
The Complexity of Reasoning with Relative Directions

Jae Hee Lee1

Abstract. Whether reasoning with relative directions can be per-
formed in NP has been an open problem in qualitative spatial reason-
ing. Efficient reasoning with relative directions is essential, for exam-
ple, in rule-compliant agent navigation. In this paper, we prove that
reasoning with relative directions is ∃R-complete. As a consequence,
reasoning with relative directions is not in NP, unless NP = ∃R.

1 INTRODUCTION

Qualitative spatial reasoning (QSR) [6, 15] enables cognitive agents
to reason about space using abstract symbols. Among several aspects
of space (e.g., topology, direction, distance) relative direction infor-
mation is useful for agents navigating in space. Observers typically
describe their environment by specifying the relative directions in
which they see other objects or other people from their point of view.
As such, efficient reasoning with relative directions, i.e., determining
whether a given statement involving relative directions is true, can
be advantageously used for applications that handle rules or require-
ments involving relative directions. For example, efficient reasoning
with relative directions can help a bridge crew determine whether
other vessels comply with the navigation regulations which can be
formalized as logical statements involving relative directions [11].

Different representations have been proposed for relative direc-
tions, including DCC [8, 23], DRA [18, 7], LR [16, 24] and
OPRAm [19] (cf. Subsection 2.2).

The predominant reasoning method in the early development of
QSR was the path-consistency method based on the composition
operation of relations, which is a polynomial-time method originally
developed for finite domain constraint satisfaction problems. Soon
its underlying composition operation was superseded by the weak-
composition, as many spatial constraint languages turned out to be
not closed under composition, and the path-consistency method was
modified to the algebraic closure (a-closure) method [21]. Though the
a-closure method gives rise to an NP decision procedure for some
known spatial constraint languages, it turned out that the a-closure
method is not sufficient for reasoning with DRA, LR and OPRAm

(cf. [17], [9]). Indeed, reasoning with DCC, DRA and LR is NP-
hard (cf. [17], [23], [18]) and the NP-membership has not been proven
so far.

In this paper, we prove in a holistic manner that reasoning with all
mentioned relative directional constraint languages, i.e., LR, DCC,
DRA and OPRAm, is ∃R-complete, where ∃R is a complexity
class residing between NP and PSPACE (cf. Subsection 3.1). As a
consequence, all mentioned relative directional constraint languages
are equivalent to each other in terms of computational complexity,
and reasoning with them cannot achieved in NP, unless NP = ∃R.
Furthermore, no NP decision procedures exist for atomic formulas of
relative directional constraint languages, unless NP = ∃R.

1 University of Bremen, Germany, email: jay@informatik.uni-bremen.de

In [26] the authors prove the NP-hardness of reasoning with relative
directions by reducing the NP-hard realizability problem for uniform
oriented matroid (RUOM) to reasoning with relative directions. How-
ever, RUOM has not been shown to be ∃R-hard, and therefore, one
could not draw strong consequences as this paper achieves.

This work is a shortend version of [12, Chapters 2 and 3].

2 RELATIVE DIRECTIONAL CONSTRAINT
LANGUAGES

2.1 Spatial Constraint Language

In what follows we will define the syntax and the semantics of a spatial
constraint language (also known as qualitative calculus [6, 15]) with
respect to binary spatial relations. The definition, however, extends
naturally to ternary and to n-ary relations.

A spatial constraint language L is a quadruple 〈D,R, ι,V〉, where
D is the domain of spatial entities which is not empty, R a finite
collection of relation symbols, ι the intended interpretation that maps
each relation symbol R ∈ R to a relation Rι ⊆ D × D, and V a
countably infinite set of variables v1, v2,

A formula of L, or an L-formula is defined inductively as follows:

ϕ := � | ⊥ | viRvj | vi {R1, . . . , Rk} vj | ϕ ∧ ψ

where vi, vj ∈ V , R,R1, . . . , Rk ∈ R, k ≥ 1 and ϕ and ψ are
formulas.

A model of L, which fixes the truth of L-formulas with respect to its
intended interpretation, is given by a valuation function ν : V → D,
which assigns to each variable vi a value vνi from the domain. The
semantics of formulas are defined inductively with respect to the
syntactical structure (we write ν |= ϕ to denote that valuation ν
satisfies formula ϕ):

ν |= � always

ν |= ⊥ never

ν |= viRvj iff (vνi , v
ν
j) ∈ Rι

ν |= vi {R1, . . . , Rk} vj iff ν satisfies some viR� vj , 1 ≤ � ≤ k

ν |= ϕ ∧ ψ iff ν |= ϕ and ν |= ψ

An L-formula ϕ is said to be satisfiable, if there is a valuation
ν with ν |= ϕ. The problem of deciding whether an L-formula
is satisfiable is also called the constraint satisfaction problem for
L, or CSP(L) for short. An L-formula of the form

∧
ij viRij vj is

called atomic. If there is a polynomial-time decision procedure for
atomic L-formulas, then CSP(L) can be solved in NP by means of a
backtracking search.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-507

507

(a) LR (b) DRA (c) DCC

(d) A m∠1
7 B (e) A m∠1 B

Figure 1: LR, DRA, DCC and OPRAm relations.

2.2 Relative Directional Constraint Languages

A relative directional constraint language is a spatial constraint lan-
guage whose relation symbols stand for relative directions. In this
subsection, we present four different relative directional constraint
languages.

The most elementary language for relative directional relations is
called LR [16, 24] (see Figure 1a). The relations of LR are defined
based on a reference system generated by a directed line connecting
two points. The position of a third point is then categorized as to
be either left or right of the line (l, r), or on 5 different segments of
the reference line (f, e, i, s, b). Two additional relations dou and tri
describe degenerate cases where the first two points coincide; dou
holds if the third point does not coincide with them, and tri holds if
all three points coincide.

The spatial constraint language DRA [18, 7] has as its basic en-
tities dipoles. A dipole A is an oriented line segment which is given
by a start point sA and an end point eA (cp. Figure 1b). A DRA
relation2 between two dipoles is a quadruple of LR relations that
hold between a dipole and the start and the end point of the other.
In Figure 1b the start point sB and the end point eB of dipole B is
respectively to the right and to the left of dipole A resulting in LR
relations r and l, respectively. In the same way, we obtain r and l for
the two LR relations that hold between sA and B, and between eA
and B, respectively. A DRA relation records this information as rlll
in the order the LR relations are presented.

The double cross calculus DCC [8, 23] can be regarded as a refine-
ment of the LR. In DCC the left and right plane of the reference line
are further refined by two orthogonal lines passing through the refer-
ence points, which is meaningful from a cognitive point of view [8].
The refined relations are illustrated in Figure 1c.

OPRAm [19] is based on the domain R
2 × [0, 2π) of oriented

points. Half-lines and angular sectors are instantiated to describe the
position of one oriented point as seen from another. The relations
of OPRAm are defined with respect to a granularity parameter m
that determines how many sectors are used (OPRAm uses m lines
to divide the full circle evenly, giving 2m angular sectors and 2m
half-lines). Figure 1d presents an example of an OPRA2 relation
m∠1

7 . In the example, B is located in sector 7 as seen from A, which,
in turn, is located in sector 1 as seen from B. Symbol m∠1

7 is used
to denote this relation. In the degenerate case, where points A and B
coincide, the sector i of A to which point B is oriented determines
the relation and this is denoted by m∠i (cp. Figure 1e).

2 In this paper by DRA we refer to the refined version DRAf in [7].

3 COMPUTATIONAL COMPLEXITY

In this section we prove the ∃R-completeness of reasoning with rela-
tive directional constraint languages. After introducing oriented ma-
troids and its realizability problem (ROM) which is ∃R-complete, we
reduce ROM to each of the relative directional constraint languages
introduced in this paper, i.e., LR, DCC, DRA and OPRAm.

3.1 The Complexity Class ∃R
The complexity class ∃R was first introduced in [22] to capture several
well known problems which are equivalent to the existential theory of
the reals.

Definition 1. The existential theory of the reals is the set of true
sentences of the form ∃x1 . . .∃xn φ(x1, . . . , xn), where φ(x) is
a quantifier-free Boolean formula over polynomial equations or
inequalities (i.e., f(x1, . . . , xn) < 0, g(x1, . . . , xn) ≤ 0 or
h(x1, . . . , xn) = 0, f, g, h being polynomials). Here, the polyno-
mials have rational coefficients and each variable xi ranges over R.

The decision problem for the existential theory of the reals (ETR)
is the problem of deciding if a given sentence in the existential theory
of the reals is true.

Definition 2 (The complexity class ∃R). The complexity class ∃R is
the class of all problems that are polynomial-time reducible to ETR. A
computational problem is said to be ∃R-hard, if every problem in ∃R
can be reduced to it by a polynomial-time reduction. A computational
problem is said to be ∃R-complete, if it is ∃R-hard and belongs to
∃R.

Many computational problems are identified as ∃R-complete (e.g.,
stretchability of simple pseudoline arrangement, the algorithmic
Steinitz problem, intersection graphs of line segments, topological
inference with convexity). For more details we refer to [22].

∃R-complete problems are hard to solve as the following theorem
states.

Theorem 3. NP ⊆ ∃R ⊆ PSPACE

Proof. The first inclusion NP ⊆ ∃R is easy to show, see for ex-
ample [3]. However, the other inclusion ∃R ⊆ PSPACE requires ad-
vanced knowledge in real algebraic geometry and is proved in [5].

Whether NP ⊇ ∃R or ∃R ⊇ PSPACE could not be shown so far
and is an open problem.

3.2 Oriented Matroids

Oriented matroids [4] can be considered as combinatorial generaliza-
tions of spatial arrangements. They provide a broad model to describe
information about relative positions geometrically (Definition 4) and
purely combinatorially (Definition 6). Oriented matroids can be ax-
iomatized in several ways. From the different axiomatizations of
oriented matroids, we will choose the axiomatization using the no-
tion of chirotopes, which captures the aspect of relative directions.
Furthermore, we will restrict ourself to chirotopes with respect to the
3-dimensional vector space. Therefore the oriented matroids dealt
hereafter are of rank 3, if the rank is not mentioned explicitly.

The following definition introduces oriented matroids as a math-
ematical object extracted from a vector configuration. Note that a
vector configuration in R

3 is a finite sequence of vectors in R
3 that

span R
3.

J.H. Lee / The Complexity of Reasoning with Relative Directions508

Definition 4 (Oriented matroid of a vector configuration). Let
V = (v1, . . . , vn) be a finite vector configuration in R

3, sgn :
R → {−1, 0, 1} a function that returns the sign of its argument,
and det(vi1 , vi2 , vi3) the determinant of a 3 × 3 matrix having
vi1 , vi2 , vi3 as its column vectors. The oriented matroid of V is
given by the map χV : {1, 2, . . . , n}3 → {−1, 0, 1}, (i1, i2, i3) �→
sgn(det(vi1 , vi2 , vi3)) which is called the chirotope of V. The map
χV records for each vector triple the information about whether it
consists of linearly dependent vectors, a positively oriented basis of
R

3, or a negatively oriented basis of R3 (0, 1, -1, respectively).

Example 5. The oriented matroid of V = (v1, v2, v3) with
v1 = (1, 0, 0)T , v2 = (0, 1, 0)T , v3 = (0, 0, 1)T is the map
χV : {1, 2, 3}3 → {−1, 0, 1} with χV (1, 2, 3) = χV (2, 3, 1) =
χV (3, 1, 2) = 1 and χV (2, 1, 3) = χV (1, 3, 2) = χV (3, 2, 1) =
−1. All other triples from {1, 2, 3}3 represent linearly dependent
vector triples, and thus map to 0.

The preceding definition of oriented matroid has an underlying
vector configuration. By contrast, we axiomatize in the following
oriented matroids as purely combinatorial objects decoupled from a
vector configuration.

Definition 6 (Oriented matroid). An oriented matroid on E =
{1, 2, . . . , n} with n ≥ 3 is a map given by χ : E3 −→ {−1, 0, 1},
called a chirotope, which satisfies the following three axioms:

(C1) χ is not identically zero.
(C2) χ is alternating, i.e., χ(iσ(1), iσ(2), iσ(3)) =
sign(σ)χ(i1, i2, i3) for all i1, i2, i3 ∈ E and every permu-
tation σ on {1, 2, 3} , where sign(σ) stands for the signature of a
permutation σ.
(C3) For all i1, i2, i3, j1, j2, j3 ∈ E such that χ(j1, i2, i3) ·
χ(i1, j2, j3) ≥ 0, χ(j2, i2, i3) · χ(j1, i1, j3) ≥ 0, χ(j3, i2, i3) ·
χ(j1, j2, i1) ≥ 0 we have χ(i1, i2, i3) · χ(j1, j2, j3) ≥ 0.

We note that axiom (C2) implies χ(i1, i2, i3) = 0 if two of three
arguments coincide. We also note that an oriented matroid χV of
a vector configuration V as defined in Definition 4 is an oriented
matroid on E, where E is the index set of V .

Example 7. The map χ : {1, 2, 3}3 → {−1, 0, 1} defined by
χ(1, 2, 3) = χ(2, 3, 1) = χ(3, 1, 2) = 1 and χ(2, 1, 3) =
χ(1, 3, 2) = χ(3, 2, 1) = −1, where all other triples from {1, 2, 3}3
are mapped to 0, satisfies all three axioms in Definition 6.

Now that there is the definition of oriented matroid that is of a
purely combinatorial nature, one can ask the following question:

Given an oriented matroid χ on E = {1, . . . , n}, is there a
vector configuration V = (v1, . . . , vn) whose vectors span R

3,
such that V is a realization of χ, in other words, χV is equal to
χ?

To exemplify this question, consider the oriented matroid from Ex-
ample 7. We observe that the triple (v1, v2, v3) of vectors v1 =
(1, 0, 0)T , v2 = (0, 1, 0)T , v3 = (0, 0, 1)T is a realization of
χ, since χ(i, j, k) = sgn(det(vi, vj , vk)) = χV (i, j, k) for all
i, j, k ∈ {1, 2, 3}. The aforementioned problem is the so-called real-
izability problem for oriented matroids (ROM) and is equivalent to
the pseudoline stretchability problem which is ∃R-complete [25, 22].

3.3 ∃R-Completeness of Reasoning with Relative
Directions

Now we establish a connection between oriented matroids and relative
direction relations. This allows us to reduce the ∃R-complete problem

1

Figure 3: The connection between a vector configuration and a point
configuration in the plane.

ROM to reasoning with relative directional constraint languages. As
vector configurations are closely related to oriented matroids, we
will first establish a connection between vector configurations in R

3

and point configurations in the plane. Then we will apply the same
concept used for the connection between vector configurations and
point configurations to the connection between oriented matroids
and relative direction relations. The following example illustrates the
connection between a vector configuration and left/right relations for
points in the plane.

Example 8. Consider the projection f : (x, y, z) �→ 1/z(x, y, z)
shown in Figure 3, which identifies vectors v1, v2, v3 with vec-
tors v′1, v′2, v′3 in the plane

{
(x, y, z) ∈ R

3
∣
∣ z = 1

}
. Since vec-

tors v1, v2, v3 form a positively oriented basis of R
3 (i.e.,

det(v1, v2, v3) = 1), v′3 is to the left of the directed line from v′1
to v′2.

In Example 8, establishing the connection between a vector config-
uration in R

3 and left/right relations for points in a plane was possible,
due to the fact that all vectors are on one side of the XY -plane.
Acyclic vector configurations assume this very property of vectors:

Definition 9. A vector configuration V = (v1, . . . , vn) in R
3 is said

to be acyclic, if the vectors from V are entirely contained in an open
half-space induced by a plane, i.e., there is a linear map f : R3 → R,
such that f(vi) > 0 for all i = 1, . . . , n.

Given an acyclic vector configuration we can project the vec-
tors vi, i = 1, . . . , n to points in an affine plane A

2 defined by
A

2 :=
{
x ∈ R

3
∣
∣ f(x) = 1

}
, where we associate each vector vi,

i = 1, . . . , n with the point 1/f(vi) · vi ∈ A
2.

Theorem 11 characterizes a necessary condition for a vector con-
figuration to be acyclic, which is useful for enforcing acyclicity of
a vector configuration. Hereafter, we will regard V both as a vector
configuration and as a set that consists of the vectors in the vector
configuration. Furthermore, v∗ and v∗∗ will denote two linearly in-
dependent vectors from V , and V +

1 , V
−
1 , V +

2 , V
−
2 , V +

3 , V
−
3 are sets

defined as

V +
1 := { v ∈ V | v = tv∗ for a t ∈ R, t > 0 }
V −1 := { v ∈ V | v = tv∗ for a t ∈ R, t < 0 }
V +
2 := { v ∈ V | v = t1v

∗ + t2v
∗∗ for t1, t2 ∈ R, t2 > 0 }

V −2 := { v ∈ V | v = t1v
∗ + t2v

∗∗ for t1, t2 ∈ R, t2 < 0 }
V +
3 := { v ∈ V | det(v∗, v∗∗, v) > 0 }
V −3 := { v ∈ V | det(v∗, v∗∗, v) < 0 } .

Lemma 10. V +
1 , V

−
1 , V +

2 , V
−
2 , V +

3 , V
−
3 are pairwise disjoint, and

jointly exhaustive, i.e., V = V +
1 ∪̇V −1 ∪̇V +

2 ∪̇V −2 ∪̇V +
3 ∪̇V −3 .

Proof. By definition V +
i and V −i are disjoint for i = 1, 2, 3. Then

given a vector v ∈ V , it is from one of the pairwise disjoint

J.H. Lee / The Complexity of Reasoning with Relative Directions 509

(a) The vector config-
uration is cyclic.

(b) By switching the
sign of v3, we move
v3 from V −3 to V +

3 .

(c) By switching the
sign of v5, we move
v5 from V −2 to V +

2 .

(d) By switching the
sign of v4, we move
v4 from V −1 to V +

1 .

(e) The vector config-
uration is acyclic due
to Theorem 11

(f) The corresponding
point configuration in
the affine plane A

2.

Figure 2: Enforcing acyclicity of a vector configuration. Initially V −1 = {v4}, V −2 = {v5}, V −3 = {v3}, where v∗ := v1 and v∗∗ := v2.

sets V ∩ span(v∗) (= V +
1 ∪̇ V −1), V ∩ span(v∗, v∗∗)\span(v∗)

(= V +
2 ∪̇ V −2), or V ∩ R

3\span(v∗, v∗∗) (= V +
3 ∪̇ V −3)

Theorem 11. V is acyclic, if V = V +
1 ∪ V +

2 ∪ V +
3 .

Proof. Let v∗∗∗ ∈ V +
3 . Note that V +

3 is not empty, because V spans
R

3. Let v∗ × v∗∗ be the vector product of v∗ and v∗∗, thus (v∗ ×
v∗∗)T v = det(v∗, v∗∗, v). We define a linear map f : R3 → R with

f(v) = (v∗ + α(v∗ × v∗∗∗) + β(v∗ × v∗∗))T v,

where α and β are real numbers with the properties v∗T v + α(v∗ ×
v∗∗∗)T v > 0 for all v ∈ V +

2 and v∗T v + α(v∗ × v∗∗∗)T v +
β(v∗ × v∗∗)T v > 0 for all v ∈ V +

3 . Such α and β exist, be-
cause (v∗ × v∗∗∗)T v = det(v∗, v∗∗∗, v) < 0 for all v ∈ V +

2 and
(v∗ × v∗∗)T v = det(v∗, v∗∗, v) > 0 for all v ∈ V +

3 .
Then, for all v ∈ V +

1 : f(v) = v∗T v > 0, and for all v ∈ V +
2 :

f(v) = v∗T v + α(v∗ × v∗∗∗)T v > 0 and for all v ∈ V +
3 : f(v) =

v∗T v+α(v∗ × v∗∗∗)T v+ β(v∗ × v∗∗)T v > 0. Thus f(v) > 0 for
all v ∈ V +

1 ∪ V +
2 ∪ V +

3 .

Based on Theorem 11 we can devise a procedure for enforcing
acyclicity of a vector configuration exclusively by changing the signs
of vectors. An example is illustrated in Figure 2.

Input: A vector configuration V = (v1, . . . , vn).

Output: An acyclic vector configuration obtained from V by
switching the signs of vectors from V

1 begin

2 v∗ ← 0, v∗∗ ← 0, v∗∗∗ ← 0
3 Choose i, j, k ∈ {1, . . . , n} such that det(vi, vj , vk) �= 0

and set v∗ ← vi and v∗∗ ← vj
4 foreach i ∈ {1, . . . , n} do

5 if det(v∗, v∗∗, vi) < 0 then vi ← −vi
6 foreach i ∈ {1, . . . , n} do

7 if det(v∗, v∗∗, vi) > 0 then v∗∗∗ ← vi

8 foreach i ∈ {1, . . . , n} do

9 if det(v∗, v∗∗, vi) = 0 and det(v∗, vi, v∗∗∗) < 0 then

vi ← −vi
10 foreach i ∈ {1, . . . , n} do

11 if det(v∗, v∗∗, vi) = 0 and det(v∗, vi, v∗∗∗) = 0 and
det(vi, v

∗∗, v∗∗∗) < 0 then vi ← −vi
12 return V

Function EnforceAcycVC(V)

Function EnforceAcycVC implements an O(n3) algorithm for en-
forcing acyclicity of a vector configuration based on the idea presented
in Figure 2. EnforceAcycVC moves all vectors in sets V −1 , V −2 , V −3
to sets V +

1 , V
+
2 , V

+
3 such that the resulting vector configuration is

acyclic according to Theorem 11. This is done exclusively by chang-
ing the signs of vectors to allow for applying the underlying concept
to oriented matroid setting (cf. Function EnforceAcycOM). In the
following we will prove the correctness of EnforceAcycVC.

The following lemmas show that Function EnforceAcycVC de-
tects vectors in V −1 , V −2 , and V −3 by testing the signs of determinant
expressions.

Lemma 12. Let v ∈ V . Then v ∈ V −3 , if and only if
det(v∗, v∗∗, v) < 0.

Proof. The proof follows immediately from the definition of V −3 .

For the next two lemmas we note that if V −3 is empty, then V +
3 is

not empty, otherwise V would not span R
3.

Lemma 13. Let V −3 be empty and v∗∗∗ ∈ V +
3 . Let v ∈ V . Then

v ∈ V −2 , if and only if det(v∗, v∗∗, v) = 0 and det(v∗, v, v∗∗∗) < 0.

Proof. If v ∈ V −2 , then there are t1, t2 ∈ R, t2 <
0, such that v = t1v

∗ + t2v
∗∗. Thus det(v∗, v∗∗, v) =

t1 det(v
∗, v∗∗, v∗) + t2 det(v

∗, v∗∗, v∗∗) = 0. Furthermore,
det(v∗, v, v∗∗∗) = t1 det(v

∗, v∗, v∗∗∗) + t2 det(v
∗, v∗∗, v∗∗∗) =

t2 det(v
∗, v∗∗, v∗∗∗) < 0.

For the other direction of the proof, we note that det(v∗, v∗∗, v) =
0 is a necessary condition for v to be in V −2 , since it would
otherwise be in V +

3 . Now assume that det(v∗, v∗∗, v) = 0 and
det(v∗, v, v∗∗∗) < 0 and v /∈ V −2 . Then v ∈ V +

1 ∪ V −1 ∪ V +
2 ,

i.e., there are t1, t2 ∈ R, (t1, t2) �= (0, 0) and t2 ≥ 0, such that
v = t1v

∗ + t2v
∗∗. Then

0 > det(v∗, v, v∗∗∗) = t1 det(v
∗, v∗, v∗∗∗) + t2 det(v

∗, v∗∗, v∗∗∗)

= t2 det(v
∗, v∗∗, v∗∗∗)

Since t2 ≥ 0 and det(v∗, v∗∗, v∗∗∗) > 0, the inequality is a contra-
diction.

Lemma 14. Let V −3 be empty and v∗∗∗ ∈ V +
3 . Let v ∈ V . Then

v ∈ V −1 , if and only if det(v∗, v∗∗, v) = 0, det(v∗, v, v∗∗∗) = 0
and det(v, v∗∗, v∗∗∗) < 0.

Proof. The one direction is straight forward. Now we assume that
det(v∗, v∗∗, v) = 0, det(v∗, v, v∗∗∗) = 0 and det(v, v∗∗, v∗∗∗) <
0 and v /∈ V −1 . Then v ∈ V +

1 ∪ V +
2 ∪ V −2 . However, if v ∈ V +

1 ,
then det(v, v∗∗, v∗∗∗) < 0 cannot be satisfied and if v ∈ V +

2 ∪
V −2 , then det(v∗, v, v∗∗∗) = 0 cannot be satisfied. Thus we have a
contradiction.

Theorem 15. Function EnforceAcycVC is correct.

Proof. Function EnforceAcycVC chooses two linear independent vec-
tors v∗, v∗∗ ∈ V (line 3) and moves all vectors in V −3 to V +

3 (lines 4–
5), where the vectors in V −3 are detected by applying Lemma 12. Then

J.H. Lee / The Complexity of Reasoning with Relative Directions510

it moves all vectors in V −2 to V +
2 (lines 8–9) and all vectors in V −1

to V +
1 (lines 10–11), where Lemma 13 and Lemma 14 are applied,

respectively. Since V = V +
1 ∪̇ V −1 ∪̇ V +

2 ∪̇ V −2 ∪̇ V +
3 ∪̇ V −3 by

Lemma 10 and V −1 , V −2 , V −3 are empty, V = V +
1 ∪V +

2 ∪V +
3 . Thus

V is acyclic by Theorem 11.

Input: An oriented matroid χ.

Output: An oriented matroid that is realizable if and only if χ is
realizable. The realization is acyclic.

1 begin

2 i∗ ← 0, i∗∗ ← 0, i∗∗∗ ← 0
3 Choose i, j, k ∈ {1, . . . , n} such that χ(i, j, k) �= 0 and set

i∗ ← i and i∗∗ ← j
4 foreach (i, j, k) ∈ {1, . . . , n}3 do

5 if χ(i, j, k) �= 0 then i∗ ← i and i∗∗ ← j

6 foreach i ∈ {1, . . . , n} do

7 if χ(i∗, i∗∗, i) < 0 then SwitchSign(χ, i)

8 foreach i ∈ {1, . . . , n} do

9 if χ(i∗, i∗∗, i) > 0 then i∗∗∗ ← i

10 foreach i ∈ {1, . . . , n} do

11 if χ(i∗, i∗∗, i) = 0 and χ(i∗, i, i∗∗∗) < 0 then

SwitchSign(χ, i)

12 foreach i ∈ {1, . . . , n} do

13 if χ(i∗, i∗∗, i) = 0 and χ(i∗, i, i∗∗∗) = 0 and
χ(i, i∗∗, i∗∗∗) < 0 then SwitchSign(χ, i)

14 return V

Function EnforceAcycOM(V)

We can apply the concept underlying Function EnforceAcycVC to
oriented matroids, such that an oriented matroid χ can be transformed
to an oriented matroid χ′ which is equivalent in realizability and, if
χ′ is realizable, then it has an acyclic realization. The transformation
is implemented by Function EnforceAcycOM which is an one-to-
one translation of Function EnforceAcycVC to the oriented matroid
setting. The main difference is the use of Function SwitchSign(χ, i),
which modifies χ to reflect the change of the sign of vector vi.

Function EnforceAcycOM is correct: given an oriented matroid χ
with a realization V , χ′ = EnforceAcycOM(χ) is an oriented ma-
troid with an acyclic realization V ′ = EnforceAcycVC(V). On the
other hand, if χ is not realizable, then χ′ = EnforceAcycOM(χ) is
not realizable as well, because if χ′ = EnforceAcycOM(χ) were real-
izable with a realization V ′, then one would obtain a realization V of
χ by reversing the operations of switching signs in EnforceAcycOM.
Note that EnforceAcycOM runs in O(n3).

From the correctness of Function EnforceAcycOM we can con-
clude the following theorem:

Theorem 16. Given an oriented matroid χ one can transform it in
polynomial time to an oriented matroid χ′, such that χ′ is realizable if
and only if χ is realizable, and if χ′ is realizable, then the realization
is acyclic.

Theorem 17. CSP(LR) is ∃R-hard.

Proof. Since ROM is ∃R-complete, it suffices to show that ROM can
be reduced to CSP(LR) in polynomial time. Let an oriented matroid
χ : {1, . . . , n}3 �→ {−1, 0, 1} be given. Since CSP(LR) requires
point configurations in the plane but the realization of an oriented

Input: An oriented matroid χ and an index i.

Output: An oriented matroid that is obtained by switching all
signs of χ that involve i.

1 begin

2 for j ← 1 to n do

3 for k ← 1 to n do

4 χ(i, j, k) ← −χ(i, j, k)
5 χ(j, i, k) ← −χ(j, i, k)
6 χ(j, k, i) ← −χ(j, k, i)
7 χ(i, k, j) ← −χ(i, k, j)
8 χ(k, j, i) ← −χ(k, j, i)
9 χ(k, i, j) ← −χ(k, i, j)

10 return χ

Function SwitchSign(χ, i)

matroid are vectors in the 3-dimensional space, we generate a new
oriented matroid χ′ which is equivalent in realizability and has an
acyclic realization when realizable, such that the realization of χ′ can
be identified with a point configuration in an affine space. This can be
accomplished in polynomial time using Function EnforceAcycOM.

Next we translate χ′ to an instance ϕ of CSP(LR): first, we
translate the numbers 1, . . . , n in the domain {1, . . . , n}3 of χ′

to variables v1, v2, . . . , vn defined on the plane R
2. Then we

generate for each triple (i, j, k) ∈ {1, . . . , n}3 a constraint
vi vj r vk if χ′(i, j, k) = −1, vi vj l vk if χ′(i, j, k) = 1, and
vi vj {f, e, i, s, b} vk if χ′(i, j, k) = 0 (cf. Figure 4). Because the
translation does not change the semantics of χ′, the oriented matroid
χ′ is realizable, if and only if ϕ is satisfiable. As the translations from
χ to χ′ and from χ′ to ϕ are accomplished each in polynomial time,
and χ is realizable, if and only if ϕ is satisfiable, we have obtained a
polynomial-time reduction from ROM to CSP(LR).

Figure 4: A realization of an acyclic oriented matroid χ with
χ(1, 2, 3) = 1, χ(1, 2, 4) = 0, χ(1, 3, 5) = −1, χ(2, 3, 4) = 1
and so forth. Equivalently, we have v1v2 l v3, v1v2 {f, e, i, s, b} v4,
v1v3 r v5, and v2v3 l v4.

Because relations in DCC are refinements of LR relations, and
thus any LR relation can be described as a union of DCC relations,
we have the following result.

Theorem 18. CSP(DCC) is ∃R-hard.

The proof for the ∃R-hardness of CSP(DRA) and CSP(OPRAm)
can be achieved similarly to Theorem 17. Since the proof is rather
technical and gives no new insights, we omit the proof here and refer
the reader instead to [12].

Theorem 19. CSP(DRA) and CSP(OPRAm) is ∃R-hard.

All in all, we have the following result:

Theorem 20. Reasoning with relative directional constraint lan-
guages is ∃R-hard.

J.H. Lee / The Complexity of Reasoning with Relative Directions 511

Now that CSPs for relative directional constraint languages (i.e.,
LR, DRA, DCC and OPRAm) are ∃R-hard, we can ask whether
at least the satisfiability of the atomic formulas of relative directional
constraint languages can be decided in NP. However, this would
imply the NP-membership of CSPs for relative directional constraint
languages, as one can non-deterministically choose a relation in each
conjunct of a formula and solve the atomic formula in NP. Therefore
we have the following theorem.

Theorem 21. Reasoning with atomic instances of a CSPfor a relative
directional constraint language is not in NP, unless NP = ∃R.

That reasoning with relative directional constraint languages is in
∃R can be proved by translating their formulas to instances of ETR.
For LR and OPRAm this was shown in [14], and for CSP(DRA)
and CSP(DCC) in [18] and [23], respectively.

Theorem 22. Reasoning with relative directional constraint lan-
guages is ∃R-complete.

4 CONCLUSION

This paper proved that reasoning with any of the relative direc-
tional languages LR,DRA,DCC and OPRAm is ∃R-complete
and thereby showed that reasoning with them is not in NP, unless
NP = ∃R. The same result holds even if only atomic formulas are
considered. The investigation in this paper complements the investi-
gation of topological constraint languages in [10] in that the present
paper discovers the relative directional part of the complexity land-
scape of qualitative spatial reasoning.

As the doubly-exponential decision procedure cylindrical algebraic
decomposition (CAD) [1] is more effective for ETR than those that
have in theory only exponential algorithmic complexities (cf. [20, 2]),
it seems unlikely that an NP decision procedure for reasoning with
relative directions will be available in the near future, if at all. Indeed,
empirical evaluations have shown that a modern CAD implementation
was not even able to handle in reasonable time CSP(LR) instances
with six or more variables [14]. Consequently, for applications involv-
ing relative directions, one should consider developing approximative
algorithms or semi-decision procedures as in [13].

ACKNOWLEDGEMENTS

The author would like to thank Sanjiang Li and the anonymous
ECAI reviewers for valuable comments that helped improve the paper.
This work is partially supported by the Deutsche Forschungsgemein-
schaft (DFG).

REFERENCES

[1] Dennis S Arnon, George E Collins, and Scott McCallum, ‘Cylindrical
algebraic decomposition i: the basic algorithm’, SIAM J. Comput., 13(4),
865–877, (1984).

[2] Philippe Aubry, Fabrice Rouillier, and Mohab Safey El Din, ‘Real solv-
ing for positive dimensional systems’, Journal of Symbolic Computation,
34(6), 543–560, (December 2002).

[3] Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in
Real Algebraic Geometry, Algorithms and Computation in Mathematics,
Springer Berlin Heidelberg, 2006.

[4] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White,
and Günter M Ziegler, Oriented Matroids, Cambridge University Press,
1999.

[5] John Canny, ‘Some algebraic and geometric computations in PSPACE’,
in Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, p. 460–467, New York, NY, USA, (1988).
ACM.

[6] Anthony G. Cohn and Jochen Renz, ‘Chapter 13 qualitative spatial
representation and reasoning’, in Handbook of Constraint Programming,
551–596, Elsevier, (2008).

[7] Frank Dylla and Reinhard Moratz, ‘Exploiting qualitative spatial neigh-
borhoods in the situation calculus’, in Spatial Cognition IV. Reason-
ing, Action, Interaction, 304–322, Springer Berlin Heidelberg, (January
2005).

[8] Christian Freksa, ‘Using orientation information for qualitative spatial
reasoning’, in Theories and Methods of Spatio-Temporal Reasoning
in Geographic Space, 162–178, Springer Berlin Heidelberg, (January
1992).

[9] Lutz Frommberger, Jae Hee Lee, Jan Oliver Wallgrün, and Frank Dylla,
‘Composition in OPRAm’, Technical Report 013-02/2007, Transregional
Collaborative Research Center SFB/TR 8 Spatial Cognition, (February
2007).

[10] Roman Kontchakov, Yavor Nenov, Ian Pratt-Hartmann, and Michael
Zakharyaschev, ‘On the decidability of connectedness constraints in
2D and 3D euclidean spaces’, in Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume
Two, IJCAI’11, p. 957–962, Barcelona, Catalonia, Spain, (2011). AAAI
Press.

[11] Arne Kreutzmann, Diedrich Wolter, Frank Dylla, and Jae Hee Lee, ‘To-
wards safe navigation by formalizing navigation rules’, TransNav, the
International Journal on Marine Navigation and Safety of Sea Trans-
portation, 7(2), 161–168, (2013).

[12] Jae Hee Lee, Qualitative Reasoning about Relative Directions: Compu-
tational Complexity and Practical Algorithm, Ph.D. dissertation, Univer-
sität Bremen, 2013.

[13] Jae Hee Lee, Jochen Renz, and Diedrich Wolter, ‘StarVars: effective
reasoning about relative directions’, in Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, IJCAI’13, p.
976–982, Beijing, China, (2013). AAAI Press.

[14] Jae Hee Lee and Diedrich Wolter, ‘A new perspective on reasoning with
qualitative spatial knowledge’, in IJCAI-2011 Workshop 27, pp. 3–8,
(2011).

[15] Gérard Ligozat, Qualitative Spatial and Temporal Reasoning, John
Wiley & Sons, May 2013.

[16] Gérard F Ligozat, ‘Qualitative triangulation for spatial reasoning’, in
Spatial Information Theory A Theoretical Basis for GIS, 54–68, Springer
Berlin Heidelberg, Berlin, Heidelberg, (1993).

[17] Dominik Lücke, Qualitative Spatial Reasoning about Relative Orienta-
tion: A Question of Consistency, Ph.D. dissertation, Universität Bremen,
June 2012.

[18] Reinhard Moratz, Jochen Renz, and Diedrich Wolter, ‘Qualitative spatial
reasoning about line segments’, in ECAI 2000. Proceedings of the 14th
European Conference on Artifical Intelligence, p. 234–238. IOS Press,
(2000).

[19] Till Mossakowski and Reinhard Moratz, ‘Qualitative reasoning about
relative direction of oriented points’, Artificial Intelligence, 180–181,
34–45, (April 2012).

[20] Grant Olney Passmore and Paul B. Jackson, ‘Combined decision tech-
niques for the existential theory of the reals’, in Intelligent Computer
Mathematics, 122–137, Springer Berlin Heidelberg, (January 2009).

[21] Jochen Renz and Gérard F Ligozat, ‘Weak composition for qualitative
spatial and temporal reasoning’, in Principles and Practice of Constraint
Programming - CP 2005, ed., Peter Van Beek, 534–548, Springer Berlin
Heidelberg, (2005).

[22] Marcus Schaefer, ‘Complexity of some geometric and topological prob-
lems’, in Graph Drawing, 334–344, Springer Berlin Heidelberg, (Jan-
uary 2010).

[23] Alexander Scivos and Bernhard Nebel, ‘Double-crossing: Decidability
and computational complexity of a qualitative calculus for navigation’,
in Spatial Information Theory, 431–446, Springer Berlin Heidelberg,
(January 2001).

[24] Alexander Scivos and Bernhard Nebel, ‘The finest of its class: The natu-
ral point-based ternary calculus LR for qualitative spatial reasoning’, in
Spatial Cognition IV. Reasoning, Action, Interaction, 283–303, Springer
Berlin Heidelberg, (January 2005).

[25] Peter W Shor, ‘Stretchability of pseudolines is NP-hard’, in Applied
Geometry and Discrete Mathematics–The Victor Klee Festschrift, eds.,
P Gritzmann and B Sturmfels, 531–554, Amer. Math. Soc., (1991).

[26] Diedrich Wolter and Jae Hee Lee, ‘Qualitative reasoning with directional
relations’, Artificial Intelligence, 174(18), 1498–1507, (2010).

J.H. Lee / The Complexity of Reasoning with Relative Directions512

