilistic Preference Logic Networks 565

Algorithm anytimeQE-approx (P, Q, stopPred, ¢, §)

/I P is a ground PPLN, @ is a preference statement query
1. score-pos:= 0; // Score mass of worlds that satisfy Q
2. score-neg:= 0; // Score mass of worlds that do not satisfy @
3.1:=1;

4. while (i < 2/P1+1) and IstopPred do begin
5.// i ranges over classes of possible worlds

6.  C:=compNextClass(P, Q,1);

7. i++;

8. if C is not empty then

9. size-C:= TPA-approx(C, ¢, §);

10. if C' = Q then

11. score-pos:= score-pos + (size-C - Pr(C));

12. else

13 score-neg:= score-neg + (size-C - Pr(C));

14. end;

15. end;

16. return score-pos/ (score—pos + score—neg).

Figure 4. Probabilistic preference query answering leveraging the TPA
linear extension counting algorithm.

5 Tractable Cases via Exact Counting

In this section, we explore conditions under which the equivalence
classes from Section 4 can be used in cases for which exact linear
extension counting algorithms are guaranteed to run in polynomial
time. Though several restrictions on SPOs have been studied under
which counting can be done tractably [16], the use of equivalence
classes means that the restrictions cannot be guaranteed to hold in
general—the following example illustrates why this happens.

Example9 Let P = {(a > b,1),(b > ¢, 1),(c > d,1)}, where
f1, f2, and f3 are the respective atomic preference statements and
H = {a,b,c,d,e, f}.Itis very simple to count the linear extensions
of the SPOs that arise from many of the equivalence classes, such
as fi1 A fa A fs (linear order) and —f1 A fa A f3 (tree). However,
the class given by fi1 A =fa A f3 yields an SPO that is precisely
the forbidden substructure of the so-called N-free orders [16]—such
violation destroys the tractability guarantees. ]

Example 9 shows us how restrictions that hold for one equivalence
class easily break down for others—the main cause of this is that
negation of preference statements can have all kinds of effects on
the induced SPO. One possibility that remains open, however, is that
of enforcing a constraint over all equivalence classes that allows us
to leverage a property of the class of decomposable partial orders
(DPOs), which were introduced in [8].

Definition 10 A PPLN P is k-decomposable iff for each C' in
equiv(P), all connected components of the directed acyclic graph
induced by C have size at most k.

DPOs generalize series-parallel partial orders [16] (equivalent to
the N-free orders mentioned in Example 9), which can be charac-
terized by means of two composition operations (series and paral-
lel). In particular, we are interested in parallel composition, denoted
P || Q for SPOs P and Q—the key to leveraging the condition in
Definition 10 lies in that parallel (de)composition leads to a simple
recursive formula for counting linear extensions: £(O; || O2) =

(|Ol| + |02\)!

|O1|+|02\>
|O1]! - [O2]!

£On)-£©02)- (7 5|

= L£(01)-L(O2)- NE)

The k-decomposition property implies that all induced SPOs have
the so-called bounded decomposition width property, which is
known to admit counting algorithms in O(n*) [25, 26, 16]—we re-
fer to this as the “Steiner bound” and, for the purposes of this paper,
assume we have such an algorithm. We can thus count the number of
linear extensions for a given class in O(n*); this leads to the result:

Theorem 7 Let P be a k-decomposable PPLN, and Q) be a prefer-
ence statement. Then, Pr(Q)) is computable in time O(Q‘P‘ ).

This is a direct result of running the Steiner bound algorithm for each
of the 7 fragments of the decomposed PPLN; the term 2IP1 arises
from the computation of the equivalence classes. The main objective
of k-decomposable PPLNs is, however, to assume that k is bounded.

Algorithm anytimeDec. These ideas can be implemented in
an algorithm that follows the same basic outline as anytimeQE-
approx—we discuss its details without presenting the pseudocode
for reasons of space. As before, the equivalence classes are inspected
in descending order of probability; for each one, the kK components of
the arising SPO are inspected in turn. An additional flag “testTrac”
can be added as a parameter to the algorithm indicating whether or
not additional effort should be spent on testing whether such SPO be-
longs to a class that allows tractable counting of linear extensions; for
instance, series-parallel/N-free orders can be recognized in O(n?)
time, and their number of linear extensions can be computed in the
same time. If the tractability test fails, the Steiner bound (O(n"))
algorithm can be used for this class instead. (Note that such a flag
could also be added to anytimeQE-approx.) After the sizes of the
k components are computed, the algorithm iteratively applies Equa-
tion 3 to obtain the final count for the class. Updates to accumulators
for positive and negative scores are done as before.

The following is a simple extension of the running example to
show how this algorithm works.

Example 11 Let P’ be the PPLN from the running example, with
the addition of the statement (g > ¢, 2), meaning that gnocchi are
preferred over canneloni. Note that the DAG induced by all pref-
erence statements in P’ has two connected components, where the
largest has four nodes— P’ is thus 4-decomposable.

Consider now the equivalence class determined by (¢t > r) A
(r>=0) A = m)A-(g > c). We know from Figure 2 that two
worlds satisfy (¢t > ) A (r = 1) A (r = m), while it is easy to see
that only one satisfies =(g > c¢). Then, the total number of worlds

(@42 _ g

satisfying our class is given by: 2 - 1 - 75 =

Finally, we have the following result regarding our algorithm.

Theorem 8 Given k-decomposable PPLN P, Algorithm any-
timeDec(P, Q, stopPred, testTrac) enjoys the following properties:

(a) Its worst case running time is O(m - 3 - poly(n)), where n is
the size of the input, and m is the number of equivalence classes
inspected before the stopping condition becomes true.

(b) If it inspects all classes, it returns an exact result for Pr(Q).

Theorems 6 and 8 tell us that, if the size of the PPLN can be bounded
by a constant, both algorithms are fixed-parameter polynomial-time.

6 Related Work

There has been a wide variety of work in the study and modeling of
preferences in areas as varied as philosophy, logic, and economics.
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In the philosophical tradition, preferences are usually expressed over
mutually exclusive “outcomes”, such as truth assignments to formu-
las. Using this interpretation of preferences, [2] aims at bridging the
gap between several formalisms from the AI community such as CP-
nets and those studied traditionally in philosophy. From the point of
view of uncertainty, there is not a large body of work focusing on
combining the two; the probabilistic extensions to CP-nets in [7, 3]
are perhaps the closest in spirit to our work, but they follow the CP-
net model of preferences (and probabilities) over possible worlds in
the form of truth assignments to logical formulas.

Our work is most closely aligned with the database community’s
perspective on the problem, where preferences are established be-
tween tuples (which correspond to ground atoms here) and in gen-
eral specify how results to queries should be sorted. The database
tradition has been studied for almost three decades, since the seminal
work of [12]; see [24] for a survey of notable works in this line. More
or less in parallel, work has also been carried out in the intersec-
tion between databases and knowledge representation and reasoning,
such as preference logic programs [10], incorporation of preferences
in formalisms such as answer set programs [4], and answering k-
rank queries in ontological languages [14]. Apart from [15], where
probabilistic ontologies are assumed to yield a preference model that
may be in conflict with another (user-provided) model, we are aware
of no other work on combining probabilistic reasoning with logical
representations such as the one used here.

The preference networks in [27] are based on establishing an MRF
defined over random variables corresponding to users’ ratings of
items—the main goal is to obtain probabilities for user-item pair-
ings that have not been observed, in order to issue recommendations
based on previously rated items. Similar in spirit is [11] on model-
ing users with statistical preference models; their goal is to derive
the probability that an item will be preferred by a user based on in-
formation regarding previous item selections. These approaches are
therefore ad hoc for this kind of problem, instead of allowing general
knowledge about preferences to be specified, as in PPLNs. Learning
PPLNs is an important next step, and perhaps these models can be
leveraged in effectively accomplishing this highly difficult task.

Finally, the kind of knowledge expressed in PPLNs can certainly
be expressed in other formalisms, such as the probabilistic logic pro-
grams of [21], among others. But PPLNs are better suited to repre-
senting incomplete and uncertain preferences, since their semantics
is based on linear orders as possible worlds, allowing specific meth-
ods to be applied. Future work involves studying techniques lever-
aged in related formalisms to enhance the scalability of PPLNs.

7 Summary and Outlook

In this paper, we have proposed PPLNs, a novel integration of a pref-
erence representation formalism in the tradition of databases (where
preferences are expressed between tuples or ground atoms) with
probabilistic uncertainty. Similar to Markov logic, the semantics is
based on an underlying Markov random field; however, in PPLNs,
possible worlds consist of permutations of the elements of interest
rather than truth assignments. We argue that this basic difference
merits rethinking how answers to probabilistic queries are computed,
and we therefore studied how results from order theory can inform
our effort. As a result, we provided an approximation algorithm and
an exact algorithm that is fixed-parameter tractable; in addition, both
algorithms were designed to work in an anytime fashion.

Future work in this line includes how PPLNs can be learned from
real-world data, as well as testing our algorithms on such data to

identify how greater tractability can be achieved in practice.
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