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Abstract. Classification of multichannel electroencephalogram
(EEG) recordings during motor imagination has been exploited suc-
cessfully for brain-computer interfaces (BCI). Frequency bands and
channels configuration that relate to brain activities associated with
BCI tasks are often pre-decided as default in EEG analysis without
deliberations. However, a steady configuration usually loses effect-
s due to individual variability across different subjects in practical
applications. In this paper, we propose an adaptive boosting algorith-
m in a unifying theoretical framework to model the usually prede-
termined spatial-spectral configurations into variable preconditions,
and further introduce a novel heuristic of stochastic gradient boost
for training base learners under these preconditions. We evaluate the
effectiveness and robustness of our proposed algorithm based on t-
wo data sets recorded from diverse populations including the healthy
people and stroke patients. The results demonstrate its superior per-
formance.

1 Introduction

Brain-computer interface (BCI) provides a communication system
between human brain and external devices. Among assorts of brain
diffused signals, electroencephalogram (EEG), which is recorded by
noninvasive methods, is the most exploited brain signals in BCI stud-
ies. With respect to the topographic patterns of brain rhythm modula-
tions, the Common Spatial Patterns (CSP) [14] algorithm has proven
to be very useful to extract subject-specific, discriminative spatial
filters. However, CSP is limited in many situations and it is not op-
timized for the EEG classification problem. One issue is that CSP is
known to be very sensitive to frequency bands related to brain activi-
ty associated with BCI tasks [8]. So far the frequency band on which
the CSP algorithm operates is either selected manually or unspecif-
ically set to a broad band filter, e.g., [14]. Another issue is the over-
fitting problem for CSP when faced with large number of channels
[6]. The risk of overfitting the classifier and spatial filter increases
with the number of irrelevant channels. Therefore, a simultaneous
optimization of a frequency filter with the spatial filter is highly de-
sirable given the individual variability across different subjects.

Recently, the CSSP and CSSSP algorithms are presented in [8]
and [2], in which a spatial and a spectral filter are simultaneously op-
timized to enhance discriminability rates of multichannel EEG. Al-
though the results show an improvement of the CSSP and CSSSP
algorithms over CSP, the flexibility of the frequency filters is still
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very limited. Moreover, most of these algorithms aim at extracting
the EEG patterns of only healthy people, and do not evidence their
effectiveness and robustness when applied on EEG collected from
some special populations suffering from neurophysiological diseases
(e.g., stroke). Some previous studies [11, 15] have proved that EEG
patterns in stroke patients differ from those of healthy people in both
spectral and spatial domains. According to some fMRI and PET s-
tudies [11], there is a dynamic change in the activation pattern during
recovery and new pattern may deviate from that of healthy subject-
s. Therefore, cortex regions responded to motor imagery may vary
over time. Shahid et al. [15] have reported that active rhythms may
have been migrated and modulated during rehabilitation in affected
hemisphere. In this case, there may be a sharp deterioration in perfor-
mance when traditional algorithms are directly applied on extracting
these actual activation patterns of stroke patients.

In this paper, we propose an adaptive common spatial-spectral
boosting pattern (CSSBP) for BCI based paradigms, which attempts
to model the channel and frequency configuration as preconditions
before learning base learners and introduces a new heuristic of s-
tochastic gradient boost for training base learners under these pre-
conditions. Similar with boosting, the algorithm produces a set of the
most contributed channel groups and frequency bands, which could
be taken as effective instructions for CSP. We evaluate the effective-
ness and robustness of our proposed algorithm on two different data
sets recorded from diverse populations including the healthy people
and stroke patients. We would like to stress that the novel CSSBP
algorithm is by no means limited to BCI applications. On the con-
trary it is a completely generic new signal processing technique that
is applicable for all general single trial EEG settings that require dis-
crimination between EEG states.

2 Common Spatial-Spectral Boosting Pattern
(CSSBP)

2.1 Problem Modeling

Two issues are often pre-decided as default in EEG analysis without
deliberations: (1) How many and which channels should we take for
analysis? (2) Which frequency band should we filter raw EEG signal-
s into before feature extraction? A steady configuration usually loses
effects due to individual variability across different subjects in prac-
tical applications. Therefore, an improved dynamic configuration is
required in this case.

For each subject, denote that Etrain = {xn, yn}Nn=1 as the EEG
training data set and En as the nth sample with label yn. Total chan-
nels of EEG are taken into use so that En is a (time∗samplerate)×
channels matrix. In summary, our goal for spatial-spectral selection
could be generalized as one problem, that is, under a universal set of

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-537

537



all possible pre-conditions V we aim to find a subset W ⊂ V which
produces a combination model F by combing all sub-model learned
under condition Wk(Wk ∈ W) and minimize the classification error
on the data set Etrain:

W∗ = argmin
W

1

N
| {En : F (xn,W) �= yn}Nn=1 | (1)

In the following part of this section, we will firstly model 3 ho-
mogeneous problems in detail and then propose an adaptive boost
algorithm to solve them.
Spatial Channel Selection Denote the set of all channels as C. De-
note U as a universal set including all possible channels subsets so
that each subset Uk in U satisfies |Uk| ≤ |C|, here we use |.| to rep-
resent the size of the corresponding set. For convenience, we use a
1 × |C| binary vector to represent Uk, with 1 indicates the corre-
sponding channel in C is selected while 0 not. Consider our original
goal, for channel selection, we aim at detecting an optimal channel
set S(S ⊂ U), which produces an optimal combination classifier
F on the training data by combining base classifiers learned under
different channel set preconditions. Therefore we get:

F (Etrain;S) =
∑
Sk∈S

αkfk (Etrain;Sk) (2)

where F is the optimal combination model, fk is kth submodel
learned with channel set precondition Sk, Etrain is the training
dataset, and αk is combination parameter. Multiplying the original
EEG En with the obtained spatial filter leads to a projection of En

on channel set Sk, which is the so-called channel selection.
Frequency Band Selection Spectra is not a discreet variable as spa-
tial channels. For simplication, we enable only the integer points on
a closed interval G (like [8, 30]Hz). Denote B as a sub-band we split
from global band G and D as a universal set including all possible
sub-bands produced by splitting. Note that the splitting procedure is
supervised under following constrains:

• Cover: ∪B∈DB = G
• Length: ∀B = [l, h] ∈ D, Lmin ≤ h − l ≤ Lmax, where Lmin

and Lmax are two constants to determine the length of B.
• Overlap: ∀Bmin = [l, l + 1] ⊂ G, ∃B1, B2 ∈ D, Bmin ⊆ B1 ∩

B2

• Equal: ∀Bmin = [l, l + 1] ⊂ G, | {B : Bmin ⊂ B,B ∈ D} | =
C, where C is a constant

These constrains guarantee that the set D, consisted of finite sub-
bands, will not underrepresent the original continuous interval and
each band in D has an appropriate length. Accordingly, a sliding
window strategy is proposed to produce D. Four variables, includ-
ing the start offset L, the step length S, the sliding window width
W and the terminal offset T , are determined during the process. In
each loop when we set up a parameter group (Li, Si,Wi, Ti), where
i = 1 . . . I , the sliding process Slide(L, S,W,F ) is beginning: a
band window with width Wi slides from the start point Li (left edge)
with a step length Si until it reaches the terminal point Ti (right edge)
and output all sliding windows as sub-bands:

BandSeti = Slide(Li, Si,Wi, Ti) (3)

By changing the parameter group (L, S,W, T ), we produce the u-
niversal band set D consisted of various bands with different start
points, widths and terminuses:

D =
I⋃

i=1

BandSeti (4)

For band selection, we aim at detecting an optimal band set B(B ⊂
D), which is consisted of all active sub-band and produces an optimal
combination classifier F on the training data:

F (Etrain;B) =
∑
Bk∈B

αkfk (Etrain;Bk) (5)

where fk is the kth sub-model learned under band filter precondition
Bk. In our simulation study, a bandpass filter is employed to filter the
raw EEG into band Bk.
Combination For combining channel selection with frequency se-
lection, we denote a two-tuple vk = (Sk,Bk) as a spatial-spectral
precondition and denote V as a set of all contributed two-tuple pre-
conditions. Then the combination function F can be easily trans-
formed as:

F (Etrain;V) =
∑
vk∈V

αkfk (Etrain; vk) (6)

2.2 Learning Algorithm

An adaptive boosting algorithm, mainly containing two steps of
training step and greedy optimization step, is proposed for learning
the optimal spatial and spectral filters.
Training step. This step models the different preconditions proposed
above into different base learners. For each precondition vk ∈ V ,
the EEG segments in the training data set Etrain are filtered under
condition vk. CSP is employed to extract features from Etrain and
then a classifier fk(Etrain; γ(vk)) is trained, where γ is the model
parameter determined by both vk and Etrain. This step establish-
es a one-to-one relationship between precondition vk and its related
learner fk so that Equation 1 can be transformed as:

{α, v}K0 = min
{α,v}K0

N∑
n=1

L(yn,

K∑
k=0

αkfk(xn; γ(vk))) (7)

where K is the number of base learners (iteration times) and L is the
loss function.
Greedy Optimization Step. Equation 7 can be solved with a greedy
approach [5, 7]. Note that

F (Etrain, γ, {α, v}K0 ) =

K−1∑
k=0

αkfk(Etrain; γ(vk))

+ αKfK(Etrain; γ(vK))

(8)

we can conclude a simple recursion formula: Fk(Etrain) =
Fk−1(Etrain) + αkfk(Etrain; γ(vk)). To estimate fk and αk, we
presuppose that Fk−1(Etrain) has been determined so we get:

Fk(Etrain) = Fk−1(Etrain)

+ argmin
f

N∑
n=1

L (yn, [Fk−1(xn) + αkfk (xn; γ(vk))])
(9)

A steepest gradient descent [4] is introduced to minimize Equation
9. Given the pseudo-residuals:
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rπ(n)k = −∇FL(yπ(n), F (xπ(n)))

= −
[
∂L(yπ(n), F (xπ(n)))

∂F (xπ(n))

]
F (xπ(n))=Fk−1(xπ(n))

(10)

where {π(n)}N̂n=1 is the first N̂ members of a random permutation

of {n}Nn=1. Then, a new set
{
(xπ(n), rπ(n)k)

}N̂

n=1
, which implies

a stochastically-partly best descent step direction, is generated and
utilized to learn the model parameter γ(vk):

γk = argmin
γ,ρ

N̂∑
n=1

[
rπ(n)k − ρf(xπ(n); γk(vk))

]
(11)

As we have mentioned before, an one-to-one mapping between
γk and vk has been established so that we can naturally determine
vk when γk is definite. Note that in Equation 10 we use a random
subset {π(n)}N̂n=1, instead of the full training data {n}Nn=1, to fit
the kth base learner fk. This stochastic gradient is firstly introduced
in [5] to incorporate randomness in the stagewise iteration for im-
proving performances. Different from the original stochastic gradi-
ent which use a completely random strategy, in our study we use
a ”Resample” heuristic for generating stochastic sequences. During
the iteration process, we maintain a self-adjusted training data pool
P at background. In each iteration, we select {π(n)}N̂n=1 from P
instead of from the original training set {xn, yn}Nn=1, as Algorithm
1 details. This strategy has been verified quite effective in our sim-
ulation studies because it not only conjoins randomness brought by
stochastic gradient but also introduce a latent weighting mechanism
for training samples that are false classified.

Algorithm 1 Resample Heuristic Algorithm for Stochastic Subset
Selection

1: Initialize the training data pool P0 = Etrain = {xn, yn}Nn=1;
2: for k = 1 to K do

3: Generate a random permutation {π(n)}|Pk−1|
n=1 =

randperm({n}|Pk−1|
n=1 );

4: Select the first N̂ elements {π(n)}N̂n=1 as
{
xπ(n), yπ(n)

}N̂

n=1
from P0;

5: Use {π(n)}N̂n=1 to optimize the new learner fk and its related
parameters as in Algorithm 2;

6: Use current local optimal classifier Fk to split the original
training set Etrain = {xn, yn}Nn=1 into two parts Ttrue =
{xn, yn}n:yn=Fk(xn)

and Tfalse = {xn, yn}n:yn �=Fk(xn)
;

Re-adjust the training data pool:

7: for each (xn, yn) ∈ Tfalse do

8: Select out all (xn, yn) ∈ Pk−1 as
{
xn(m), yn(m)

}M

m=1
;

9: Copy
{
xn(m), yn(m)

}M

m=1
with d(d ≥ 1) times so that we

get total (d+ 1)M duplicated samples;
10: Return these (d + 1)M samples into Pk−1 and we get a

new adjusted pool Pk;
11: end for

12: end for

With γk(vk) , we can easily determine the combination coefficient
αk by solving:

αk = argmin
α

N∑
n=1

L(yn, Fk−1(xn) + αfk(xn; γk(vk))) (12)

In summary, we give a simple framework of the whole process in
pseudocode in Algorithm 2 (leave out some details about resample
heuristic, which has been detailed in Algorithm 1).

2.3 Parameter Estimation

Some remained problems about parameters determination is worth
clarification. The iteration time K, which also determines the com-
plexity of the final combination model F , is picked by using the early
stopping strategy [17]. Consider N̂ , the size of the stochastic subset:
if we decrease the ratio N̂/N , more randomness will be brought into
the iteration, while, increasing this ratio provides more samples to
train a more robust local base learner fk. To choose an appropriate
N̂ , we use model selection methods to search in a constrained range.
In our simulation study we set N̂/N ≈ 0.7 and we have achieved a
relatively satisfied performance and short training period. In terms of
d, the copies of incorrect-classified samples when adjusting P , it is
determined by the the local classification error e = |Tfalse|/N :

d = max

(
1, �1− e

e+ ε
�
)

(13)

where ε is an accommodation coefficient. Note that e is always s-
maller than 0.5 and will decrease during the iteration so that a larg-
er penalty will be given on samples that are incorrect classified by
stronger classifiers. This strategy warrants that the distribution of the
samples in P will not change too much until F has got a strong
enough description ability about the training data. As for the loss
function L, we simply choose the squared error loss for calculation
convenience.

Algorithm 2 The Framework of Common Spatial-Spectral Boosting
Pattern (CSSBP) Algorithm

Input: {xn, yn}Nn=1: EEG training set; L(y, x): The loss function;
K: The capacity of the optimal precondition set (number of base
learners); V: A universal set including all possible preconditions;

Output: F : The optimal combination classifier; {fk}Kk=1: The base
learners; {αk}Kk=1: The weights of base learners; {vk}Kk=1: The
preconditions under which base learners are trained.

1: Feed {xn, yn}Nn=1 and V into a classifier using CSP as the fea-
ture extraction method to produce a family of base learners F ,
so that a one-to-one mapping is established: F ↔ V ;

2: Initialize P0, F0(Etrain) = argminα

∑N
n=1 L(yn, α);

3: for k = 1 to K do

4: Optimalize fk(Etrain; γ(vk)) as described in Equation 11;
5: Optimalize αk as described in Equation 12;
6: Update Pk as in Algorithm 1 and Fk(Etrain) =

Fk−1(Etrain) + αkfk(Etrain; γ(vk)) ;
7: end for

8: for each fk(Etrain; γ(vk)), use the mapping F ↔ V to find its
corresponded precondition vk;

9: return F, {fk}Kk=1 , {αk}Kk=1 , {vk}Kk=1;

3 Experimental Configuration

To test the generalization and robustness of our method, we assemble
two different datasets collected from diverse populations including
healthy people and stroke patients performing motor imagery.

3.1 Data Acquisition

Dataset I was collected from five healthy subjects (labeled ’aa’, ’al’,
’av’, ’aw’ and ’ay’ respectively) performing right hand and foot mo-
tor imagery in a benchmark dataset of dataset IVa from the famous
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BCI competition III [1]. Two types of visual cues, a letters appearing
behind a fixation cross and a randomly moving object, shown for 3.5
s were used to indicate the target class. The EEG signal was recorded
from 118 Ag/AgCl electrodes, band-pass filtered between 0.05 and
200 Hz, and down-sampled to 100 Hz. We extracted a time segment
located from 500 to 2500 ms. Each type of imagination was carried
out 140 times. Thus 280 trials were available for each subject.

Dataset II was collected from five stroke patients performing left
or right upper limbs movement in a BCI-FES rehabilitation system
[9]. All the patients had to participate in BCI-FES rehabilitation
training for 24 times in two months (three times per week). EEG
was recorded by a 16-channel (FC3, FCZ, FC4, C1-C6, CZ, CP3,
CPZ, CP4, P3, PZ and P4) g.USBamp amplifier at a sampling rate
of 256 Hz. We selected 100 left and 100 right trials for each patient
and divided the data into a training set (120 trials) and testing set (80
trials). Motor imagery of one trial lasted for 4 seconds.

3.2 Data Preprocessing

Firstly, we employ FastICA to remove artifacts arising from eye
and muscle movements. Afterwards, EEG signals are bandpass fil-
tered within a specific frequency band related to motor imagery. For
healthy people, exemplary spectral characteristics of EEG in motor
imagery tasks are α rhythm (8-13 Hz) and β rhythm (14-30 Hz) [14].
However, it is not available to obtain the spectral characteristics re-
lated to motor imagery of some special populations suffering from
neurophysiological diseases (e.g., stroke) [11, 15]. Therefore, EEG
signals in Dataset I are bandpass filtered between 8 and 30 Hz, which
encompasses both the α and the β rhythm. Raw data in Dataset II is
preprocessed by the band filter in a general range (5-40 Hz).

3.3 Feature Extraction and Classification

In order to evaluate our proposed algorithm, we apply Power Spec-
tral Density (PSD), Phase Synchrony Rate (SR) [16], the original
CSP [14], regularized CSP (RCSP) [10], the sub-band CSP (SBCSP)
[12], the extended Common Spatial Spectral Pattern (CSSP) [8] and
the Common Sparse Spectral Spatial Pattern (CSSSP) [2] on the two
datasets for feature extraction. PSD features are calculated by a fast
Fourier transform. Weighted Tikhonov Regularization is chosen for
RCSP, as it reaches both the highest median and mean accuracy and
has only one single hyperparameter to tune (α) [10]. Note that all the
model parameters (α for RCSP, τ for CSSP and C for CSSSP) are
chosen on the training set using a 5-fold cross validation procedure.
Afterwards, we employ a Fisher score strategy for feature selection,
as more features cannot improve the training accuracy. Fisher score

(a variant, ‖μ+−μ−‖2
σ++σ− , is used in the actual computation), which mea-

sures the discriminability of individual feature for classification task,
is computed for each individual feature in the feature vector. Then
features with n-largest Fisher scores are retained as the most dis-
criminative features.

A linear support vector machine (SVM), which achieves high-
level performance in many applications, is utilized as the classifier.
A 5-fold cross-validation is used to choose suitable SVM parameters
to predict the labels of test datasets.

4 Results

4.1 Results on Dataset I

Classification accuracy. For Dataset I, Table 1 gives a detailed of-
fline classification results for all the competing algorithms and our

proposed algorithm. The optimal feature dimensionality for each al-
gorithm is determined according to the training performance, as more
features cannot improve the training accuracy. One can clearly ob-
serve that CSSBP yields superior recognition accuracies against oth-
er algorithms for all the given subjects, e.g., the averaged classifica-
tion rate for CSSBP is 90.75%, for CSSSP 85.90%, and for CSSP
85.12%, and for CSP 84.33%.

Table 1. Experimental results on the test accuracies (mean and standard
deviation (Std) in %) obtained for each subject in Dataset I for all the

competing algorithms and our proposed algorithm CSSBP.

Subject aa al av aw ay Mean Std

PSD 64.63 83.44 54.74 65.39 75.43 68.73 11.01
SR 69.44 92.48 55.22 73.84 90.75 76.35 15.56
CSP 84.62 94.62 61.42 89.61 91.36 84.33 13.31
RCSP 84.89 93.83 66.01 89.72 90.56 85.00 11.09
SBCSP 84.42 96.92 68.24 87.61 91.32 85.70 10.81
CSSP 87.66 96.43 63.27 88.29 90.26 85.12 12.73
CSSSP 88.12 96.88 64.68 89.25 90.59 85.90 12.34
CSSBP 93.39 97.82 75.72 93.48 93.36 90.75 8.62

Spatial and spectral patterns. Apart from the superior classification
performance, we try to observe the spatial patterns (spatial weights)
and spectral patterns (spectral weights) obtained by CSSBP by visu-
alizing them in 2-D graphs.

Figure 1. EEG patterns extracted by CSP and CSSBP for each subject in
Dataset I (top to bottom: aa, al, av, aw and ay). Left part: the spatial patterns

obtained by CSP. Right part: the spatial-spectral weights obtained by
CSSBP. Note that x axis in ’spatial weight’ histogram represents the 21

chosen channels over the motor cortex (left to right : CP6, CP4, CP2, C6,
C4, C2, FC6, FC4, FC2, CPZ, CZ, FCZ, CP1, CP3, CP5, C1, C3, C5, FC1,

FC3, FC5) while y-axis describes the normalized weights. x axis in ’spectral
weight’ subfigure shows the frequency band [8, 30] Hz while y-axis displays

the normalized weights.

(1) Spatial-spectral weights. We have reserved the optimal channel
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sets S, sub-bands B and their weights α, which construct the classifi-
cation committee, to measure spatial-spectral changes. We calculate
a quantitative vector L =

∑
Si∈S αiSi to represent the classification

weight of each channel in the channel set C. Similarly, the weight of
each sub frequency band is calculated and then projected onto [8,
30]. In this case, the most contributed channel groups and active fre-
quency bands are selected.

(2) Peak amplitude of CSSBP filtered EEG. Besides the spatial and
spectral patterns, temporal information in CSSBP filtered EEG is al-
so obtained and visualized. The training data set can be preprocessed
by the kth spatial-spectral precondition denoted by vk ∈ V , result-
ing in a new training data on which CSP is employed to seek the
spatial patterns (spatial filters) together with corresponding compo-
nents that are the mostly discriminant between right hand and right
foot imagination tasks. Then the first two components obtained by
CSP are projected back to the sensor space, yielding the CSP filtered
EEG signals. For the filtered EEG signals Ek, the peak amplitude
value from each channel Ci ∈ C can be obtained and denoted by
PkCi . By averaging the PkCi over all conditions vk ∈ V evaluated
by P̂Ci = 1

| V|
∑

vk∈V αkPkCi where αk denotes the correspond-
ing weight for the kth condition, we visualize them through the 2-D
topoplot map.

Fig. 1 shows the spatial filters obtained by CSP and the spatial-
spectral weights obtained by CSSBP for all the five subjects. Fig. 2
gives 2-D topoplot maps of peak amplitudes of CSSBP filtered EEG
in each channel. In general, these pictures show that the important
channels obtained by CSSBP for four subjects (except av) are physi-
ologically relevant, with strong weights over the motor cortex areas,
as expected from the literature [13]. Almost identical with the chan-
nels obtained by CSP, contributed channels obtained by CSSBP are
located in central cortical area (for right foot imagination) and left
cortical area (for right hand imagination). In terms of spectral char-
acteristic, the spectral filter for all the subjects mainly focuses on α
rhythm and β rhythm, but the slight weight difference between high-
er band and lower band represents a diversity in spectral patterns
between subjects.

Subject aa Subject al Subject av Subject aw Subject ay

Figure 2. 2-D topoplot maps of peak amplitude of CSSBP filtered EEG in
each channel for all the subjects in Dataset I.

4.2 Results on Dataset II

Classification accuracy. For each patient in Dataset II, classification
accuracy in each day is calculated under different feature dimension-
alities. Then classification accuracies in the same week are averaged
to represent the mean accuracy of the week. After that, those mean
accuracies of the eight weeks are averaged to represent the mean
accuracy of the corresponding patient. Fig. 3 shows the mean ac-
curacies of all the methods under different feature dimensionalities.
For all the patients, the accuracies of all the methods change greatly
with the increase of feature dimensionality. Another important obser-
vation is that CSSBP has the best performance among all the algo-
rithms. Comparisons using a Mann-Whitney U test between CSSBP
and the other methods show that the accuracies provided by CSSBP

are significantly higher than the other competing methods (All CSS-
BP vs. each in the competing methods: p < 0.05). The classification
accuracies by CSSBP for almost all the patients could even exceed
70%.
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Figure 3. The mean accuracies obtained for each stroke patient in Dataset
II for all the competing algorithms and our proposed algorithm CSSBP

under different feature dimensionalities. (a) Patient 1 (b) Patient 2 (c) Patient
3 (d) Patient 4 (e) Patient 5 (f) Group mean.

Spatial and spectral patterns. Furthermore, we give a comparison
on the EEG patterns of stroke patients extracted by CSP and CSSBP.
Fig. 4 shows the results of the first two discriminant spatial patterns
obtained by CSP and spatial-spectral weights calculated by CSSBP
on day 30, which may provide insights to the underlying cortical ac-
tivity pattern of stroke patients. Fig. 5 gives 2-D topoplot maps of
peak amplitudes in CSSBP filtered EEG time series for all the chan-
nels. In general, the spatial filters obtained by CSP appear as messy,
with large weights in several unexpected locations from a neurophys-
iological point of view. On the contrary, CSSBP filters are physiolog-
ically more relevant. In detail, for patients with lesion in right side
(all except Patient 2), the most significant channels for right move-
ment imagination are focused at around left central areas (like C3);
however, the channels contributed to left movement imagination are
with strong weights over not only the right central areas (like C4) but
also the frontal-central and parietal areas (like FC4 and P4). Similar
phenomena are also reported in some other study [3]. As for spectral
characteristics, it can be seen that there exists a significant variety of
the discriminative bands among different subjects, e.g. for Patient 2,
active frequency bands are concentrated at higher bands (28-35 Hz)
while the discriminative frequencies related to motor imagery of Pa-
tient 1 are decentralized at wide-ranged bands (15-30 Hz). Similar
observation is also reported from literature [15].

Y. Liu et al. / Common Spatial-Spectral Boosting Pattern for Brain-Computer Interface 541



5 Discussion and Conclusion

In past BCI research, CSP has been proven that its performance
can suffer when non-discriminative brain rhythms with an overlap-
ping frequency range interfere. Moreover, CSP is reported to have
a high tendency to overfit in large number of channels, and is sen-
sitive to frequency band. Thus the performance of CSP depends on
prior knowledge of channels configuration and frequency bands re-
lated to the specific brain activity. Unfortunately, the spatial and spec-
tral characteristics in some specific paradigms (like some disease
treatment paradigms) are not available. CSSBP successfully over-
comes these problems by simultaneously integrating channel selec-
tion with frequency selection to construct a combination classifier
for improving the classification performance. The successfulness of
CSSBP when comparing it to some CSP based algorithms is demon-
strated on two different data sets recorded from diverse populations
including healthy people and stroke patients. In our simulation ex-
periments, the results also show that there exists a significant variety
of the discriminative bands among different subjects. This variety
makes it necessary for traditional approaches to be tuned in a time-
consuming manner so as to achieve the optimal performance. Our ap-
proach overcomes such a fine tuning process and can easily achieve
results close to the optimum.

Spatial (Right) Spatial (Left) Spatial weight Spectral weight

CSP Spatial Patterns CSSBP Spatial-Spectral Weights

Figure 4. EEG patterns extracted by CSP and CSSBP for each patient in
Dataset II on day 30 (from top to bottom: Patient 1-5). Left part: the spatial
patterns obtained by CSP. Right part: the spatial-spectral weights obtained
by CSSBP. Note that x axis in ’spatial weight’ histogram represents all the
recorded channels (left to right : P4, PZ, P3, CP4, CPZ, CP3, C6, C4, C2,

CZ, C1, C3, C5, FC4, FCZ and FC3) while y-axis describes the normalized
weights. x axis in ’spectral weight’ subfigure shows the frequency band [5,

40] Hz while y-axis displays the normalized weights.

Apart from the excellent classification performance of CSSBP, an-
other advantage is that an interpretable spatial and temporal filter
is learned from data, which allow us to explore neurophysiologic
knowledge of brain activity in some special populations. e.g., when
applied on analyzing EEG recorded from stroke patients, the most
contributed channels and active frequency band obtained by CSSBP
are physiologically more relevant, from a neurophysiological point

Figure 5. 2-D topoplot maps of peak amplitude of CSSBP filtered EEG in
each channel for all the patients in Dataset II on day 30.

of view, than the messy CSP filters. This suggests that another bene-
fit of CSSBP is providing insights to the underlying EEG activity.
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