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Abstract. In collaboration with experts from veterinary research
institutes throughout Europe, we developed a decision-support sys-
tem for the early detection of Classical Swine Fever in pigs. For
evaluating our system’s diagnostic performance, practitioners and re-
searchers collected data from the real-world field and from laboratory
experiments. Originating from different sources, these data could not
be viewed as constituting an unbiased sample from a single probabil-
ity distribution. In this paper, we present a knowledge-based method
for correcting the biases in estimates from such divergent data. We
demonstrate the use of our method for estimating the sensitivity and
specificity characteristics of our veterinary decision-support system.

1 INTRODUCTION

In close collaboration with veterinary experts from the research insti-
tutes involved in the European EPIZONE network of excellence, we
developed an early-warning system for Classical Swine Fever (CSF)
in individual pigs. Classical Swine Fever is a highly infectious viral
disease, which is notifiable by law. Upon its detection, broad-scoped
eradication measures are installed, with possibly major economic
consequences. Our system is aimed at supplying veterinary practi-
tioners with an independent tool for identifying suspect patterns of
disease as early on in an outbreak of CSF as possible.

Embedded in our system is a Bayesian network for establishing
the posterior probability of the clinical symptoms of an individual
animal being caused by Classical Swine Fever. The performance
of this network is studied in terms of its sensitivity and specificity
characteristics, which describe the network’s ability to distinguish
between CSF-infected animals and diseased animals without CSF.
These characteristics would ideally be determined from real-world
data of both infected and non-infected animals. Since the European
Union is currently free of Classical Swine Fever however, data from
CSF-infected animals cannot be collected from the field setting in
which the Bayesian network is to be employed. For establishing the
network’s sensitivity and specificity characteristics therefore, data
were obtained from different sources. Data from animals without
CSF were collected by pig veterinarians upon visiting pig farms with
disease problems of unknown cause. Data pertaining to animals with
a CSF infection were collected by veterinary researchers from inocu-
lation experiments in a high-containment laboratory setting. All data
were collected using the same standardised protocol.

Since our Bayesian network is to be employed in veterinary prac-
tice, its performance is investigated for real-world pig farms. The
performance on diseased animals without CSF is readily established
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from the collected field data. An estimate of the network’s perfor-
mance on CSF-infected animals can in essence be obtained from the
laboratory data submitted by the veterinary researchers. This latter
estimate cannot be considered unbiased with respect to the real-world
field setting, however. While animals with the disease present with
the same CSF-specific pattern of clinical symptoms regardless of the
setting, the field and laboratory settings differ considerably in for ex-
ample the distribution of animal types and environment conditions.

Motivated by the above considerations for our domain of appli-
cation, we address in this paper the problem of establishing unbi-
ased probability estimates from datasets involving systematic bias.
We show that by exploiting domain knowledge, unbiased distribu-
tions can effectively be obtained by weighting the available data with
case-specific correction factors. We present a general method for this
purpose and demonstrate its use for estimating the performance char-
acteristics of our Bayesian network for Classical Swine Fever.

The paper is organised as follows. Section 2 provides some back-
ground information on our application domain and introduces the
CSF network; in Section 3 we describe the collected data. Section 4
presents our method for establishing unbiased probability estimates
from systematically biased data in general, and Section 5 details its
application for estimating unbiased performance characteristics. Sec-
tion 6 reports the sensitivity and specificity of our CSF network, as
established by means of our method. The paper ends with our con-
cluding observations and directions for further research in Section 7.

2 AN EARLY-WARNING SYSTEM FOR CSF

Classical Swine Fever is a viral pig disease with a potential for rapid
spread. The early signs of the disease are quite aspecific, and are
often attributed to an intestinal or respiratory infection. When the
disease progresses however, it is associated with an accumulating
failure of body systems, which will ultimately cause the animal to
die. The disease is notifiable by law, which means that any suspicion
of its presence has to be reported immediately to the agricultural au-
thorities; control measures, involving closure of the farm, are then
installed. The longer a CSF infection remains undetected, the longer
the virus can circulate without hindrance, both within a herd and be-
tween herds. Because of the major economic consequences of an out-
break of the disease, reducing the high-risk period of time between
first infection of a herd and first detection is of primary importance.

In collaboration with experts from the research institutes par-
ticipating in the EPIZONE network of excellence, we developed a
Bayesian network for the early detection of Classical Swine Fever in
pigs. For its construction, we held in-depth interviews with the vet-
erinary experts; in addition, case reviews were conducted with swine
practitioners, both with and without clinical CSF experience. The
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Figure 1. The graphical structure of the Bayesian network for the early detection of Classical Swine Fever in individual pigs.

graphical structure of the network, which includes 32 random vari-
ables, is shown in Figure 1. About half of the network’s variables de-
scribe clinical symptoms which are relevant for either confirming or
ruling out a diagnosis of Classical Swine Fever; another six variables
serve to organise these symptom variables into important combina-
tions pertaining to different phases in the presentation of the disease
[2]. The remaining variables describe the internal effects of a CSF
infection and alternative explanations for observed symptoms. The
dependencies among the variables are described by 67 arcs, which
are quantified by some 1300 (conditional) probabilities.

The CSF network is aligned to veterinarians visiting pig farms.
The network thus takes clinical evidence only for its input, and does
not require pathology findings or results from laboratory tests. It fo-
cuses on individual animals and takes for its input the symptoms
found in a specific pig; it further takes type information about the
animal and some information about pen conditions. Based on the en-
tered evidence, the network establishes the posterior probability of
the symptoms of the animal being caused by an infection with the
CSF virus. We note that the network does not take information about
the clinical pattern exhibited by a specific pig over time for its input,
as individual pigs are not readily identifiable within a herd.

In the present paper, we address establishing the sensitivity and
specificity of our CSF network. These commonly-used characteris-
tics convey information about the performance quality of a diagnostic
system in general: where the sensitivity of a system equals the prob-
ability of diagnosing an individual as suffering from a disease when
it actually does have the disease, the system’s specificity is defined
as the probability of diagnosing an individual without the disease as
indeed not having the disease. To study these performance charac-
teristics for our CSF network, the concept of diagnosis needs to be
formalised in terms of calculated posterior probabilities. We com-
pare to this end a posterior probability computed from the network,

against a pre-set threshold probability. If the probability of CSF for
a specific pig exceeds this threshold probability, we say that the ani-
mal is diagnosed as suffering from Classical Swine Fever. We would
like to note that the established performance characteristics cannot
be expected to convey high quality of our Bayesian network, as it is
not intended for stand-alone use: the CSF network is embedded in a
more involved model, which takes the pattern and rate of spreading
of clinical symptoms throughout a herd into consideration in addition
to information from selected individual animals.

3 DATA COLLECTION

For evaluating the diagnostic performance of our Bayesian network
for Classical Swine Fever, we collected a range of real-world data.

In a two-year field study in the Netherlands, eleven veterinarians
were asked to collect information from up to five individual pigs
upon visiting a herd with disease problems of unknown cause. They
were asked more specifically to gather data on 15 clinical symptoms
per animal; for this purpose, the practitioners were supplied with a
personal digital assistent running a standardised protocol [3]. During
the study, data were collected from 375 pigs. Veterinarians from the
partner countries of the EPIZONE network were also invited to col-
lect and submit field data; these practitioners were supplied with a
paper version of the data-entry screens of the pda used by the Dutch
veterinarians. The EPIZONE partners submitted data from yet another
45 animals. All in all therefore, data from a total of 420 pigs were
collected. We would like to note that, since the European Union is
currently free of Classical Swine Fever, all collected data came from
animals without the disease and can thus be used for establishing an
estimate of the specificity of our network only.

To evaluate the sensitivity of our Bayesian network for Classical
Swine Fever, researchers from the national veterinary laboratories in
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Table 1. The distribution of pig types in the collected data.

Field data Laboratory data
Suckling piglet 40 10
Weaned piglet 106 64
Finishing pig 229 26
Sow 36 2
Boar 9 –
Total 420 102

the EPIZONE countries were asked to collect data from their CSF ex-
periments. In such an experiment, one or more animals from among a
close-contact group of pigs are inoculated with a specific CSF strain,
after which all individuals are monitored over time; the goal of the
experiment typically is to gain evidence of the rate of infection and
of the progression of disease. The researchers were asked to record
data from each animal in their experiment, according to the protocol
used in the field trial; in line with the goals of the experiment, data
were recorded every two or three days. Over a period of three years,
information was collected from 23 inoculation experiments, involv-
ing a total of 128 animals. The information revealed that 26 of these
animals did not show any clinical symptoms on any of the recording
days, even though they had been in close contact with CSF-infected
animals. Since our Bayesian network takes clinical information only
and will be used by veterinarians upon encountering disease prob-
lems, we decided to remove the data from these individuals, leaving
us with data from 102 pigs for evaluating our network’s sensitivity.

The data available for studying the performance characteristics
of our Bayesian network thus originate from two different sources
which cannot be viewed as embedding the same probability distribu-
tion over all random variables concerned. Specifically, even though
CSF-infected animals present with the same clinical pattern regard-
less of the setting, the field and laboratory settings differ in their dis-
tribution of animal types and environment conditions. While the real-
world pig husbandry includes all animal types, ranging from suckling
piglets to boars, the individuals used in inoculation experiments are
of less divergent type; this difference in type distribution is reflected
in the data, as illustrated in Table 1. Also, in the laboratory setting,
environment conditions are much more controlled than in the field
setting. As a consequence, the data from the two different informa-
tion sources cannot be simply combined into a single dataset from
which both the sensitivity and the specificity of our Bayesian net-
work for Classical Swine Fever can be estimated.

4 KNOWLEDGE-BASED BIAS CORRECTION

Motivated by the considerations of systematic bias for our applica-
tion, we developed a general method for estimating unbiased proba-
bility distributions from datasets involving known bias.

4.1 Debiasing probability distributions

We consider a (multi-)set D of cases which are described by discrete
random variables. We distinguish an outcome variable of interest Y ;
for ease of exposition, we assume this variable to be binary, and
write y and ȳ to indicate positive and negative cases respectively. The
set of random variables describing the relevant features of the cases
will be denoted by X; we will use ΩX to denote the set of possible
value combinations for X. We assume that X is partitioned into a
set Xs of symptom variables and a set Xt of type variables, with the
associated sets of value combinations ΩXs ,ΩXt respectively, with
ΩX = ΩXs × ΩXt ; for our application for example, the variables

from Xs describe animal-specific clinical evidence, while Xt cap-
tures animal type, feed quality and environment conditions.

Over the variables X, Y , we assume two probability distributions,
one of which describes the occurrence of cases in the field and the
other one pertains to the laboratory setting. We introduce a new bi-
nary random variable L to distinguish between the two distributions;
the value l is used to indicate the laboratory setting and l̄ indicates
the field. In essence, we are interested in the probability distribution
Pr(X, Y | l̄ ), that is, in the distribution over the variables X, Y as
it exists in the real-world field setting. The dataset D available for
estimating the distribution of interest includes cases from both the
field and the laboratory setting. We note that only if the probability
distributions in the field and in the laboratory are the same, can es-
timates for the distribution of interest be obtained directly from this
dataset. For our application we know however, that the distributions
in the field and in the laboratory are not the same. Any estimates
obtained from the dataset D thus need to be corrected for the differ-
ences between the two distributions. We introduce a binary random
variable S to accommodate for the systematic bias in the available
data; this variable indicates whether or not a particular observation
over X, Y, L could in principle be included in the dataset.

We now address the problem of estimating the probability distri-
bution in the field from a dataset D which includes both field data and
laboratory data as described above. More specifically, we present a
general method for estimating from such a dataset the conditional
distributions Pr(X | Y, l̄ ) over the feature variables for negative
cases and positive cases in the field, repectively. Our method is tai-
lored to applications in which

• Pr(X, Y | l ) �= Pr(X, Y | l̄ ), that is, the probability distributions
in the field and in the laboratory setting differ;

• Pr(s | y, l̄ ) = Pr(s | ȳ, l ) = 0, that is, we cannot observe any
positive cases in the field nor any negative cases in the laboratory.

We note that the dataset D allows direct estimation of the condi-
tional probability distribution Pr(X | ȳ, l̄ ) over the feature variables
for negative field cases; since all negative cases included in D are
known to have originated from the field, these cases were drawn di-
rectly from the probability distribution of interest. The dataset does
not provide for estimating the conditional probability distribution
Pr(X | y, l̄ ) over the feature variables for positive field cases. Since
all positive cases are known to have come from laboratories, just the
probability distribution Pr(X | y, l) can be estimated directly from
D. Under mild conditions however, can the systematic bias in the
latter distribution be corrected, to thereby provide an approximation
of the yet unknown probability distribution Pr(X | y, l̄ ) over the
feature variables for positive cases in the field.

We are interested in the conditional probability distribution
Pr(X | y, l̄ ) over the feature variables, for which we have that

Pr(X | y, l̄ ) = Pr(Xs | Xt, y, l̄ ) · Pr(Xt | y, l̄ )
We address the two terms in the right-hand side of the expression sep-
arately, and focus first on the term Pr(Xs | Xt, y, l̄ ) which captures
the probability distribution over the symptom variables in positive
field cases, per case type. We assume that the symptoms observed
in positive laboratory cases are representative for positive cases that
would be found in the field, for any case type; we would like to note
that this assumption is a realistic one to make for our application as
it underlies the very goal of performing laboratory experiments to
study patterns of animal disease. By this assumption, we find that

Pr(Xs | Xt, y, l̄ ) = Pr(Xs | Xt, y, l )
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We further assume that the selection of cases for inclusion in the
dataset D is not dependent of the symptoms observed. Building upon
this assumption, we find that

Pr(Xs | Xt, y, l ) = Pr(Xs | Xt, s, y, l )

The probability distribution Pr(Xs | Xt, s, y, l ) thus arrived at de-
scribes the distribution over the symptom variables, per case type, for
positive cases collected from the laboratory. We note that this proba-
bility distribution is readily estimated from the dataset D.

We now turn to the second term in the expression for the distri-
bution Pr(X | y, l̄ ) of interest, that it, we address the probability
distribution Pr(Xt | y, l̄ ) over the type variables in positive field
cases. In general, we have that

Pr(Xt | l̄ ) = Pr(Xt | y, l̄ ) · Pr(y | l̄ ) +
Pr(Xt | ȳ, l̄ ) · Pr(ȳ | l̄ )

Assuming that the true probability distribution over the outcome vari-
able in the field is strictly positive, we find that

Pr(Xt | y, l̄ ) =
Pr(Xt | l̄ )− Pr(Xt | ȳ, l̄ ) · Pr(ȳ | l̄ )

Pr(y | l̄ )
We would like to note that this assumption again is quite realistic for
our application, since early warning pertains to the detection of actu-
ally possible diseases. The probability distribution Pr(Xt | ȳ, l̄ ) in
the expression above is readily established from the available nega-
tive field data. The distribution Pr(Y | l̄ ) over the outcome variable
in the field however, cannot be estimated from the data. For this prob-
ability distribution, we resort to domain knowledge and assume that
an estimate of the prior probability of finding a positive case in the
field can be obtained, either from the scientific literature or from ex-
perts. A similar assumption is made for the probability distribution
Pr(Xt | l̄ ) over the type variables in the field.

Building upon the above considerations, we conclude that the
probability distribution of interest is estimated as

Pr(X | y, l̄ ) = Pr(X | s, y, l) · Pr(Xt | y, l̄ )
Pr(Xt | s, y, l)

= Pr(X | s, y, l) ·
(
Pr(Xt | l̄ )− Pr(Xt | ȳ, l̄ ) · Pr(ȳ | l̄ )

Pr(Xt | s, y, l) · Pr(y | l̄ )
)

under the following assumptions:

• the selection of cases for inclusion in the dataset D is not biased in
Xs, given any type information, outcome status and setting, that
is, (S ⊥⊥ Xs | Xt, Y, L);

• the symptoms observed in positive laboratory cases are represen-
tative for positive cases that would be observed in the field, given
the cases’ type information, that is, (L ⊥⊥ Xs | Xt, y);

• the true distribution Pr(Y | l̄ ) is strictly positive.

We would like to note that in the derivation above, we also built
on the assumption that the distribution Pr(Xt | s, y, l) of observed
types in positive laboratory cases is strictly positive. If this assump-
tion does not hold, we know beforehand that the estimates obtained
for the probability distribution Pr(X | y, l̄ ) will not constitute good
approximations. We will return to this observation in Section 5.

4.2 Related work

The problem of bias correction is studied widely. The general ques-
tion focused on is how to correct probability estimates for a bias that

was introduced through a data-collection regime by which a case’s
selection is not independent of its features and/or outcome. Since re-
searchers are often confronted with such a selection bias in practice, a
large corpus of literature has been published in which this question is
addressed under various assumptions and for different applications;
for examples we refer to [4, 5, 6, 7]. The approach taken by most
researchers is to estimate a model of the selection probability based
on the feature variables in which the data are biased. This model is
then used to compute weights for the contribution of individual cases
to unbiased estimates of a quantity of interest, such as the parameters
of a regression model. The various methods proposed differ in how
the selection model is estimated and how the weights are computed,
as well as in the applications to which they are tailored.

As the application specifics and underlying assumptions of most
methods for dealing with sample selection bias are quite different
from ours, we cannot directly apply them to the problem addressed
in the present paper. While available methods establish a scalar se-
lection probability to compute the weights for individual data cases,
our method requires a probability distribution over the variables Xt

in which the data are biased. We recall moreover, that the data are
biased not just in the type variables, but in the outcome variable Y
as well. More specifically, the model describing the selection bias in
our data is Pr(s | Xt, y, l̄ ). Since in our application the selection
probability equals zero for all case types, no informative weights can
be computed from the selection probabilities as is assumed by avail-
able methods. For our method therefore, we resorted to assuming
further independences to allow the computation of weights from the
distribution over the type variables Xt instead.

5 FINDING UNBIASED CHARACTERISTICS

Our method for knowledge-based bias correction described above
can be used for any computations for which the probability distribu-
tions Pr(X, Y | l̄ ) need to be available. In this section, we demon-
strate, as an example of its application, how the method is used for es-
tablishing unbiased performance characteristics for a diagnostic sys-
tem. We recall that the performance of such a system is generally
expressed by its sensitivity and specificity. A system’s specificity is
defined as the proportion of true negative cases which the system sin-
gles out as indeed being negative; its sensitivity is the proportion of
true positive cases which the system identifies as being positive.

The performance characteristics of a diagnostic system are typi-
cally estimated from a dataset of positive and negative cases originat-
ing from a single probability distribution. To this end, the system is
looked upon as implementing a function ŷ which establishes for each
case x over the feature variables X a value prediction ŷ(x) for the
outcome variable Y . The sensitivity of the system is then expressed
more formally as IEx|y

[
ι+(ŷ(x))

]
, where the indicator function ι+ is

defined as ι+(ŷ(x)) = 1 if ŷ(x) = y, and ι+(ŷ(x)) = 0 otherwise;
the system’s specificity is expressed similarly, through an indicator
function ι−. From an unbiased dataset D of positive and negative
cases, the sensitivity of the system would be estimated as

ÎEx|y
[
ι+(ŷ(x))

]
=

1

|Dy| ·
∑

x∈Dy

ι+(ŷ(x))

where Dy is the subset of positive cases from D and where indi-
vidual occurrences of cases in Dy are counted separately. A similar
expression is obtained for the system’s specificity.

We now suppose that for estimating the performance characteris-
tics of a specific diagnostic system, we have available not an unbiased
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dataset, but a dataset D involving systematic bias as described in the
previous section. From this dataset, we readily establish an unbiased
estimate of the system’s specificity for the field as

ÎEx|ȳ,l̄
[
ι−(ŷ(x))

]
=

1∣∣Dȳ,l̄

∣∣ · ∑
x∈Dȳ,l̄

ι−(ŷ(x))

where Dȳ,l̄ is the subset of negative field cases from D. To obtain
an estimate of the system’s ability to correctly identify positive field
cases, we need to correct the distribution Pr(X | s, y, l) estimated
from the dataset D, for the laboratory bias. With the property

Pr(X | y, l̄ )
Pr(Xt | y, l̄) =

Pr(X | s, y, l)
Pr(Xt | s, y, l)

derived in Section 4.1, we have for the system’s field sensitivity that

IEx|y,l̄
[
ι+(ŷ(x))

]
=

∑
x∈ΩX

ι+(ŷ(x)) · Pr(x | y, l̄ )

=
∑

xt∈ΩXt

Pr(xt | y, l̄ ) ·
∑

xs∈ΩXs

ι+(ŷ(x)) · Pr(x | y, l̄ )
Pr(xt | y, l̄ )

=
∑

xt∈ΩXt

Pr(xt | y, l̄ ) ·
∑

xs∈ΩXs

ι+(ŷ(x)) · Pr(x | s, y, l)
Pr(xt | s, y, l)

=
∑

xt∈ΩXt

Pr(xt | y, l̄ ) · IExs|xt,s,y,l

[
ι+(ŷ(x))

]

where x is taken consistent with xs, xt. The field sensitivity is now
estimated from the data through

ÎEx|y,l̄
[
ι+(ŷ(x))

]
=

∑
xt∈ΩXt

P̂r(xt | y, l̄ ) · ÎExs|xt,s,y,l

[
ι+(ŷ(x))

]

=
∑

xt∈ΩXt

P̂r(xt | y, l̄ ) ·
∑

xs∈Dxt,y,l

ι+(ŷ(x))

|Dxt,y,l|

=
1

|Dy,l| ·
∑

xt∈ΩXt

P̂r(xt | y, l̄ ) ·
∑

xs∈Dxt,y,l

ι+(ŷ(x))

P̂r(xt | s, y, l)

=
1

|Dy,l| ·
∑

x∈Dy,l

ι+(ŷ(x)) · P̂r(xt | y, l̄ )
P̂r(xt | s, y, l)

We note that the estimates P̂r(xt | s, y, l) are readily obtained from
the available data. Domain knowledge further provides the estimates
P̂r(xt | y, l̄ ), as described in Section 4.1. From the above derivation,
we conclude that debiasing the sensitivity estimate obtained from the
dataset thus amounts to weighting the contribution of each case by
the case-specific factor P̂r(xt | y, l̄ ) / P̂r(xt | s, y, l).

In Section 4.1 we already mentioned that if the observed distri-
bution Pr(Xt | s, y, l) over the types involved in positive laboratory
cases is not strictly positive, we know that the estimates obtained for
the type distribution Pr(Xt | y, l̄ ) in positive field cases will not be
good approximations. The decomposition of the sensitivity estimate
in terms conditional on the type variables Xt shows that this prop-
erty holds unabatedly for the unbiased sensitivity as well: if very few
cases of a particular type have been recorded, then the term for the
associated conditional will not be reliable. We further note that if
particular case types are missing altogether from the dataset, then the
sensitivity estimate obtained can never reach the value 1, not even if
we would have ŷ(x) = y for all x ∈ ΩX. In view of missing case
types therefore, our debiasing method yields a lower bound on a sys-
tem’s sensitivity. Knowledge of the distribution Pr(Xt | y, l̄ ) then

provides also for establishing an upper bound on the sensitivity. This
upper bound is computed by taking the lower bound as described
above and adding the proportion of unobserved case types as they are
known to occur in the field; we note that the thus established upper
bound reflects the assumption that these cases would all be classified
correctly. Knowledge of the distribution can further be used to com-
pute a point estimate of the unbiased sensitivity by assuming that the
sensitivity estimate for the observed case types is representative for
the entire field; the point estimate is computed by dividing the estab-
lished lower bound by the proportion of observed case types as they
occur in the field. We note that this point estimate serves to normalize
perfect classification on the data to yield a sensitivity estimate equal
to 1. We would like to emphasize that while these approaches correct
for missing case types, they do not serve to correct for types with a
small yet non-zero number of cases. For such types, it may be worth-
while to widen the established bounds by removing the associated
cases from the data, rather than letting their unreliable contributions
influence the estimate obtained for the system’s sensitivity.

6 APPLICATION TO THE CSF NETWORK

To establish unbiased performance characteristics for our Bayesian
network for Classical Swine Fever, we applied our method for
knowledge-based bias correction to the collected pig data. The lab-
oratory data were pre-processed for this purpose. We removed for
each animal the recordings of all days on which it revealed no or
just a single clinical symptom. This pre-processing step was mo-
tivated by our early-warning system being aimed at use on farms
with disease problems: an attending veterinarian would not use the
system for animals showing hardly any clinical symptoms. Because
the data collected from the inoculation experiments include multi-
ple recordings per pig pertaining to different days moreover, we per-
formed uniform random sub-sampling to remove the dependencies
between these recordings. Furthermore, since the laboratory data in-
cluded information from two sows only, also these recordings were
removed from the dataset, as suggested in Section 5. For each pig
case from the resulting dataset, the posterior probability of the clin-
ical symptoms being caused by a CSF infection was computed from
the network and subsequently compared against a threshold value α
as described in Section 2; if and only if the probability computed
for a specific animal exceeded the threshold value α, was the animal
taken as being diagnosed with Classical Swine Fever. In view of the
very small prior probability of the occurrence of CSF in the field, we
used quite small threshold values α in our evaluation study.

Before our method of bias correction could be applied, estimates
for a number of probabilities had to be available. We recall from
Section 4.1, that the method requires the probability distribution
Pr(Xt | l̄ ) over the type variables in the field and the prior prob-
ability Pr(y | l̄ ) of finding Classical Swine Fever in the real-world
setting. Since these required probabilities had already been obtained
from domain experts upon quantifying the CSF network, they were
readily available for our current purposes. We further had to establish
the type variables in which the laboratory data were biased. Based
upon knowledge of the field and laboratory settings, we concluded
that these data were biased in the animal type, the presence of cli-
matic problems, and the composition of the animals’ feed.

In our evaluation study of the sensitivity and specificity character-
istics of the CSF network, sub-sampling and performance estimation
were repeated by a 100 runs. Figure 2 plots the performance charac-
teristics of the CSF network for different threshold probabilities α.
The reported specificity was computed from the collected field data.
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Figure 2. Unbiased estimates of the sensitivity of the CSF network,
expressed as the average point estimate and upper/lower bounds, for various

threshold values; the specificity and biased sensitivity are also shown.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positives

Tr
ue

 P
os

iti
ve

s

AUC = 0.65    

Figure 3. The ROC curve of the CSF network based on its specificity and
unbiased sensitivity point estimate; the area under the curve (AUC) is 0.65.

The figure further reports the average unbiased sensitivity over the
range of threshold values; in addition, upper and lower bounds on
the sensitivity are shown, to accommodate for the absence of sows,
boars, and climatic and feed problems from the laboratory popula-
tion. The figure also plots the biased sensitivity calculated from the
data. We note that the bias from the laboratory setting shows a ten-
dency to underestimate the network’s detection abilities. For com-
pleteness, the unbiased performance characteristics are also reported
numerically in Table 2, again for various threshold probabilities; the
table further reports the standard deviation of the (unbiased) lower
bound, established from the repeated sub-sampling of the laboratory
data. To conclude, Figure 3 summarizes the overall performance of
the CSF network by depicting the ROC curve computed from the
network’s specificity and unbiased sensitivity point estimate.

7 CONCLUSIONS AND FUTURE RESEARCH

Motivated by the difficulty of establishing reliable estimates for the
performance characteristics of our real-world Bayesian network, we
studied the problem of correcting probability distributions estimated
from an available dataset for known systematic biases. We presented
a general method which, under mild conditions, serves to effec-
tively debias estimated probability distributions by exploiting do-

Table 2. Numerical values of the specificity and unbiased sensitivity
estimates for various probability thresholds.

α SPEC SENSLOW SENSAVG SENSHIGH σSENSLOW

0.00001 0.42 0.53 0.74 0.82 0.029
0.00005 0.77 0.37 0.52 0.66 0.032
0.0001 0.84 0.28 0.39 0.57 0.033
0.0005 0.95 0.16 0.23 0.45 0.028
0.001 0.97 0.13 0.18 0.42 0.023
0.005 0.99 0.11 0.15 0.40 0.022
0.01 0.99 0.09 0.12 0.38 0.022
0.05 0.99 0.08 0.11 0.37 0.022
0.1 1.00 0.03 0.04 0.32 0.019

main knowledge. In essence, our method amounts to establishing
case-specific correction factors to be used for weighting case con-
tributions to a quantity of interest.

Although our method has broader applicability than just for es-
tablishing the performance characteristics of our Bayesian network,
it is tailored to a specific type of application. Our method assumes
for example that the positive and negative cases to be distinguished
originate from strictly separated settings. While for many problems
in real-world application domains the assumption of a zero-inclusion
probability will be satisfied, the scope of practicability of our method
would be broadened if it were able to deal with settings in which the
inclusion probabilities are indegenerate. Our future research efforts
will be directed to enhancing our debiasing method to this end.
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