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Abstract. This paper explores the use of generalized linear program-
ming techniques to tackle two long-standing problems in qualitative
spatio-temporal reasoning: Using LP as a unifying basis for reason-
ing, one can jointly reason about relations from different qualitative
calculi. Also, concrete entities (fixed points, regions fixed in shape
and/or position, etc.) can be mixed with free variables. Both features
are important for applications but cannot be handled by existing tech-
niques. In this paper we discuss properties of encoding constraint
problems involving spatial and temporal relations. We advocate the
use of AND/OR graphs to facilitate efficient reasoning and we show
feasibility of our approach.

1 Introduction

Qualitative spatial and temporal reasoning (QSTR) is involved with
knowledge representations that explicate relational knowledge be-
tween (spatial or temporal) entities [11, 15]. QSTR has several im-
portant application areas both inside and outside AI. Over the past
two decades of research, a rich repertoire of specialized representa-
tions has been proposed (see [4] for recent summary). Aside from the
development of individually successful representations, called quali-
tative calculi, there are two penetrating and long-standing research
questions that apply to all representations.

• How can qualitative calculi be combined, i.e., how can one jointly
reason with knowledge represented in distinct calculi?

• How can qualitative representations incorporate grounded informa-
tion, i.e., how can free-ranging and constrained variable domains
(singleton, finite, numerical constraints) be mixed?

For the first question, two algebraic approaches have been consid-
ered, the loose and the tight coupling of spatial calculi [17]. While the
loose coupling is too weak to obtain sound and complete reasoning,
the tight coupling essentially means to manually develop a combined
calculus. Combining individual approaches by translation into a com-
mon, expressive formalism would provide an answer to the question.
However, formalisms expressive enough to capture a multitude of
spatial and temporal relations such as algebraic geometry (e.g., see
[3, 19]) lead to infeasible complexity which limits applicability to toy
problems.

The second question addresses needs of practical applications in
which it is common that some objects to be reasoned about are already
identified with concrete entities. This question has recently received
attention [10], revealing the specific answer for the region connection
calculus (RCC) [13]. For other calculi, this question remains open.
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In this paper we are concerned with developing a unified framework
for QSTR that provides a solution to both questions and which is
applicable to a wide range of qualitative calculi. To this end, we
further explore the use linear programming (LP). LP is interesting
since it can capture several calculi in an efficient framework, either
exactly or by tight approximations. While LP techniques have already
been used in QSTR for selected tasks (e.g., [8, 11, 7]), potentials of
LP frameworks have not yet been explored thoroughly. We propose a
basic language Qbasic for QSTR and describe how selected qualitative
calculi can be encoded in it. For reasoning with Qbasic, translations
into LP frameworks are performed. Comparing mixed integer linear
programming (MILP) and AND/OR graphs combined with LP, we
advocate the latter since it allows sophisticated optimizations that
foster efficient reasoning. To further motivate our aims, let us outline
a problem from the field of safety in autonomous mobile systems.

1.1 Motivating Problem

Täubig et al. [18] present in “Guaranteeing functional safety: design
for provability and computer-aided verification” a supervisory method
for an autonomous vehicle to ensure that the vehicle does not issue
commands which could (potentially) lead to a collision with a static
obstacle. The particular contribution is a formal method for which
certification according to IEC 61508 was achieved.

From a QSTR perspective, safe navigation could have been formal-
ized using RCC relations. Considering the primitives illustrated in
Fig. 1, we call free space sensed the region within sensor range that
is free of obstacles. Using r as reference to the position of the robot,
an intuitive formalization could start as follows:

φsafe =(braking region(r) pp sensor region(r)) (1a)

The specification would also identify potentially dangerous locations
(denoted h), i.e., positions of obstacles within the braking region but
outside sensor range, e.g., due to occlusion. Using reg() to refer to
the region occupied by an obstacle, we obtain

φdangerous =((reg(h) PP braking region(r) (1b)

∨ (reg(h) PO braking region(r)))

∧ (reg(h) DR sensor region(r))

The above formulae essentially describe safety of navigation as con-
sidered in [18], they are valid for both static and dynamic obstacles.
Extending the specification to consider a moving object m, its respec-
tive braking region needs to be considered too:

ψdangerous = (braking region(r) PO braking region(m)) (2)
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Figure 1. Left: regions in safe navigation, overlapping braking regions are
dangerous. Right: RCC-5 topological relations discrete (DR), partial overlap
(PO) and proper part (inverse) (PP, PPi); equality (EQ) not shown

Observe that braking region(m) may either refer to a concrete
region if m is observed, but it may also be unknown if m is positioned
outside sensor range, i.e., (sensor region(r) DR reg(m)).

A next step in a formalization could involve traffic rules such “left
shall yield to right”, saying that the robot has to let vehicles pass
which approach from the right, but in turn the robot is allowed to pass
by a vehicle approaching from the left:

ψ′
dangerous =(braking region(r) PO braking region(m))

∧ (sensor region(r) DR reg(m)) (3)

∧ (r right m),

As can be seen, the example of safe navigation from the literature
can be represented with qualitative relations and easily be advanced
beyond [18] by considering moving obstacles. However, in order to
decide whether an issued driving command is safe, we require means
to handle partially grounded information such as the polygonal brak-
ing area alongside unknown regions such as the breaking area of a
hidden object m. For considering traffic rules, qualitative representa-
tions for region topology (e.g., RCC) and directional knowledge (e.g.,
OPRA [12]) would need to be mixed. As we will see, the techniques
proposed in this paper provide a solution to both problems.

2 Qualitative Spatial and Temporal Reasoning

We briefly introduce key concepts from the field of QSTR necessary
in our context. For more detailed coverage we kindly refer to the
literature, e.g., [11, 15, 4].

In QSTR, one is involved with representations that are based on
finite sets of relations called base relations which partition a spa-
tial or temporal domain into meaningful parts. Technically speak-
ing, the set of base relations is jointly exhaustive and pairwise dis-
joint (JEPD). Due to the set-theoretic semantics of relations, any
set of base relations B induces a Boolean set algebra of quali-
tative relations RB =

⋃
R∈2B

(⋃
r∈R r

)
. The Boolean set alge-

bra, in conjunction with relation operation converse �: R → R,
r� = {(x, y)|(y, x) ∈ r} and weak composition � : R×R → R,
r �s = {(⋂q |(r ◦s) ⊆ q, q ∈ R} constitutes the algebraic structure
of the representation which is also called a qualitative calculus [4].

These qualitative relations serve as constraint language to represent
constraints like (X DRY ), or (X (DR∪PO)Z) whereby DR is a base
relation in RCC-5 [13] and (DR ∪ PO) is a respective qualitative
relation (see Fig. 1.). Constraint-based reasoning is the single most
important form of QSR and it is considered as a decision problem.

Definition 1 (QCSP). Given a constraint satisfaction problem (CSP)
with variables X ranging over domain D that involves only binary
constraints that are qualitative relations in one calculus over domain
D, i.e., ci,j ∈ RB for some set of base relations B over D. The
problem QCSP is then to decide whether there exists a valuation of
X with values from D such that all constraints are satisfied.

Since D is typically infinite, special techniques are necessary that
allow QCSP to be solved efficiently for various qualitative calculi.
The complexity of QCSP is usually NP-complete, while reasoning
with base relations only may be in P. There exist however calculi
that involve directional relations such as right from the motivating
example that are inherently NP-hard and, assuming P
=NP, require
exponential time algorithms [20].

3 Approaches to Unifying QSTR

With respect to capturing semantics of QSTR, expressive and hence
computationally very hard languages are commonly used. For exam-
ple, algebraic geometry provides a suitable basis to represent many
qualitative calculi, but reasoning is only feasible for toy problems
[19]. In order to obtain an efficient unified approach to reasoning, few
approaches have been proposed so far.

A decomposition of the algebraic structure of calculi has been
proposed in [6] that allows QCSP instances to be encoded as
SAT instances. However, the method is limited to calculi in which
composition-based reasoning can be used to decide consistency (see
[15]) which, e.g., excludes RCC in the domain of polygons [16] or
calculi involving directional relations.

Linear programming has previously been considered to tackle se-
lected, isolated problems in QSTR. Lee et. al. [8] describe a reasoning
method for directional relations that employs an LP solver to check
consistency of STAR [14] QCSPs and to compute a realization. In
temporal reasoning, LP has previously been considered as a backbone
to unifying temporal reasoning, since temporal relations are largely
based on linear inequalities. Jonsson and Bäckström [7] describe an
approach based on disjunctive linear relations that is similar to ours. In
order to extend their idea to spatial relations, we introduce oracles that
allows us to cope with the higher expressiveness of spatial relations.
This requires a new approach to reasoning.

4 A unifying language for QSTR

We now introduce the new language Qbasic. The motivation of this
language is to separate the translation from QSTR into a common
language from translation into a specific LP framework in order to al-
low different LP backends to be used without the need of re-encoding
all spatial calculi. Moreover, Qbasic explicates some nice features
we obtain as side effects but which are helpful on their own, most
notably the propositional closure of qualitative constraints that is
not expressible in standard QSTR, e.g., in Qbasic we can express
((xα y) ∧ (y β z)) ∨ (x γ y).

The primitives of the new language Qbasic are systems of inequali-
ties that may contain non-linear elements. When the non-linear ele-
ments are externally grounded, the resulting system of inequalities
becomes linear. By restricting the domains of the non-linear elements
to finite sets we obtain a flexible discretization scheme that easily
outperforms any fixed discretization of a spatial or temporal domain.
For example, we can choose a finite set of 360 angular 2D directions
of lines {(sin( k

180
π), cos( k

180
π))|k = 0, 1, . . . 359} when reasoning

about lines in the plane, while realizing these directions on a discrete
coordinate would require a grid that grows with the number of lines
to be positioned.

Definition 2. We call Sn = 〈O, G〉 a system of finite disjunctive
linear inequalites over R

n with oracle values O, where O is a fi-
nite set and G is a mapping G : O → 〈

R
mG×n,RmG

〉
. We say

s = 〈x, o〉 ∈ 〈Rn,O〉 is a solution of Sn iff G(o) = 〈Ao, bo〉
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and Ao · x ≤ bo, using the component-wise interpretation of ≤
used in LP, i.e., (x1, . . . , xn) ≤ (y1, . . . , yn) iff xi ≤ yi for all
i = 1, . . . , n.

Definition 3 (Qbasic). We call 〈Rn,O〉 the domain and S =
{Sn

1 , . . .} the set of symbols, whereby any symbol Sn
i is a system

of finite disjunctive linear inequalities sharing the same oracle O as
defined above. A choice of D and S is called the signature of our
language. Given a signature, we define a Qbasic formula φ as follows:

φ =def S
n
i | � | ⊥ | ¬φ | φ ∧ ψ.

Given x ∈ D and a o ∈ O, we inductively define the notion of a
formula φ being satisfied in 〈x, o〉 as follows:

x, o |= Sn iff 〈x, o〉 is a solution of Sn (4)

x, o |= � always (5)

x, o |= ⊥ never (6)

x, o |= ¬φ iff 〈x, o〉 is not a solution of Sn (7)

x, o |= φ ∧ ψ iff x, o |= φ and x, o |= ψ (8)

The other Boolean connectives are defined as usual.

Corollary 1. Deciding satisfiability of a Qbasic formula is NP-
complete

5 Encoding QCSP in Qbasic

This section provides an overview of how QCSP instances for several
calculi can be encoded in Qbasic. We show how qualitative relations
can be represented as systems of finite disjunctive linear inequalites.
Due to space constraints, definitions of the individual calculi are
omitted. Refer to [11, 4] for definitions and further references.

5.1 Temporal Calculi

As pointed out in [7], temporal relations can be described by linear
inequalities. Strictness in the sense x < y can be resolved by intro-
ducing a fixed ε > 0 and rewriting to x+ ε ≤ y since the qualitative
temporal relations considered do not rely on absolute values.

5.2 Direction Calculi

Given a vector 
v ∈ R
2, we call 
v⊥ its left normal obtained by 90◦

counter-clockwise rotation. Given two (variable) points p, q ∈ R
2

and a fixed orientation expressed as a vector 
v ∈ R
2, we define the

following constraints by translation to Qbasic:

p left�v q =def 
q
T · 
v⊥ − 
pT · v⊥≤ 0 (q left of p)

p right�v q =def 
p
T · 
v⊥ − 
qT · v⊥≤ 0 (q right of p)

p front�v q =def 
pT · 
v − 
qT · v≤ 0 (q in front of p)
p back�v q =def 
qT · 
v − 
pT · v≤ 0 (q behind p)

(9)

The relations left�v , right�v , front�v , back�v are not pairwise
disjoint (they overlap in one quadrant) but they are jointly exhaustive.

Theorem 1. Let φ be a propositional formula with atoms of the kind
(x R y), where R is a relation as defined above. Let var(φ) denote the
number of (distinct) variables in φ and let rel(φ) denote the number
of (distinct) relations in φ, then φ can be translated into a Qbasic

formula with signature D = R
2 var(φ), |(S)| = rel(φ), and O = ∅.

Proof. Let I : V → {1, . . . , n} be a bijective mapping between the
variables and corresponding dimension in R

2 var(φ). We define

Hi =def

⎛
⎝ 0 . . . 0︸ ︷︷ ︸

2·(I(i)−1)

1 0 0 . . .

0 . . . 0 0 1 0 . . .

⎞
⎠ , Hi,j =def

(
Hi

Hj

)
.

In the given formula φ, replace all atoms (xi R�v xj) by Sk =〈{}, 〈HT
i,jAR�v

Hi,j , 0
〉〉

, where AR�v
is the corresponding matrix to

represent inequality as given by Eq. 9. This yields a Qbasic formula
with the signature, D = R

2 var(φ), O = {}, and S as the set compris-
ing all Sk defined above.

Consider two arbitrarily fixed vectors 
s and 
t such that the counter-
clockwise angle between 
s and 
t does not exceed 180◦. A (variable)
point q with respect to a (variable) point p is said to be inside the
sector spanned by 
s and 
t, iff:

(p left�s q) ∧ (p right�t q) (10)

All cardinal direction calculi considered in the literature are ei-
ther based on half-plane or sector membership, whereby half-plane
normals and sectors are globally aligned to one of finitely many di-
rections. This makes mapping QCSP instances to Qbasic with any of
these calculi straightforward using either Eq. 10 or front�n where 
n
denotes the respective half-plane normal. No oracle needs to be intro-
duced. Since all these calculi are scale-invariant like temporal calculi,
the same approach of introducing ε can be applied to represent truly
left�v , right�v , etc. Applicability to the most important cardinal
direction calculi is shown in Tab. 1.

Theorem 2. StarVars [8] can be represented by Qbasic.

Proof. StarVars, like Star [14], employs sector-shaped spatial rela-
tions. The sectors in StarVars are rotated by an undetermined angle
2i
2N

π, i = 0, . . . 2N − 1 for a fixed N . Choosing these angles as
oracles, the construction of the Qbasic formula follows directly from
[8] which also employs an LP algorithm to decide consistency.

Theorem 3. OPRA can be mapped to Qbasic if the domain of direc-
tions is restricted to a finite set.

Proof. Interpreted over finite domain of directions, OPRA relations
can be represented as two conjuncts of StarVars relations [8].

5.3 Region Connection Calculus

In this work we only consider planar regions in form of simple, i.e,
not self-intersecting polygons. We start with convex polygons since
the mappings can then be generalized to non-convex polygons by
considering a convex partitioning and disjunctively adjoining the
linear programs.

First note that the relation saying that a point is located inside
a simple convex polygon positioned at an unknown origin can be
represented by a LP. This is due to the point-in-polygon test being
based on half-plane membership tests which are linear inequalities
and stay linear if the whole polygon is translated by unknown x, y.
For convex polygons, point-outside-polygon can also be modeled by
disjunctively adjoining the negated clauses of the point-in-polygon
test.

Corollary 2. If two simple convex polygons do not share a common
point, then there exists a line parallel to one edge which separates the
space between both polygons.
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This fact grants a mapping for the RCC relation discrete saying
that regions do not share a common interior part. For simple con-
vex polygons, we disjunctively choose one edge as the dividing line.
Let two simple convex polygons P and Q be defined by vertices
vP1 , . . . , vPk and vQ1 , . . . , vQm in counter-clockwise orientation. We
write ePi to refer to edge vPi , vP(i+1) mod k and dPi to refer to direc-
tion vP(i+1) mod k − vPi and obtain:

(P drconv Q) =def

∨
�ePi

∧
v
Q
j

(vPi right�dPi
vQj )

∨
∨
�e
Q
i

∧
vP
j

(vQi right�d
Q
i
vPj )

(11)

Analogously, dcconv can be defined, except that touching points
need to be excluded by using ¬(vPi left vQj ) instead of
(vPi right vQj ). Given P as above we can express that point x lies
on the edge ePi , i.e., between vPi and vPi+1, including both vertices.

(ePi cont x) =def (v
P
i left(�vP

i+1−�vP
i ) x)∧ (vPi right(�vP

i+1−�vP
i ) x)

∧ (vPi front(�vP
i+1−�vP

i ) x) ∧ (vPi+1 back(�vP
i+1−�vP

i ) x), (12)

External connection can be mapped to Qbasic as follows:

(P tconv Q) =def

∨
ePi

[∧
v
Q
j

(vPi right(�vP
i+1−�vP

i ) v
Q
j )

∧
∨
v
Q
j

(ePi cont vQj )
]

(P ecconv Q) =def (P tconv Q) ∨ (Q tconv P ) (13)

Theorem 4. RCC-5 and RCC-8 [13] can be mapped to Qbasic for the
domain of simple (i.e., not self-intersecting) polygons in 2D space
that involve at most N vertices each.

Proof. We need to show how the relations of RCC-8 can be stated in
Qbasic, RCC-5 relations can then be obtained by disjunctive combina-
tions, e.g., (P DRRCC-5 Q) = (P DCRCC-8 Q) ∨ (P ECRCC-8 Q) . The
vertex limit N is required to obtain finite formulae. For RCC-8, the
following mapping can be employed:

(P dc Q) =def

∧
PC∈CP

∧
QC∈CQ

(PC dcconv Q
C) (14)

(P ec Q) =def

∨
PC∈CP

∨
QC∈CQ

(PC ecconv Q
C)

∧
∧

PC∈CP

∧
QC∈CQ

(PC drconv Q
C) (15)

Given three fresh variables τ1, τ2, τ3 denoting points:
(P po Q) =def

(
(τ1 inside P ) ∧ (τ1 inside Q)

)
∧((τ2 inside P ) ∧ ¬(τ2 inside Q)

)
∧(¬(τ3 inside P ) ∧ (τ3 inside Q)

)
(16)

For containment it is not sufficient that all vertices of one polygon
P are inside another polygon Q, see Fig. 2. Let IQ denote edges
introduced by the convex partitioning. If an edge E of P overlaps with
a sequence of adjacent convex parts of Q, all IQ’s of this sequence
need to cross, i.e, one endpoint of IQ lies left of and the other right of
E. In the following, this is denoted by the formula (P ⊗ Q).

(P pp Q) =def

∧
vP
j

(vPj inside Q) ∧ (P ⊗ Q)

Figure 2. Convex region (red) partially overlapping a
non-convex region (blue) although all vertices of the red
region are inside the blue region.

(P tpp Q) =def (P pp Q)

∧
[∨

ePi

∨
v
Q
j

(ePi contains vQj )

∨
∨
e
Q
i

∨
vP
j

(eQi contains vPj )
]

(17)

(P ntpp Q) =def (P pp Q) ∧
∧
v
Q
j

¬(vQj inside P ) (18)

Due to space constraints we omit converse relations ntppi,tppi
and equality eq, as well as (P ⊗ Q).

6 Using Spatial Reasoning to Reduce Formula Size

Key to making reasoning in Qbasic efficient is reducing formula size.
Aside from rewriting and simplification, we also apply classic QSTR
reasoning methods to prune away implicit sub-formulae. The pro-
cess of simplification can be interwoven with how QCSP instances
are translated into Qbasic formulae to avoid uneccesarily generating
systems of finite disjunctive linear programs.

Removing Redundant Information In case of partially grounded
information, we first check whether constraint relations are declared
between two grounded entities. Then, we check if the relation holds
and replace it accordingly by � or ⊥.

Given a set of constraints over a single qualitative calculus, we can
apply composition-based constraint propagation to identify redundant
constraints, e.g., in the set {(A dc B), (C ntpp B), (A dc C)}
the constraint (A dc C) is redundant since it is implied by the other:
A must be disconnected form C since A is already disconnected
from a container of C. Unfortunately, determining the minimal set of
constraints is NP-complete [5], so we only perform a greedy search.

Avoiding disjunctions There are several ways of encoding a spa-
tial relation in Qbasic. To avoid disjunctions, we consider alternative
mappings stored in a table and choose the option that introduces the
fewest disjunctions. For example, instead of encoding ¬(A dc B) at
the cost of several disjunctions as explained further below, it can sim-
ply we rewritten by saying there exist a common point τ , either truly
inside or at their border: (τ inside A) ∧ (τ inside B). Since
spatial calculi comprise a jointly exhaustive set of relations, negation
can sometimes be rewritten with less disjunctions by considering the
mapping of complementary relations.

7 Deciding Qbasic and Computing Realizations

In this section we introduce two translations of Qbasic to LP frame-
works, namely mixed integer linear programming (MILP) and
AND/OR graphs of LPs. While existing MILP solvers provide all
functionality for deciding consistency of a Qbasic formula encoded as
a mixed integer linear program, we give an incremental method for
solving formulas encoded as AND/OR graphs of LPs.

Definition 4. Given an finite set O and a system of finite disjunctive
linear inequalites S = 〈O, G〉 we say for a o ∈ O

[o]S =def {o′ ∈ O | G(o′) = G(o)}
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Algorithm 1. Translate (normalized) Qbasic formula φ to Mixed-Integer
Linear Program L, with x, v∗ ∈ R

n, y∗ ∈ {0, 1}
1: L ← empty mixed integer linear program
2: for all S ∈ φ do
3: OS ← {[o]S | o ∈ O}
4: for all [o]S ∈ OS do
5: chose a o ∈ [o]S
6: 〈A, b〉 ← GS(o)
7: L ← L ∪AvS,[o]S ≤ byS,[o]S � Add inequalities
8: L ← L ∪ [

yS,[o]S ≤ yS
]

� Add relation implication
9: L ← L ∪ [

yS,[o]S ≤ ∑
o∈[o]S

yo
]

� oracle implication
10: end for

� Aggregate Disjunction Constrains
11: L ← L ∪ [

x =
∑

[o]S∈OS
vS,[o]S

]

12: L ← L ∪ [
0 ≤ vS,[o]S ≤ yS,[o]SU for all [o]S ∈ OS

]

13: L ← L ∪ [∑
[o]S∈OS

yS,[o]S = 1
]

14: end for
15: ψ ← replace each S in φ with yS
16: ψCNF ← conjunctive normal form of ψ
17: for all disjunctive clauses Q in ψCNF do
18: L ← L ∪ [∑

yS∈Q yS ≥ 1
]

� All yS are not negated
19: end for

is the induced congruent set of o with respect to S. In other words,
[o]S collects all oracle variables that lead to the same linear program.

In order to decide satisfiability of a Qbasic formula and to obtain
realizations for satisfiable formulae, we first perform normalization.
First, we rewrite Boolean operators to only have ∨,∧ and we remove
�,⊥ by absorption, e.g., φ ∨ ⊥ �→ φ. Second, negation is moved
inward such that we only have negated atoms ¬Sn

k . This negated
atom can be replaced by a positive one at the cost of introducing
disjunctions which select an inequality from Sn

k that is violated. We
can thus assume to be given a Qbasic formula without negation.

7.1 Mapping Qbasic to MILP

We base our translation from Qbasic to mixed-integer linear program-
ming upon the fundamental work of Balas[1] on disjunctive linear pro-
gramming. Further we draw inspirations from Lee and Grossman[9],
who describe a method for approximating non-linear disjunctions,
which requires upper bounds ui on all variables.

The general approach for a given disjunction over k sets of linear
inequalities (Aix ≤ bi) is that x is disaggregated into x = v1+...+vk
and for each set of linear inequalities a variable yi ∈ {0, 1} is defined.
Then, Aivi ≤ biyi constitutes the program, replacing the original
set of linear inequalities. Choosing yi = 0 effectively disables the
inequality and yi = 1 enables it. A further inequality vi ≤ yiui is
added, forcing vi to zero if the inequality is disabled.

In our case, we have a disjunction for each S ∈ φ over the ora-
cle values. The only thing left is to ensure that at least one of the
disjunctions is active if the corresponding yS is:

∑
yi ≥ yS .

Alg. 1 shows the complete procedure in algorithmic form. If the
resulting MILP has a solution, that solution is also a realization of
the Qbasic formula4. Which oracle value was used, can also be read of
from the MILP solution. If no solution was found, the Qbasic formula
is not realizable.

7.2 Incremental Expansion of Linear Programms

Considering the parse tree of a Qbasic formula, we can regard the
formula as AND/OR graph whose leaves are systems of finite disjunc-
tive linear inequalites. In order to compute a solution we perform a
4 With a lot of extra variables yi which however can easily be filtered out

Algorithm 2. Incremental Expansion

1: procedure REALIZETREE(T,LP,O)
2: if Troot is conjunction then � And-Node
3: C ← select one child of T
4: while O 	= ∅ do
5: S,LP ′,O′ ← REALIZETREE(C,LP,O)
6: O ← O \ O′
7: if T has other children then
8: S,LP ′,O′′ ← REALIZETREE(T \ C,LP ′,O′)
9: end if

10: if S 	= ∅ then
11: return S,LP ′,O′′
12: end if
13: end while
14: return ∅, ∅, ∅
15: else if Troot is disjunction then � Or-Node
16: for all children C of T do
17: S,LP ′,O′ ← REALIZETREE(C,LP,O)
18: if S 	= ∅ then
19: return S,LP ′,O′
20: end if
21: end for
22: return ∅, ∅, ∅
23: else � Symbol/Relation
24: for T induced congruent sets O′ ⊂ O do
25: o ← select from O′
26: LP ′ ← Gp(o)
27: S ← SOLVE(LP ∪ LP ′)
28: if S 	= ∅ then
29: return S,LP ∪ LP ′,O′
30: end if
31: end for
32: return ∅, ∅, ∅
33: end if
34: end procedure

calculus encoding properties
Allen’s interval relations �
Block Algebra �
Cardinal Direction Calculus �
Dipole Calculus discretized 2D directions
INDU �
LR calculus discretized 2D directions
OPRA discretized 2D directions
Point algebra �
Positional point calculi discretized 2D directions
Qualitative Trajectory Calculi via encoding to OPRA
Region Cardinal Dir. Calc. N -vertex polygons or polyhedra only
RCC N -vertex polygons or polyhedra only
STAR �
StarVars �

Table 1. Encoding properties of qualitative calculi in Qbasic

depth-first search with backtracking as shown in Alg. 2. The starting
parameters are the original AND/OR tree T , the partial grounding LP
encoded in LP5, and the set of oracle values O. A solution found at a
node is propagated upwards, accumulating the (pure) linear programs
(line 29). The algorithm either returns a realization, the corresponding
LP, and the oracle values or ∅, ∅, ∅ to signal unsatisfiability.

8 Practical Analysis

We evaluate the performance of the strategies MILP and incremental
expansion experimentally. Since our method actually computes a real-
ization for any consistent QCSP instance, comparison with algorithms
that merely check for consistency but cannot compute a realization are
not adequate. Additionally, both strategies are compared against the
results published for StarVars reasoning algorithm[8] that also com-
putes a realization. This comparison is particularly interesting since a

5 If not applicable an empty LP is provided
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n m StarVars[8] MILP IncExpand

4 4 0.64 ±0.39 0.02 ±0.01 0.13 ±0.00
4 8 1.15 ±0.71 0.14 ±0.04 0.20 ±0.01
4 16 2.01 ±1.13 1.08 ±0.30 0.34 ±0.01
4 32 2.63 ±1.61 8.26 ±2.67 0.62 ±0.02

5 4 1.06 ±0.58 0.06 ±0.01 0.19 ±0.01
5 8 1.66 ±1.26 0.44 ±0.10 0.30 ±0.01
5 16 2.56 ±2.14 4.72 ±1.15 0.50 ±0.02
5 32 4.35 ±3.87 34.11 ±9.91 0.92 ±0.02

6 4 2.55 ±0.00 0.14 ±0.03 0.27 ±0.01
6 8 3.16 ±1.64 1.31 ±0.27 0.42 ±0.02
6 16 4.27 ±3.48 12.96 ±2.91 0.69 ±0.03
6 32 6.10 ±5.88 109.46 ±24.15 1.25 ±0.04

7 4 6.83 ±0.10 0.28 ±0.05 0.37 ±0.01
7 8 7.55 ±0.10 3.23 ±0.55 0.55 ±0.02
7 16 8.30 ±1.82 36.21 ±8.03 0.91 ±0.03
7 32 8.76 ±2.68 310.05 ±73.63 1.61 ±0.02

Table 2. Compute time in seconds with standard deviation for 100 random
scenarios for n entities with m distinct orientations

Visibility
Polygon

Robot

Hypothetical Figure 3. Realization computed by
our algorithm when provided with
shape of breaking regions, outline of
the obstacle (grey box), and ψ′

dangerous
from Section 1.1

StarVars requires a large number of oracle values to be introduced and
its parameters allow controlling problem size n (number of entities,
O(n2) constraints) and required oracle values (|O| = m ·n) indepen-
dently. For each combination of n and m we randomly generate 100
QCSP instances, using base relations as constraints.

We implemented the translation described in Alg. 1, 2 in Python.
For MILP and LP solving, we rely on lp solve [2]. Tab. 2 gives
compute times measured on an Intel Core i7 @3.4GHz with 16 GB
RAM. The results in the column StarVars are those as reported in [8]
using a different, slower machine, and are thus not comparable as
such, but sufficient for a qualitative comparison.

Discussion of the Results

Let us first consider compute times for MILP shown in Tab. 2. The
time increases with problem size and, more significantly, with respect
to m. This likely results from the translation into MILP since unfold-
ing disjunctions leads to exponential problem size. The steep scaling
wrt. m also leads to longer compute times than reported for the hand-
crafted StarVars algorithm on a slower machine. For problems with
few disjunctions (e.g., m = 4), MILP can outperform incremental
expansion. For most of the configurations tested, incremental expan-
sion shows superior performance though. This is due to the algorithm
exploiting the structure of the formula, something that gets lost in
the translation to MILP. In comparison to the results obtained for
the original StarVars algorithm handcrafted for these constraints, we
observe a similar scaling with respect to increasing m.

In summary, incremental expansion provides a practical method
for reasoning with Qbasic formulae.

9 Summary and Conclusion

This paper outlines a practically relevant answer to two longstanding
questions in qualitative spatial and temporal reasoning. By encoding

spatial and temporal relations into an LP framework, we are able to
represent the important domains of points, lines, and polygons. We
show how relations from various qualitative calculi can be expressed
in our framework, including directional knowledge. This allows dis-
tinct qualitative representations to be combined and jointly to be
reasoned about. Doing so, we advance earlier work in temporal rea-
soning by Jonsson and Bäckström [7]. The algorithm of incremental
expansion for solving AND/OR LP problems is however more effi-
cient than using disjunctive linear relations like in their work, since
incremental expansion avoids exponential blow up of disjunctions
occurring with disjunctive linear relations or MILP. While this pa-
per proposes the unifying language Qbasic that can be tackled with
LP techniques, identifying the most efficient reasoning algorithms is
subject to further investigations.
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