
LTLf Satisfiability Checking

Jianwen Li 1 and Lijun Zhang 2 and Geguang Pu1 and Moshe Y. Vardi 3 and Jifeng He1

Abstract. We consider here Linear Temporal Logic (LTL) formu-
las interpreted over finite traces. We denote this logic by LTLf . The
existing approach for LTLf satisfiability checking is based on a re-
duction to standard LTL satisfiability checking. We describe here a
novel direct approach to LTLf satisfiability checking, where we take
advantage of the difference in the semantics between LTL and LTLf .
While LTL satisfiability checking requires finding a fair cycle in an
appropriate transition system, here we need to search only for a finite
trace. This enables us to introduce specialized heuristics, where we
also exploit recent progress in Boolean SAT solving. We have imple-
mented our approach in a prototype tool and experiments show that
our approach outperforms existing approaches.

1 Introduction

Linear Temporal Logic (LTL) was first introduced into computer sci-
ence as a property language for the verification for non-terminating
reactive systems [9]. Following that, many researches in AI have
been attracted by LTL’s rich expressiveness. Examples of applica-
tions of LTL in AI include temporally extended goals in planning
[3], plan constraints [1], and user preferences [13].

In a recent paper [5], De Giacomo and Vardi argued that while
standard LTL is interpreted over infinite traces, cf. [9], AI applica-
tions are typically interested only in finite traces. For example, tem-
porally extended goals are viewed as finite desirable sequences of
states and a plan is correct if its execution succeeds in yielding one
of these desirable sequences. Also in the area of business-process
modeling, temporal specifications for declarative workflows are in-
terpreted over finite traces [14]. De Giacomo and Vardi, therefore, in-
troduced LTLf , which has the same syntax as LTL but is interpreted
over finite traces.

In the formal-verification community there is by now a rich body
of knowledge regarding automated-reasoning support for LTL. On
one hand, there are solid theoretical foundations, cf. [15]. On the
other hand, mature software tools have been developed, such as
SPOT [4]. Extensive research has been conducted to evaluate these
tools, cf. [10]. While the basic theory for LTLf was presented at [5],
no tool has yet to be developed for LTLf , to the best of our knowl-
edge. Our goal in this paper is to address this gap.

Our main focus here is on the satisfiability problem, which asks
if a given formula has satisfying model. This most basic automated-
reasoning problem has attracted a fair amount of attention for LTL
over the past few years as a principled approach to property assur-
ance, which seeks to eliminate errors when writing LTL properties,
cf. [10, 8].

1 East China Normal University. Geguang Pu is the corresponding author.
2 State Key Laboratory of Computer Science, Institute of Software, Chinese

Academy of Sciences.
3 Rice University, USA.

De Giacomo and Vardi studied the computational complexity of
LTLf satisfiability and showed that it is PSPACE-complete, which is
the same complexity as for LTL satisfiability [12]. Their proof of the
upper bound uses a reduction of LTLf satisfiability to LTL satisfia-
bility. That is, for an LTLf formula φ, one can create an LTL formula
φ′ such that φ is satisfiable iff φ′ is satisfiable; furthermore, the trans-
lation from φ to φ′ involves only a linear blow-up. The reduction to
LTL satisfiability problem can, therefore, take advantage of existing
LTL satisfiability solvers [11, 8]. On the other hand, LTL satisfiabil-
ity checking requires reasoning about infinite traces, which is quite
nontrivial algorithmically, cf. [2], due to the required fair-cycle test.
Such reasoning is not required for LTLf satisfiability. A reduction to
LTL satisfiability, therefore, may add unnecessary overhead to LTLf

satisfiability checking.
This paper approaches the LTLf satisfiability problem directly. We

develop a direct, and more efficient, algorithm for checking satisfia-
bility of LTLf , leveraging the existing body of knowledge concerning
LTL satisfiability checking. The finite-trace semantics for LTLf is
fully exploited, leading to considerable simplification of the decision
procedure and significant performance boost. The finite-trace seman-
tics also enables several heuristics that are not applicable to LTL sat-
isfiability checking. We also leverage the power of advanced Boolean
SAT solvers in our decision procedure. We have implemented the
new approach and experiments show that this approach significantly
outperforms the reduction to LTL satisfiability problems.

The paper is organized as follows. we first introduce the defini-
tion of LTLf , the satisfiability problem, and the associated transition
system in Section 2. We then propose a direct satisfiability-checking
framework in Section 3. We discuss various optimization strategies
in Section 4, and present experimental results in Section 5. Section 6
concludes the paper.

2 Preliminaries

2.1 LTL over Finite Traces

The logic LTLf is a variant of LTL. Classical LTL formulas are inter-
preted on infinite traces, whereas LTLf formulas are defined over the
finite traces. Given a set P of atomic propositions, an LTLf formula
φ has the form:

φ ::= tt | ff | p | ¬φ | φ ∨ φ | φ ∧ φ |Xφ |Xwφ | φUφ | φRφ
where X(strong Next), Xw(weak Next), U (Until), and R(Release)

are temporal operators. We have Xwφ ≡ ¬X¬φ and φ1Rφ2 ≡
¬(¬φ1U¬φ2). Note that in LTLf , Xφ ≡ Xwφ is not true, which is
however the case in LTL.

For an atom a ∈ P , we call it or its negation (¬a) a literal. We
use the set L to denote the set of literals, i.e. L = P ∪ {¬a|a ∈ P}.
Other boolean operators, such as → and ↔, can be represented by
the combination (¬,∨) or (¬,∧), respectively, and we denote the
constant true as tt and false as ff. Moreover, we use the notations Gφ

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-513

513

(Global) and Fφ (Eventually) to represent ffRφ and ttUφ. We use
φ, ψ to represent LTLf or LTL formulas, and α, β for propositional
formulas.

Note that standard LTLf has the same syntax as LTL, see [5]. Here,
however, we introduce the Xw operator, as we consider LTLf formu-
las in NNF (Negation Normal Form), which requires all negations to
be pushed all the way down to atoms. So a dual operator for X is
necessary. In LTL the dual of X is X itself, while in LTLf it is Xw.
Proviso: In the rest of paper we assume that all formulas (both LTL
and LTLf) are in NNF, and thus there are types of formulas, based
on the primary connective: tt, ff, literal, ∧, ∨, X (and Xw in LTLf),
U and R.

The semantics of LTLf formulas is interpreted over finite traces,
which is referred to as the LTLf interpretations [5]. Given an atom
set P , we define Σ := 2L. Let η ∈ Σ∗ with η = ω0ω1 . . . ωn, we use
|η| = n+ 1 to denote the length of η. Moreover, for 1 ≤ i ≤ n, we
use the notation ηi to represent ω0ω1 . . . ωi−1, which is the prefix
of η before position i (i is not included). Similarly, we also use ηi
to represent ωiωi+1 . . . ωn, which is the suffix of η from position i.
Then we define η models φ, i.e. η |= φ in the following way:

• η |= tt and η
|= ff;
• If φ = p is a literal, then η |= φ iff p ∈ η1;
• If φ = Xψ, then η |= φ iff |η| > 1 and η1 |= ψ;
• If φ = Xwψ, then η |= φ iff |η| > 1 and η1 |= ψ, or |η| = 1;
• If φ = φ1Uφ2 is an Until formula, then η |= φ iff there exists

0 ≤ i < |η| such that ηi |= φ2, and for every 0 ≤ j < i it holds
ηj |= φ1 as well;

• If φ = φ1Rφ2 is a Release formula, then η |= φ iff either for
every 0 ≤ i < |η| ηi |= φ2 holds, or there exists 0 ≤ i < |η| such
that ηi |= φ1 and for all 0 ≤ j ≤ i it holds ηj |= φ2 as well;

• If φ = φ1 ∧ φ2, then η |= φ iff η |= φ1 and η |= φ2;
• If φ = φ1 ∨ φ2, then η |= φ iff η |= φ1 or η |= φ2.

The difference between the strong Next (X) and the weak Next
(Xw) operators is that X requires a next state in the following while
Xw may not. Thus Xwφ is always true in the last state of a finite
trace, since no next state is provided. As a result, in LTLf Xff is
unsatisfiable, while Xwff is satisfiable, which is quite different with
that in LTL, where neither Xff nor ¬X¬tt are satisfiable.

Let φ be an LTLf formula, we use CF (φ) to represent the set of
conjuncts in φ, i.e. CF (φ) = {φi|φi ∈ I} if φ =

∧
i∈I φi, where

the root of φi is not a conjunction. DF (φ) (the set of disjuncts) is
defined analogously.

2.2 The LTLf Satisfiability Problem

The satisfiability problem is to check whether, for a given LTLf for-
mua φ, there is a finite trace η ∈ Σ∗ such that η |= φ:

Definition 1 (LTLf Satisfiability Problem). Given an LTLf formula
φ over the alphabet Σ, we say φ is satisfiable iff there is a finite trace
η ∈ Σ∗ such that η |= φ.

One approach is to reduce the LTLf satisfiability problem to that
of LTL.

Theorem 1 ([5]). The Satisfiability problem for LTLf formulas is
PSPACE-complete.

Proof Sketch: It is easy to reduce the LTLf satisfiability to LTL
satisfiability:

1. Introduce a proposition “Tail”;
2. Require that Tail holds at position 0;
3. Require also that Tail stays tt until it turns into ff, and after that

stays ff forever (TailU(G¬Tail)).
4. The LTLf formula φ is translated into a corresponding LTL for-

mula in the following way:

• t(p) → p, where p is a literal;

• t(¬φ) = ¬t(φ);
• t(φ1 ∧ φ2) → t(φ1) ∧ t(φ2);

• t(φ1 ∨ φ2) → t(φ1) ∨ t(φ2);

• t(Xψ) → X(Tail ∧ t(ψ));

• t(φ1Uφ2) → φ1U(Tail ∧ t(φ2));

(The translation here does not require φ in NNF. Thus the Xw and R
operators can be handled by the rules Xwφ ≡ ¬X¬φ and φ1Rφ2 ≡
¬(¬φ1U¬φ2).) Finally one can refer to [5] that φ is satisfiable iff
Tail ∧ TailU(G¬Tail) ∧ t(φ) is satisfiable. Also, a PSPACE lower
bound is shown in [5] by reduction from STRIPS Planning.

The reduction approach can take advantage of existing LTL satis-
fiability solvers. But, there may be an overhead as we need to find a
fair cycle during LTL satisfiability checking, which is not necessary
in LTLf checking.

2.3 LTLf Transition System

In [8], Li et al. have proposed using transition systems for checking
satisfiability of LTL formulas. Here we adapt this approach to LTLf .
First, we define the normal form for LTLf formulas.

Definition 2 (Normal Form). The normal form of an LTLf formula
φ, denoted as NF (φ), is a formula set defined as follows:

• NF (φ) = {φ ∧X(tt)} if φ
= ff is a literal. If φ = ff, we define
NF (ff) = ∅;

• NF (Xφ/Xwφ) = {tt ∧X(ψ) | ψ ∈ DF (φ)};
• NF (φ1Uφ2) = NF (φ2) ∪ NF (φ1 ∧X(φ1Uφ2));
• NF (φ1Rφ2) = NF (φ1 ∧ φ2) ∪NF (φ2 ∧X(φ1Rφ2));
• NF (φ1 ∨ φ2) = NF (φ1) ∪NF (φ2);
• NF (φ1 ∧ φ2) = {(α1 ∧ α2) ∧ X(ψ1 ∧ ψ2) | ∀i = 1 , 2 . αi ∧

X(ψi) ∈ NF (φi)};

For each αi ∧Xφi ∈ NF (φ), we say it a clause of NF (φ).

(Although the normal forms of X and Xw formulas are the same,
we do distinguished bethween them through the accepting conditions
introduced below.) Intuitively, each clause αi ∧Xφi of NF (φ) indi-
cates that the propositionl formula αi should hold now and then φi

should hold in the next state. For φi, we can also compute its normal
form. We can repeat this procedure until no new states are required.

Definition 3 (LTLf Transition System). Let φ be the input formula.
The labeled transition system Tφ is a tuple 〈Act, Sφ,−→, φ〉 where:
1). φ is the initial state; 2). Act is the set of conjunctive formulas
over Lφ; 3). the transition relation −→ ⊆ Sφ × Act × Sφ is defined
by: ψ1

α−→ ψ2 iff there exists α ∧ X(ψ2) ∈ NF (ψ1); and 4). Sφ

is the smallest set of formulas such that ψ1 ∈ Sφ, and ψ1
α−→ ψ2

implies ψ2 ∈ Sφ.

Note that in LTL transition systems the ff state can be deleted, as
it can never be part of a fair cycle. This state must be kept in LTLf

transition systems: a finite trace that reach ff may be accepted in

J. Li et al. / LTLf Satisfiability Checking514

LTLf , cf. Xwff. Nevertheless, ff edges are not allowed both in LTLf

and LTL transition systems.
A run of Tφ on finite trace η = ω0ω1 . . . ωn ∈ Σ∗ is a sequence

s0
α0−−→ s1

α1−−→ . . . sn
αn−−→ sn+1 such that s0 = φ and for every

0 ≤ i ≤ n it holds ωi |= αi. We say ψ is reachable from φ iff there
is a run of Tφ such that the final state is ψ.

3 LTLf Satisfiability-Checking Framework

In this section we present our framework for checking satisfiability
of LTLf formulas. First we show a simple lemma concerning finite
sequences of length 1.

Lemma 1. For a finite trace η ∈ Σ∗ and LTLf formula φ, if |η| = 1
then η |= φ holds iff:

• η |= tt and η
|= ff;
• If φ = p is a literal, then return true if φ ∈ η. otherwise return

false;
• If φ = φ1 ∧ φ2, then return η |= φ1 and η |= φ2;
• If φ = φ1 ∨ φ2, then return η |= φ1 or η |= φ2;
• If φ = Xφ2, then return false;
• If φ = Xwφ2, then return true;
• If φ = φ1Uφ2 or φ = φ1Rφ2, then return η |= φ2.

Proof. This lemma can be directly proven from the semantics of
LTLf formulas by fixing |η| = 1.

Now we characterize the satisfaction relation for finite sequences:

Lemma 2. For a finite trace η = ω0ω1 . . . ωn ∈ Σ∗ and LTLf

formula φ,

1. If n = 0, then η |= φ iff there exists αi ∧ Xφi ∈ NF (φ) such
that ω0 |= αi and CF (αi) |= φ;

2. If n ≥ 1, then η |= φ iff there exists αi ∧ Xφi ∈ NF (φ) such
that ω0 |= αi and η1 |= φi;

3. η |= φ iff there exists a run φ = φ0
α0−−→ φ1

α1−−→ φ2 . . .
αn−−→ φn+1

in Tφ such that for every 0 ≤ i ≤ n it holds that ωi |= αi and
ηi |= φi.

Proof. 1. CF (αi) is treated to be a finite trace whose length is 1.
We prove the first item by structural induction over φ.

• If φ = p, then η |= φ iff ω0 |= p and CF (p) |= φ hold, where
p ∧Xtt is actually in NF (φ);

• If φ = φ1 ∧ φ2, then η |= φ holds iff η |= φ1 and η |= φ2

hold, and iff by induction hypothesis, there exists βi ∧Xψi in
NF (φi) such that ω0 |= βi and CF (βi) |= φi (i = 1, 2). Let
αi = β1∧β2 and φ′

i = ψ1∧ψ2, then according to Definition 2
we know αi ∧Xφ′

i is in NF (φ), and ω0 |= αi and CF (αi) |=
φ hold; The proof for the case when φ = φ1 ∨ φ2 is similar;

• Note that η |= Xψ is always false, and if φ = Xwψ then from
Lemma 1 it is always true that η |= Xwψ iff tt∧Xψ ∈ NF (φ)
and tt |= Xwψ;

• If φ = φ1Uφ2, then η |= φ holds iff η |= φ2 holds
from Lemma 1, and iff by induction hypothesis, there exists
αi ∧ Xφi ∈ NF (φ2) such that ω0 |= αi and CF (αi) |= φ2,
and thus CF (αi) |= φ according to LTLf semantics. From
Definition 2 we know as well that αi ∧Xφi is in NF (φ), thus
the proof is done; The proof for the case when φ = φ1Rφ2 is
similar;

2. The second item is also proven by structural induction over φ.

• If φ = tt or φ = p, then η |= φ iff ω0 |= φ and η1 |= tt hold,
where φ ∧Xtt is actually in NF (φ);

• If φ = Xφ2 or φ = Xwφ2, since |η| > 1 so it is obviously
true that η |= φ iff ω0 |= tt and η1 |= φ2 hold according to
LTLf semantics, and obviously tt ∧Xφ2 is in NF (φ);

• If φ = φ1 ∧ φ2, then η |= φ iff η |= φ1 and η |= φ2, and iff
by induction hypothesis, there exists βi ∧Xψi ∈ NF (φi)(i =
1, 2) such that ω0 |= βi and η1 |= ψi hold, and iff ω0 |=
β1∧β2 and η1 |= ψ1∧ψ2 hold, in which (β1∧β2)∧X(ψ1∧ψ2)
is indeed in NF (φ); The case when φ = φ1 ∨ φ2 is similar;

• If φ = φ1Uφ2, then η |= φ iff η |= φ2 or η |= (φ1 ∧Xφ). If
η |= φ2 holds, then by induction hypothesis iff there exists αi∧
Xφi ∈ NF (φ2) such that ω0 |= αi and η1 |= φi. According
to Definition 2 we know αi ∧ Xφi is also NF (φ2). On the
other hand, if η |= φ1 ∧ Xφ holds, the proofs for ∧ formulas
are already done. Thus, it is true that η |= φ iff there exists
αi ∧ Xφi ∈ NF (φ2) such that ω0 |= αi and η1 |= φi; The
case when φ = φ1Rφ2 is similar to prove.

3. Applying the first item if n = 0 and recursively applying the sec-
ond item if n ≥ 1, we can prove the third item.

Lemma 2 states that, to check whether a finite trace η =
ω0ω1 . . . ωn satisfies the LTLf formula φ, we can find a run of Tφ

on η such that η can finally reach the transition φn
αn−−→ φn+1 and

satisfies ωn |= αn, and moreover CF (αn) |= φn. Now we can give
the main theorem of this paper.

Theorem 2. Given an LTLf formula φ and a finite trace η =
ω0 . . . ωn(n ≥ 0), we have that η |= φ holds iff there exists a
run of Tφ on η which ends at the transition ψ1

α−→ ψ2 satisfying
CF (α) |= ψ1.

Proof. Combine the first and third items in Lemma 2, and we can
easily prove this theorem.

We say the state ψ1 in Tφ is accepting, if there exists a transition
ψ1

α−→ ψ2 such that CF (α) |= ψ1. Theorem 2 implies that, the for-
mula φ is satisfiable if and only if there exists an accepting state ψ1

in Tφ which is reachable from the initial state φ. Based on this ob-
servation, we now propose a simple on-the-fly satisfiability-checking
framework for LTLf as follows:

1. If φ equals tt, return φ is satisfiable;
2. The checking is processed on the transition system Tφ on-the-

fly, i.e. computing the reachable states step by step with the DFS
(Depth First Search) manner, until an accepting one is reached:
Here we return satisfiable;

3. Finally we return unsatisfiable if all states in the whole transition
system are explored.

The complexity of our algorithm mainly depends on the size of
constructed transition system. The system construction is the same
as the one for LTL proposed in [8]. Given an LTLf formula φ, the
constructed transition system Tφ has at worst the size of 2cl(φ), where
cl(φ) is the set of subformulas of φ.

4 Optimizations

In this section we propose some optimization strategies by exploiting
SAT solvers. First we study the relationship between the satisfiability
problems for LTLf and LTL formulas.

J. Li et al. / LTLf Satisfiability Checking 515

φstart

tt

a

¬a

Figure 1: The transition system of
φ = GFa ∧GF¬a.

φstart φ1

b

a

b
a

Figure 2: The transition system of
φ = G(aUb). Note φ1 = φ ∧
aUb.

4.1 Relating to LTL Satisfiability

In this section we discuss some connections between LTLf and LTL
formulas. We say an LTLf formula φ is Xw-free iff φ does not have
the Xw operator. Note thatLTLf formulas may contain the Xw op-
erator, while standard LTL ones do not. Here we consider Xw-free
formulas, in which LTLf and LTL have the same syntax. First the
following lemma shows how to extend a finite trace into an infinite
one but still preserve the satisfaction from LTLf to LTL:

Lemma 3. Let η = ω0 and φ an LTLf formula which is Xw-free,
then η |= φ implies ηω |= φ when φ is considered as an LTL formula.

Proof. We prove it by structural induction over φ:

• If φ is a literal p, then η |= p implies p ∈ η. Thus ηω |= φ is true;
And if φ is tt, then ηω |= tt is obviously true;

• If φ = φ1 ∧ φ2, then η |= φ implies η |= φ1 and η |= φ2.
By induction hypothesis we have ηω |= φ1 and ηω |= φ2. So
ηω |= φ1 ∧ φ2; The proof is similar when φ = φ1 ∨ φ2;

• If φ = Xψ, then according to Lemma 1 we know η |= φ cannot
happen; And since φ is Xw-free, so φ cannot be a Xw formula;

• If φ = φ1Uφ2, then η |= φ implies η |= φ2 according to Lemma
1. By induction hypothesis we have ηω |= φ2. Thus ηω |= φ
is true from the LTL semantics; Similarly when φ = φ1Rφ2, we
know for every i ≥ 0 it is true that (ξi = ηω) |= φ2. Thus ηω |= φ
holds from the LTL semantics; The proof is done.

We showed earlier that LTLf satisfiability can be reduced to LTL
satisfiability problem. We show that the satisfiability of some LTLf

formulas implies satisfiability of LTL formulas:

Theorem 3. Let φ be an Xw-free formula. If φ is satisfiable as an
LTLf formula, then φ is also satisfiable as an LTL formula.

Proof. Assume φ is a Xw-free LTLf formula, and is satisfiable. Let
η = ω0 . . . ωn such that η |= φ. Now we interpret φ as an LTL
formula. Combining Lemma 2 and Lemma 3, we get that ξ |= φ
where ξ = ω0 . . . ωn−1(ωn)

ω .

Equivalently, if φ is an LTL formula and φ is unsatisfiable, then the
LTLf formula φ is also unsatisfiable. Note here the LTLf formula φ
is Xw-free since it can be considered as an LTL formula.

Example 1. • Consider the Xw-free formula φ = GFa ∧GF¬a,
whose transition system is shown in Figure 1. If φ is treated as
an LTL formula, then we know that the infinite trace ({a}{¬a})ω
satisfies φ. However, if φ is considered to be an LTLf formula,
then we know from that no accepting state exists in the transition
system, so it is unsatisfiable. It is due to the fact that no transition
ψ1

α−→ ψ2 in Tφ satisfies the condition CF (α) |= ψ1.

• Consider another example formula φ = G(aUb), whose transi-
tion system is shown in Figure 2. Here we can find an accepting
state (φ, as φ b−→ φ and CF (b) |= φ hold). Thus we know that φ
is satisfiable, interpreted over both finite or infinite traces.

4.2 Obligation Formulas

For an LTL formula φ, Li et al. [7] have defined its obligation for-
mula of (φ) and show that if of (φ) is satisfiable then φ is satisfiable.
Since of (φ) is essentially a boolean formula, so we can check it ef-
ficiently using modern SAT solvers. However this cannot apply to
LTLf directly, which we illustrate in the following example.

Example 2. Consider φ = GXa, where α is a satisfiable propo-
sitional formula. It is easy to see that it is satisfiable if it is an LTL
formula (with respect to some word aω), while unsatisfiable when it
is an LTLf formula (because no finite trace can end with the point
satisfying Xa). From [7], the obligation formula of φ is of (φ) = a,
which is obviously satisfiable. So the satisfiability of obligation for-
mula implies the satisfiability of LTL formulas, but not that of LTLf

formulas.

We now show how to handle of Next operators (X and Xw) after
the Release operators. For a formula φ, we define three obligation
formulas:

Definition 4 (Obligation Formulas). Given an LTLf formula φ, we
define three kinds of obligation formulas: global obligation formula,
release obligation formula, and general obligation formula–denoted
as ofg(φ), ofr(φ) and off (φ), by induction over φ. (We use ofx as a
generic reference to ofg, ofr, and off.)

• ofx (φ) = tt if φ = tt; and ofx (φ) = ff if φ = ff;
• If φ = p is a literal, then ofx (φ) = p;
• If φ = φ1 ∧ φ2, then ofx (φ) = ofx (φ1) ∧ ofx (φ2);
• If φ = φ1 ∨ φ2, then ofx (φ) = ofx (φ1) ∨ ofx (φ2);
• If φ = Xφ2, then off (φ) = off (φ2), ofr(φ) = ff and ofg(φ) =

ff;
• If φ = Xwφ2, then off (φ) = off (φ2), ofr(φ) = ff and ofg(φ) =

tt;
• If φ = φ1Uφ2, then ofx (φ) = ofx (φ2).
• If φ = φ1Rφ2, then off (φ) = ofr(φ), ofr(φ) = ofr(φ2) and

ofg(φ) = ofg(φ2)

For example in the third item, the equation represents actually three:
off (φ) = off (φ1) ∧ off (φ2), ofr(φ) = ofr(φ1) ∧ ofr(φ2) and
ofg(φ) = ofg(φ1) ∧ ofg(φ2).

For off (φ), the changes in comparison to [7] are the definition for
release formulas, and introducing the Xw operator. For example, we
have that off (GXa) is ff rather than a. Moreover, since the LTLf

formula GXwa is satisfiable, the definition of ofg(φ) is required to
identify this situation. (Below we show a fast satisfiability-checking
strategy that uses global obligation formulas.)

The obligation-acceleration optimization works as follows:

Theorem 4 (Obligation Acceleration). For an LTLf formula φ, if
off (φ) is satisfiable then φ is satisfiable.

Proof. Since off (φ) is satisfiable, there exists A ∈ Σ such that A |=
off (φ). We prove that there exists η = An where n ≥ 1 such that
η |= φ, by structural induction over φ. Note the cases φ = tt or
φ = p are trivial. For other cases:

J. Li et al. / LTLf Satisfiability Checking516

• If φ = φ1∧φ2, then off (φ) = off (φ1)∧off (φ2) from Definition
4. So off (φ) is satisfiable implies that there exists A |= off (φ1)
and A |= off (φ2). By induction hypothesis there exists ηi = Ani

(ni ≥ 0) such that ηi |= φi (i = 1, 2). Assume n1 ≥ n2, then let
η = η1. Then, η |= φ1 ∧ φ2. The case when φ = φ1 ∨ φ2 can be
proved similarly;

• If φ = Xφ2 or φ = Xwφ2, then off (φ) is satisfiable iff off (φ2)
is satisfiable. So there exists A models φ2. By induction hypoth-
esis, there exists n such that An |= φ2, thus according to LTLf

semantics, we know An+1 |= φ;
• If φ = φ1Rφ2, then off (φ) = ofr(φ2). Thus ofr(φ2) is also

satisfiable. So there exists A |= ofr(φ2), based on which we can
show that A |= φ2 by structural induction over φ2 by a similar
proof. Thus Let η = A and according to Lemma 1 we know η |=
φ2 implies η |= φ. The case for Until can be treated in a similar
way, thus the proof is done.

4.3 A Complete Acceleration Technique for Global
Formulas

The obligation-acceleration technique (Theorem 4) is sound but not
complete, see the formula φ = a ∧GF (¬a), in which off (φ) is un-
satisfiable, while φ is, in fact, satisfiable. In the following, we prove
that both soundness and completeness hold for the global LTLf for-
mulas, which are formulas of the form of Gψ, where ψ is an arbitrary
LTLf formula.

Theorem 5 (Obligation Acceleration for Global formulas). For a
global LTLf formula φ = Gψ, we have that φ is satisfiable iff
ofg(ψ) is satisfiable.

Proof. For the forward direction, assume that φ is satisfiable. It im-
plies that there is a finite trace η satisfying φ. According to Theorem
2, η can run on Tφ and reaches an accepting state ψ1, i.e., ψ1

α−→ ψ2

and CF (α) |= ψ1. Since φ is a global formula and ψ1 is reach-
able from φ, it is not hard to prove that CF (φ) ⊆ CF (ψ1) from
Definition 3. So CF (α) |= φ is also true. Since φ is a global for-
mula so CF (α) |= ψ holds from Lemma 1. Then one can prove that
CF (α) |= ofg(ψ) by structural induction over ψ (it is left to readers
here), which implies that ofg(ψ) is satisfiable.

For the backward direction, assume ofg(ψ) is satisfiable. So there
exists A ∈ Σ such that A |= ofg(ψ). Then one can prove A |= φ is
also true by structural induction over ψ (φ = Gψ). For paper limit,
this proof is left to readers. So φ is satisfiable. The proof is done.

4.4 Acceleration for Unsatisfiable Formulas

Theorem 3 indicates that if an LTL formula φ (of course Xw-free)
is unsatisfiable, then the LTLf formula φ is also unsatisfiable. As
a result, optimizations for unsatisfiable LTL formulas, for instance
those in [7], can be used directly to check unsatisfiable Xw-free LTLf

formulas.

5 Experiments

In this section we present an experimental evaluation. The algorithms
are implemented in the aalta tool4. We have implemented three opti-
mization strategies. They are 1). off : the obligation acceleration tech-
nique for LTLf (Theorem 4); 2). ofg: the obligation acceleration for

4 www.lab205.org/aalta

global LTLf formula (Theorem 5); 3). ofp: the acceleration for unsat-
isfiable formulas (Section 4.4). Note that all three optimizations can
benefit from the power of modern SAT solvers.

We compare our algorithm with the approach using off-the-shelf
tools for checking LTL satisfiability. We choose the tool Polsat, a
portfolio LTL solver, which was introduced in [6]. One main feature
of Polsat is that it integrates most existing LTL satisfiability solvers
(see [6]); consequently, it is currently the best-of-breed LTL satisfia-
bility solver. The input of aalta is directly an LTLf formula φ, while
that of Polsat should be Tail ∧ TailUG(¬Tail) ∧ t(φ), which is the
LTL formula that is equi-satisfiable with the LTLf formula φ.

The experimental platform of this paper is the BlueBiou cluster 5

at Rice university. The cluster consists of 47 IBM Power 755 nodes,
each of which contains four eight-core POWER7 processors run-
ning at 3.86GHz. In our experiments, both aalta and Polsat occupy a
unique node, and Polsat runs all its integrated solvers in parallel by
using independent cores of the node. The time is measured by Unix
time command, and each test case has the maximal limitation of 60
seconds.

Since LTL formulas are also LTLf formulas, we use existing LTL
benchmarks to test the tools. We compare the results from both tools,
and no inconsistency occurs.

5.1 Schuppan-collected Formulas

We consider first the benchmarks introduced in previous works
[11]. The benchmark suite there include earlier benchmark suites
(e.g., [10]), and we refer to this suite as Schuppan-collected. The
Schuppan-collected suite has a total amount of 7448 formulas. The
different types of benchmarks are shown in the first column of Table
1.

Table 1: Experimental results on Schuppan-collected formulas.

Formula type aalta(sec.) Polsat(sec.) Polsat/aalta
/acacia/example 1.5 3.3 2.2
/acacia/demo-v3 1.4 604.7 431.9
/acacia/demo-v22 2.0 1.3 0.65
/alaska/lift 23.0 7319.6 318.2
/alaska/szymanski 1.2 7.3 6.1
/anzu/amba 2120.9 2052.9 0.97
/anzu/genbuf 3606.9 3717.9 1.0
/rozier/counter 1840.3 3009.3 1.6
/rozier/formulas 552.9 467.0 0.8
/rozier/pattern 22.9 49.9 2.1
/schuppan/O1formula 2.9 7.1 2.4
/schuppan/O2formula 3.1 1265.0 408.1
/schuppan/phltl 226.3 602.5 2.6
/trp/N5x 10.5 42.0 4.0
/trp/N5y 2764.9 2777.4 1.0
/trp/N12x 22.8 24061.1 1055.3
/trp/N12y 4040.2 4049.2 1.0
Total 15244.2 50038.2 3.2

Table 1 shows the experimental results on Schuppan-collected
benchmarks. The fourth column of the table shows the speed-up of
aalta relative to Polsat. One can see that the results from aalta out-
performs those from Polsat, often by several orders of magnitudes.
We explain some of them.

The formulas in “Schuppan-collected/alaska/lift” are mostly un-
satisfiable, which can be handled by the ofg technique of aalta.
On the other side, Polsat needs more than 300 times to finish the
checking. The same happens on the “Schuppan-collected/trp/N12x”
patterns, in which aalta is more than 1000 times faster. For the
“Schuppan-collected/schuppan/O2formula” pattern formulas, aalta
scales better due to the ofp technique.

5 http://www.rcsg.rice.edu/sharecore/bluebiou/

J. Li et al. / LTLf Satisfiability Checking 517

 0

 1000

 2000

 3000

 4000

 5000

 2 4 6 8 10 12 14 16 18 20

C
h

e
c
k
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of Conjunctions

LfSat
Polsat

Figure 3: Experimental results on
random conjunction formulas.

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20
C

h
e

c
k
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of Conjuntions

LfSat
Polsat

Figure 4: Experimental results on
global random conjunction formu-
las.

Among the results from aalta, totally 5879 out of 7448 formulas in
the benchmark are checked by using the off technique. This indicates
the off technique is very efficient. Moreover, 84 of them are finished
by exploring whole system in the worst time, which requires further
improvement. Overall, we can see Polsat is three times slower on this
benchmark suite than aalta.

5.2 Random Conjunction Formulas

Random conjunction formulas have the form of
∧

1≤i≤n Pi, where
Pi is randomly selected from typical small pattern formulas widely
used in model checking [8]. By randomly choosing the that atoms
the small patterns use, a large number of random conjunction formu-
las can be generated. More specially, to evaluate the performance on
global formulas, we also fixed the selected Pi by a random global
pattern, and thus create a set of global formulas. In our experiments,
we test 10,000 cases each for both random conjunction and global
random conjunction formulas, with the number of conjunctions vary-
ing from 1 to 20 and 500 cases for each number.

Figure 3 shows the comparison results on random conjunction for-
mulas. On average aalta earns about 10% improving performance on
this kind of formulas. Among all the 10,000 cases, 8059 of them are
checked by the off technique; 1105 of them are obtained by the ofg
technique; 508 are acquired by the ofp technique; and another 107
are from an accepting state. There are also 109 formulas equivalent
to tt or ff, which can be directly checked. In the worst case, 76 for-
mulas are finished by exploring the whole transition system. About
36 formulas fail to be checked within 60 seconds by aalta. Statistics
above show the optimizations are very useful.

Moreover, one can conclude from Figure 4 that, aalta dominates
Polsat when performing on the global random conjunction formulas.
As the ofg technique is both sound and complete for global formulas
and invokes SAT solvers only once, so aalta performs almost con-
stant time for checking both satisfiable and unsatisfiable formulas.
Compared with that, Polsat takes an ordinary checking performance
for this kind of special formulas. Indeed, the ofg technique is consid-
ered to play the crucial role on checking global LTLf formulas.

6 Conclusion

In this paper we have proposed a novel LTLf satisfiability-checking
framework based on the LTLf transition system. Meanwhile, three

different optimizations are introduced to accelerate the checking pro-
cess by using the power of modern SAT solvers, in which particularly
the ofg optimization plays the crucial role on checking global for-
mulas. The experimental results show that, the checking approach
proposed in this paper is clearly superior to the reduction to LTL
satisfiability checking.

7 Acknowledgement

We thank anonymous reviewers for the useful comments. Geguang
Pu is partially supported by Shanghai Knowledge Service Platform
No. ZF1213. Jianwen Li is partially supported by SHEITC Project
130407 and NSFC Project No. 91118007. Jifeng He is partially sup-
ported by NSFC Project No. 61021004. Lijun Zhang is supported by
NSFC project No. 61361136002. Moshe Vardi is supported in part by
NSF grants CNS 1049862 and CCF-1139011, by NSF Expeditions in
Computing project ”ExCAPE: Expeditions in Computer Augmented
Program Engineering”, by BSF grant 9800096, and by gift from In-
tel.

REFERENCES

[1] F. Bacchus and F. Kabanza, ‘Using temporal logic to express search
control knowledge for planning’, Artificial Intelligence, 116(1–2), 123–
191, (2000).

[2] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis, ‘Memory
efficient algorithms for the verification of temporal properties’, Formal
Methods in System Design, 1, 275–288, (1992).

[3] G. De Giacomo and M.Y. Vardi, ‘Automata-theoretic approach to plan-
ning for temporally extended goals’, in Proc. European Conf. on Plan-
ning, Lecture Notes in AI 1809, pp. 226–238. Springer, (1999).

[4] A. Duret-Lutz and D. Poitrenaud, ‘SPOT: An extensible model check-
ing library using transition-based generalized büchi automata’, in Proc.
12th Int’l Workshop on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, pp. 76–83. IEEE Computer So-
ciety, (2004).

[5] G. De Giacomo and M. Vardi, ‘Linear temporal logic and linear dy-
namic logic on finite traces’, in Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJCAI’13, pp.
2000–2007. AAAI Press, (2013).

[6] J. Li, G. Pu, L. Zhang, M. Y. Vardi, and J. He, ‘Polsat: A portfolio LTL
satisfiability solver’, CoRR, abs/1311.1602, (2013).

[7] J. Li, G. Pu, L. Zhang, M. Y. Vardi, and J. He, ‘Fast LTL satisfiability
checking by sat solvers’, CoRR, abs/1401.5677, (2014).

[8] J. Li, L. Zhang, G. Pu, M. Vardi, and J. He, ‘LTL satisfibility checking
revisited’, in The 20th International Symposium on Temporal Represen-
tation and Reasoning, pp. 91–98, (2013).

[9] A. Pnueli, ‘The temporal logic of programs’, in Proc. 18th IEEE Symp.
on Foundations of Computer Science, pp. 46–57, (1977).

[10] K.Y. Rozier and M.Y. Vardi, ‘LTL satisfiability checking’, Int’l J. on
Software Tools for Technology Transfer, 12(2), 1230–137, (2010).

[11] V. Schuppan and L. Darmawan, ‘Evaluating LTL satisfiability solvers’,
in Proceedings of the 9th international conference on Automated tech-
nology for verification and analysis, AVTA’11, pp. 397–413. Springer-
Verlag, (2011).

[12] A.P. Sistla and E.M. Clarke, ‘The complexity of propositional linear
temporal logic’, Journal of the ACM, 32, 733–749, (1985).

[13] S. Sohrabi, J. A. Baier, and S. A. McIlraith, ‘Preferred explanations:
Theory and generation via planning’, in Proceedings of the 25th Con-
ference on Artificial Intelligence (AAAI-11), pp. 261–267, San Fran-
cisco, USA, (August 2011). Accepted as both oral and poster presenta-
tion.

[14] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, ‘Declarative
workflows: Balancing between flexibility and support.’, Computer Sci-
ence - R&D, 99–113, (2009).

[15] M.Y. Vardi, ‘An automata-theoretic approach to linear temporal logic’,
in Logics for Concurrency: Structure versus Automata, eds., F. Moller
and G. Birtwistle, volume 1043 of Lecture Notes in Computer Science,
pp. 238–266. Springer, (1996).

J. Li et al. / LTLf Satisfiability Checking518

