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Abstract. We propose a new integer-linear programming model for

the delete relaxation in cost-optimal planning. While a naive formu-

lation of the delete relaxation as IP is impractical, our model incor-

porates landmarks and relevance-based constraints, resulting in an

IP that can be used to directly solve the delete relaxation. We show

that our IP model outperforms the previous state-of-the-art solver for

delete-free problems. We then use LP relaxation of the IP as a heuris-

tics for a forward search planner, and show that our LP-based solver

is competitive with the state-of-the-art for cost-optimal planning.

1 Introduction

The delete relaxation of a classical planning problem is a relaxation

of a planning problem such that all deletions are eliminated from its

operators. It is clear that h+, the optimal value of the delete relax-

ation of a planning instance is an admissible, lower bound on the

cost of the optimal cost plan for the instance.

In cost-optimal planning, while h+ is known to be more accurate

than commonly used heuristics such as landmark-cut [11], current

planners to not directly compute h+ because the extra search effi-

ciency gained from using h+ is offset by the high cost of computing

h+. In fact, computing h+ is known to be NP-complete [3]. As far

as we are aware, the first use of h+ inside a cost-optimal planner was

by Betz and Helmert [1], who implemented domain-specific imple-

mentations of h+ for several domains. Haslum evaluated the use of a

domain-independent algorithm for h+ [10] as the heuristic function

for cost-optimal planning, and found that the performance was rela-

tively poor [8]. In recent years, there have been several advances in

the computation of h+ [7, 14, 10].

A somewhat separate line of research is the increasing use of inte-

ger/linear programming (ILP) in domain-independent planning. The

earliest use of linear programming (LP) in domain-independent plan-

ning that we are aware of was by Bylander, who used an LP encod-

ing of planning as a heuristic function for a partial order planner [4].

Briel and Kambhampati formulated and solved planning as an in-

teger program (IP) [18]. Recently, instead of modeling and directly

solving planning as an IP, LP relaxations have been used to compute

admissible heuristics in a search algorithm, including a network flow

a LP heuristic for branch-and-bound [19], a heuristic for A* based on

the state equations in SAS+ [2], and most recently, an LP encoding

of a broad framework for operator-counting heuristics [15]. IP has

also been used to compute hitting sets as part of the computation of

h+ in delete-free planning (in an improved version of the algorithm

described in [10], [9].
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In this paper, we propose a new, integer/linear programming ap-

proach to computing h+. While a straightforward ILP model for h+

is often intractable and not useful in practice, we developed an en-

hanced model, IPe(T+), which incorporates landmark constraints

for the delete relaxation, as well as relevance analysis to significantly

decrease the number of variables. We show that IPe(T+) allows sig-

nificantly faster computation of h+ compared to the state of the art.

Then, we consider the use of h+ as a heuristic for A* in a cost-

optimal, domain-independent planner. We further augment IPe(T+)
with constraints that consider some delete effects, as well as con-

straints for cycle avoidance, resulting in a new admissible heuris-

tic which dominates h+. Since IPe(T+) is an IP, its LP relaxation,

LPe(T+), is also an admissible heuristic for domain-independent

problem. Since even LPe(T+) can be quite expensive, the ILP model

can be further relaxed by omitting a subset of its constraints, resulting

in LPe
tr(T

+), an LP for the “relaxed” delete relaxation.

We empirically evaluate the ILP models by embedding them as

heuristics in an A*-based planner. We implemented a simple method

for automatically selecting which LP formulation to use as the

heuristic, based on a comparison of their values at the root node. The

resulting planner performs comparably to the state-of-the-art, cost-

optimal planners, Fast-Downward with the landmark-cut heuristic

[11] and Fast-Downward using the hybrid bisimulation merge-and-

shrink heuristic [13].

The rest of the paper is organized as follows. Section 2 proposes

the basic ILP model for h+. Section 3 describes enhancements to the

ILP model which significantly speeds up computation of h+. Section

4 augments the ILP model by adding counting constraints, which

results in a IP bound that dominates h+. Section 5 summarizes the

relationship among ILP models, and describes a simple method for

selecting which model to apply to a given problem instance. Section

6, experimentally evaluates the proposed ILP models, as well as a

portfolio approach that automatically selects one of the ILP models.

2 ILP model for h
+

A STRIPS planning task is defined by a 4-tuple T = 〈P,A, I,G〉. P
is a set of propositions. A is a set of actions. A state is represented by

a subset of P , and applying an action to a state adds some proposi-

tions and removes some propositions in the state. Each action a ∈ A
is composed of three subsets of P , 〈pre(a), add(a),del(a)〉 which

are called the preconditions, add effects, and delete effects. An action

a is applicable to a state S iff it satisfies pre(a) ⊆ S. By applying

a to S, propositions in S change from S to S(a) = ((S \ del(a)) ∪
add(a)). For a sequence of actions π = (a0, · · · , an), we use S(π)
to denote ((((S \del(a0))∪ add(a0)) \del(a1))∪ · · ·)∪ add(an).

Let I ⊆ P be the initial state and G ⊆ P the goal. The target
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of a planning task is to find a sequence of actions to transform I to

a state S that satisfies G ⊆ S. Formally, a feasible solution, i.e.,

a plan, is a sequence of actions π = (a0, · · · , an) that satisfies (i)

∀i,pre(ai) ⊆ I((a0, · · · , ai−1)), and (ii) G ⊆ I(π). The target of a

cost-optimal STRIPS planning is to find a shortest plan, or to find a

plan π that minimizes
∑

a∈π
c(a) when the non-negative cost c(a)

of each action a is defined.

The delete relaxation of a task T , denoted by T+, is a task〈
P,A+, I,G

〉
where A+ is a set of delete-free actions defined as

A+ = {〈pre(a), add(a), ∅〉 | a ∈ A}. We also use T+ to denote a

task that is delete-free from the beginning without being relaxed.

2.1 ILP formulation of a delete-free problem

We formulate a delete free task T+ =
〈
P,A+, I,G

〉
as an integer-

linear program. IP(T+) denotes the IP problem derived from T+,

and we use π∗ = (a∗0, · · · , a
∗

n) to denote an optimal plan for T+

derived from an optimal solution of IP(T+). Similarly LP(T+)
denotes the LP relaxation of IP(T+). Note that for any feasible

and non-redundant (i.e., same actions appear only once) solution of

IP(T+) (not just the optimal solution), we can derive a correspond-

ing, feasible plan for T+ that has same cost as the IP(T+) solution.

First, we define the variables of IP(T+). In addition to being

able to derive a plan from IP(T+), there always exists a injective

mapping from a feasible non-redundant plan to an IP(T+) solution.

Thus, we also show the feasible assignments of variables that can be

derived from a feasible plan of T+, as well as the meanings and roles

of the variables.

proposition: ∀p ∈ P,U(p) ∈ {0, 1}. U(p) = 1 iff p ∈ I(π∗).
action: ∀a ∈ A,U(a) ∈ {0, 1}. U(a) = 1 iff a ∈ π∗ holds.

add effect: ∀a ∈ A,∀p ∈ add(a),E(a, p) ∈ {0, 1}. E(a, p) = 1
iff a ∈ π∗ holds and a achieves p first.

time (proposition): ∀p ∈ P, T (p) ∈ {0, · · · , |A|}. T (p) = t when

p ∈ I(π∗) and p is added by a∗t−1 first. T (p) = 0 for p 	∈ I(π∗).
time (action): ∀a ∈ A, T (a) ∈ {0, · · · , |A| − 1}. T (a) = t when

a = a∗t . T (a) = |A| − 1 when a 	∈ π∗.

initial proposition: ∀p ∈ P, I(p) ∈ {0, 1}. I(p) = 1 iff p ∈ I .

If p ∈ P appears more than once, use first indices for T (p). Variables

I(p) are auxiliary variables for computing h+. Although they are re-

dundant when solving a delete-free task only one time, they are use-

ful to avoid reconstructing constraints for each state when IP(T+)
or LP(T+) are embedded as a heuristic function in a forward-search

planner and called for each state.

The objective function seeks to minimize
∑

a∈A
c(a)U(a).

Because of this objective function, the cost of an IP solution is

equal to the cost of the corresponding (delete-free) plan.

Finally we define following six constraints.

1. ∀p ∈ G, U(p) = 1.

2. ∀a ∈ A, ∀p ∈ pre(a),U(p) ≥ U(a).
3. ∀a ∈ A, ∀p ∈ add(a),U(a) ≥ E(a, p).
4. ∀p ∈ P, I(p) +

∑
a∈A s.t.p∈add(a)

E(a, p) ≥ U(p).

5. ∀a ∈ A, ∀p ∈ pre(a), T (p) ≤ T (a).
6. ∀a ∈ A, ∀p ∈ add(a), T (a)+1 ≤ T (p)+(|A|+1)(1−E(a,p)).

There exists a feasible plan only if IP(T+) has a feasible solu-

tion. When IP(T+) is solved optimally, an optimal plan for T+ is

obtained according to following lemma. For a variable V of IP(T+),
VF describes the assignment of V on a solution F of IP(T+).

Proposition 1. Given a feasible solution F for IP(T+), the action

sequence obtained by ordering actions in the set {a | U(a)F = 1}
in ascending order of T (a)F is a feasible plan for T+.

Proof: At first we show that π satisfies the condition (ii) of a plan

(i.e., G ⊆ I(π)) by proof of contradiction. Assume that there exists

a proposition g ∈ G that satisfies g 	∈ I(π). There exists no action

achieving g in π according to the assumption. Since F is a solution

of IP(T+), U(g)F = 1 holds according the constraint 1. Since g 	∈
I(π) deduces g 	∈ I , I(g)F = 0. Therefore, to satisfy the condition

4, there must exist an action a ∈ A that satisfies g ∈ add(a) and

E(a, g)F = 1. However, to satisfy the constraint 3, U(a)F = 1 has

to hold. This means a ∈ π, and this contradicts the assumption.

Next we show that π satisfies condition (i) (i.e., ∀i,pre(ai) ⊆
I((a0, · · · , ai−1))). For the base case of inductive proof, assume that

there exists a proposition p ∈ P satisfying p ∈ pre(a0) and p 	∈ I .

Since a0 ∈ π, U(a0)F = 1 has to hold, and U(p)F = 1 has to hold

according to the constraint U(p)F ≥ U(a0)F . Then, similar to the

proof of condition (ii), there must exist an action a ∈ A that satisfies

p ∈ add(a), U(a)F = 1, and E(a, p)F = 1. However, to satisfy

constraint 5, T (p) ≤ T (a0) has to be true, and T (a) + 1 ≤ T (p)
has to hold to satisfy condition 6. Therefore we have U(a)F = 1 and

T (a) < T (a0), but a0 is the first action of π, a contradiction.

Similar to the case of i = 0, when i > 0, if pre(ai) ⊆
I((a0, · · · , ai−1)) is not true, there must exist an action a 	∈
(a0, · · · , ai−1) that satisfies U(a)F = 1 and T (a) < T (ai), contra-

dicting the fact that ai is the i-th action of the sequence π. �

3 Enhancements for ILP model

In this section, we introduce some variable elimination techniques

and some modifications of constraints. As we will show in the exper-

imental results, these enhancements significantly reduce the time to

solve IP(T+) and LP(T+). Some of the enhancements are adopted

into our IP framework from previous work in planning research. In

particular, landmarks, which have been extensively studied in recent

years, play very important role.

Note that while some of the enhancements introduce cuts that ren-

der some solutions of IP(T+) mapped from feasible plans infeasible,

at least one optimal plan will always remain.

3.1 Landmark Extraction and Substitution

A landmark is an element which needs to be used in every feasible

solution. We use two kinds of landmarks, called fact landmarks and

action landmarks as in [7]. A fact landmark of a planning task T
is a proposition that becomes true on some state of every feasible

plan, and an action landmark of a planning task T is an action that

is included in every feasible plan. We also say that a fact or action

landmark l is a landmark of a proposition p if l is a landmark of the

task 〈P,A, I, {p}〉. Similarly we also say that a landmark l is a land-

mark of an action a if l is a landmark of the task 〈P,A, I,pre(a)〉.
In the IP model of a delete-free task T+, if a proposition p is a fact

landmark, then we can substitute U(p) = 1. Similarly, if an action a
is an action landmark, then we can substitute U(a) = 1.

In this work, we extract some kinds of action landmarks and fact

landmarks according to following facts. The contrapositions of these

propositions are clearly true.

Proposition 2. Given a feasible delete-free task T+, an action

a ∈ A is an action landmark of T+ if the task 〈P,A \ {a}, I,G〉
is infeasible.
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Proposition 3. Given a feasible delete-free task T+, a propo-

sition p ∈ P is a fact landmark of T+ if the task〈
P,A \ Aadd

p , I \ {p}, G
〉

is infeasible, where Aadd
p is defined as

Aadd
p = {a | p ∈ add(a)}.

Zhu et al. defined a kind of fact landmark called causal

landmark [20]. A proposition p is a causal landmark if〈
P,A \ Apre

p , I \ {p}, G
〉

is infeasible, where Apre
p = {a | p ∈

pre(a)}. If
〈
P,A \Apre

p , I \ {p}, G
〉

does not have any solution,

then
〈
P,A \Aadd

p , I \ {p}, G
〉

is also infeasible, therefore using

Aadd
p instead of Apre

p can extract larger set of fact landmarks. Keyder

et al. proposed AND-OR graph based landmark extracting method

generalized from a causal landmark extracting algorithm proposed

Zhu et al. [12]. We use similar algorithm to extract both of our fact

landmarks and action landmarks.

3.2 Relevance Analysis

Backchaining relevance analysis is widely used to eliminate irrele-

vant propositions and actions of a task. An action a is relevant if

(i) add(a) ∩ G 	= ∅, or (ii) there exists a relevant action a′ sat-

isfying add(a) ∩ pre(a′) 	= ∅. A proposition p is relevant if (i)

p ∈ G, or (ii) there exists a relevant action a and p ∈ pre(a) holds.

In addition to this, as Haslum et al. noted, it is sufficient to con-

sider relevance with respect to only a subset of first achievers of add

effect [10]. Although they defined a first achiever by achievability

of a proposition, it is completely equivalent to the following defini-

tion: an action a is a first achiever of a proposition p if p ∈ add(a)
and p is not a fact landmark of a. When we use fadd(a) to denote

{p ∈ add(a) | a is a first achiever of p}, it is sufficient to use fadd
instead of add on the above definition of relevance.

If a ∈ A or p ∈ P is not relevant, we can eliminate a variable as

U(a) = 0 or U(p) = 0. In addition to this, if p ∈ add(a) but a is

not a first achiever of p, we can eliminate a variable as E(a, p) = 0.

3.3 Dominated Action Elimination

On a delete-free task, if two actions have same add effect, then it

is clearly sufficient to use at most one of two actions. Here we intro-

duce a technique that eliminates an useless action (dominated action)

extending this idea. If there exists a dominated action a, we can elim-

inate a variable as U(a) = 0. We omit the proof due to space.

Proposition 4. Given a feasible delete-free task T+, there exists an

optimal plan that does not contains a ∈ A if there exists an action

a′ ∈ A satisfying following: (i) fadd(a) ⊆ fadd(a′), (ii) for any p ∈
pre(a′), p is a fact landmark of a or p ∈ I , and (iii) c(a) ≥ c(a′).

Robinson proposed similar constraints for a MaxSAT-based plan-

ner, but his condition is stricter than condition (ii) [16].

3.4 Immediate Action Application

On a delete-free task T+, applying some types of actions to the ini-

tial state do not hurt optimality. We adopt to use an action with cost

zero as [6] and an action landmark as [7] to this enhancement. For

a delete-free task T+, if an action a ∈ A satisfies c(a) = 0 and

pre(a) ⊆ I , then a sequence made by connecting a before an opti-

mal plan of 〈P,A \ {a}, I ∪ add(a),G〉 is an optimal plan of T+.

Similarly, if an action a is an action landmark of T+ and a is appli-

cable to I , you can apply a to I immediately.

For IP(T+), variables T (p) for p ∈ I can be eliminated by

substituting zero. Given a sequence of immediate applicable ac-

tions (a0, · · · , ak) (it must be a correct applicable sequence), we can

eliminate some variables as follows: (i) U(ai) = 1, (ii) T (ai) =
i, (iii) ∀p ∈ pre(ai),U(p) = 1, and (iv) ∀p ∈ add(ai) \
I((a0, · · · , ai−1)),U(p) = 1, T (p) = i and E(ai, p) = 1.

3.5 Iterative Application of Variable Eliminations

The variable elimination techniques described above can interact

synergistically with each other resulting in a cascade of eliminations.

For example, landmarks increase non relevant add effects, which

increases dominated actions, which can result in new landmarks.

Therefore, we used a iterative variable eliminating algorithm which

applies eliminations until quiescence.

A full landmark extraction pass after each variable elimination

would be extremely expensive, but landmark extraction can be im-

plemented incrementally. Hence we perform a complete landmark

extraction once for each state, and after that, the incremental extrac-

tion is executed after each variable reduction.

3.6 Inverse action constraints

We define the following inverse relationship between a pair of ac-

tions for a delete-free task T+. For two actions a1, a2 ∈ A, a1 is an

inverse action of a2 if it satisfies following: (i) add(a1) ⊆ pre(a2),
and (ii) add(a2) ⊆ pre(a1). By the definition, it is clear that if a1

is an inverse action of a2, then a2 is an inverse action of a1. Inverse

actions satisfy following fact (proof omitted due to space).

Proposition 5. For a delete-free task T+, a feasible solution π =
(a0, · · · , an) is not optimal if ai ∈ π is an inverse action of aj ∈ π
and both of ai and aj have non-zero cost.

Let inv(a, p) denote the set of inverse actions of an action a which

have p as add effect. There are several possible ways to use above

proposition (e.g., U(a) + U(a′) ≤ 1, for all a′ ∈ inv(a)). On

IP(T+), due to avoid adding a huge number of constraints, we mod-

ify constraint 2 as follows:

2. ∀a ∈ A, ∀p ∈ pre(a), U(p)−
∑

a′∈inv(a,p)
E(a′, p) ≥ U(a).

We use e (e.g. LPe(T+)) to denotes the ILP after all of the reduc-

tions in Sections 3.1-3.6 have been applied.

3.7 Constraint Relaxation

So far in this section, we have presented enhancements which seek to

speed up the computation of h+. As we show experimentally in Sec-

tion 6, computing IP(T+) or LP(T+) remains relatively expensive,

even if we use all of the enhancements described above.

Thus, we introduce a relaxation for IP(T+). We call IP(T+)
without constraints 5 and 6 time-relaxed IP(T+), denoted IPtr(T

+).
Similarly we call LP(T+) without same constraints time-relaxed

LP(T+), denoted LPtr(T
+). It can be seen that if the relevance

of propositions and actions has an ordering (i.e. it does not have a

cycle) on T+, then the optimal costs of IP(T+) and LP(T+) are

the same as the optimal costs of IPtr(T
+) and LPtr(T

+) respec-

tively. We shall show experimentally in Section 6.1 that the relax-

ation is quite tight (i.e., IP(T+) and IPtr(T
+) often have the same

cost), and that IPtr(T
+) can be computed significantly faster than

IP(T+). LP(T+),LPe(T+), IPe(T+) have same behavior.
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4 Counting Constraints

So far, we have concentrated on efficient computation of h+, and all

of our relaxations are bounded by h+. However, our IP model can be

extended with constraints regarding delete effects. By adding vari-

ables and constraints related to delete effects of actions, our model

can also calculate lower bounds on the number of times each action

must be applied. New variables are defined as follows:

• ∀a ∈ A,N (a) ∈ {0, 1, · · ·} : N (a) = n iff a is used n times.

• ∀p ∈ P,G(p) ∈ {0, 1} : G(p) = 1 iff p ∈ G.

G(p) is also an auxiliary variable as I(p). New constraints are de-

fined as follows:

7. ∀a ∈ A,N (a) ≥ U(a).
8. ∀p ∈ P,G(p)+

∑
p∈predel(a)

N (a) ≤ I(p)+
∑

p∈add(a)
N (a),

where predel(a) = pre(a) ∩ del(a). Finally, the objective function

is modified so as to minimize
∑

a∈A
c(a)N (a).

These constraints correspond to the net change constraints that

were recently proposed in [15], as well as the action order relaxation

in [17], (both are based on SAS+ formulations). Intuitively, the final

constraint states that the number of times actions adding p are used

must be equal to or larger than the number of times actions requir-

ing and deleting p same time are used. Given a non delete-free task

T , we use IP(T ) to denote an IP problem composed of IP(T+) and

above new variables and constraints. We also use LP and tr as same

as corresponding relaxations for IP(T+). For any T and any feasible

plan π for T , there exists a feasible solution of IP(T ) with same cost

as π, since the delete relaxation of π is a feasible plan of T+. Hence

the optimal cost of naive IP(T ) is an admissible heuristic for T .

Unfortunately these new constraints conflict with dominated ac-

tion elimination and zero cost immediate action application. When

counting constraint is used, it is necessary to disable zero cost im-

mediate action applying and to modify the condition of dominated

action: an action a is a dominated action of action a′ if (i) add(a) ⊆
add(a′), (ii) for any p ∈ pre(a′), p is a fact landmark of a or p ∈ I ,

(iii) c(a) ≥ c(a′), and (iv) pre(a′) ∩ del(a′) ⊆ pre(a) ∩ del(a).
On the other hand, following fact ensures that other enhancements

do not hurt admissibility of IP(T ). We omit detailed discussion due

to space. We also use e (e.g. LPe(T )) to denotes the ILP after all of

the valid reductions have been applied.

Proposition 6. Given a task T , let IPe(T+) be a variable-reduced

IP for T+, and IPe(T ) be an IP made from IPe(T+) with counting

constraints. For any feasible solution π of T , if there exists a solution

of IPe(T+) derived from a subsequence of π+, then there exists a

feasible solution of IPe(T ) that has same cost as π.

5 Relationship among the ILP bounds

Based on the definitions, we know that: IPtr(T
+) ≤ IPe

tr(T
+) ≤

IP(T+) = IPe(T+) ≤ IP(T ) = IPe(T ). As for the LP relaxations,

we know that LP(T+) ≤ LPe(T+), LPe
tr(T

+) ≤ LPe(T+),
LPe

tr(T ) ≤ LPe(T ), and LPe
tr(T ) ≤ LPe(T ). However, LPe(T )

does not always dominate LPe(T+) since sets of eliminated vari-

ables are different because of dominated action elimination and zero-

cost immediate action application. Figure 1 illustrates the dominance

relationships among the bounds.

���������

��	����
 ������
�
��	����
�� ��	���
 ��	���


�������� �����������������

��������
 ��������


������


	
 	
 	
 	


���

Figure 1. Dominance relationships. Edge Li → Lj indicates “Li ≤ Lj”.

The 4 highlighted LP’s are used in the A*/autoconf in Tables 2-3.

5.1 Automatic bound selection for each problem

While LPe
tr(T

+) and LPe
tr(T ) are dominated by LPe(T+) and

LPe(T ), respectively, the time-relaxed LPs are significantly cheaper

to compute than their non-relaxed counterparts. Similarly, although

IPe(T ) dominates IPe(T+), it is possible for LPe(T+) to be larger

than LPe(T ). Thus, we have a set of 4 viable LP heuristics, none

of which dominate the others when considering both accuracy and

time. The “best” choice to optimize this tradeoff between heuristic

accuracy and node expansion rate depends on the problem instance.

We implemented a simple mechanism for automatically selecting

the LP to be used for each problem. First, we compute LPe(T+),
LPe(T ), LPe

tr(T
+), LPe

tr(T ) for the problem instance (i.e., at the

root node of the A* search). We then select one based on the fol-

lowing rule: Choose the heuristic with the highest value. Break ties

by choosing the heuristic that is cheapest to compute. Although the

“cheapest” heuristic could be identified according to the cpu time to

compute each heuristic, for many problems, the computations are too

fast for robust timing measurements, so we simply break ties in order

of LPe
tr(T

+), LPe
tr(T ), LP

e(T+), LPe(T ) (because this ordering

usually accurately reflects the timing order). A more sophisticated

method for heuristic selection may result in better performance (c.f.

[5]), and is an avenue for future work.

6 Experimental Evaluation

Below, all experiments used the CPLEX 12.6 solver to solve integer

linear programs. All experiments were single-threaded and executed

on a Xeon E5-2650, 2.6GHz. We used a set of 1,366 IPC bench-

mark problems (from 1998 to 2011) distributed with Fast Downward.

Our planner can currently handle the subset of PDDL which includes

STRIPS, types, and action-costs. The full list of domains and # of in-

stances per domain is shown in Table 3.

6.1 Comparison of ILP Bounds

We evaluate the quality of the integer/linear programming bounds by

evaluating the optimal costs computed for these bounds.

First, we compute the ratio between the optimal cost of the LP

relaxation and the IP (Figure 2). We take the ceiling of the LP cost,

because the IPC benchmarks have integer costs. As shown in Table 2,

the gap between the LP and IP relaxation are quite small. In fact, for

the majority of problems, the gap between the rounded-up LP value

and IP value is 0 for IPe(T+), IPe(T ), IPe
tr(T

+), IPe
tr(T ), so the

LP relaxation is frequently a perfect approximation of h+.

Next, to understand the impact of various sets of constraints in

the ILP formulations, Table 1 compares pairs of IP and LP formu-

lations. The IP ratio for IP(T+) vs IPe(T+) is always 1 because

they both compute h+. However, on almost every single domain, the

LP value of the extended formulation LPe(T+) is significantly bet-

ter (higher) than the basic formulation LP(T+), indicating that vari-

able elimination and the additional constraints serve to tighten the LP

T. Imai and A. Fukunaga / A Practical, Integer-Linear Programming Model for the Delete-Relaxation in Cost-Optimal Planning462



bound. Thus, the enhancements to the basic model described in Sec-

tion 3 provide a significant benefit. LPe(T ) tends to be higher than

LPe(T+), indicating that that counting constraints enhances accu-

racy; note that in some cases LPe(T+) is higher than LPe(T ). The

time-relaxations LPe
tr(T

+) and LPe
tr(T ) are usually very close to

LPe(T+) and LPe(T ), indicating that the time relaxation achieves

a good tradeoff between computation cost and accuracy.
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Figure 2. Ratio between the optimal costs of the IP’s and their LP
relaxations, categorized into buckets. [x:y) = “% of instances where the

LP/IP ratio is in the range [x:y).

Table 1. Comparison of bounds: il+ = ILP(T+), ile+ = ILPe(T+),

ile = ILPe(T ), ile+tr = ILPe
tr(T

+), iletr = ILPe
tr(T ).

il+ / ile+ ile / ile+ ile+
tr

/ ile+ ile
tr

/ ile

LP IP LP IP LP IP LP IP

airport .53 1.00 .99 1.00 .99 .99 1.00 .99
blocks .92 1.00 .92 .92 1.00 1.00 1.00 1.00
depot .54 1.00 .93 .99 .99 .92 1.00 .99
driverlog .97 1.00 .91 .95 .96 .84 1.00 .96
elevators-opt08 .39 1.00 1.16 .96 .97 .64 1.00 .70
elevators-opt11 .36 1.00 1.17 .96 .96 .62 1.00 .73
floortile-opt11 .99 1.00 .93 .94 1.00 .97 1.00 .98
freecell .48 1.00 1.01 1.00 .97 .92 1.00 .98
grid - - .79 .85 .98 .79 1.00 .88
gripper 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
logistics98 .54 1.00 .89 1.00 .98 .88 1.00 1.00
logistics00 .47 1.00 .99 1.00 .99 .99 1.00 1.00
miconic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
movie 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
no-mprime .58 1.00 1.10 .97 .88 .66 1.00 .94
no-mystery .58 1.00 1.03 .98 .92 .72 1.00 .96
nomystery-opt11 .97 1.00 .97 .97 1.00 1.00 1.00 1.00
openstacks .38 1.00 1.00 1.00 1.00 1.00 1.00 1.00
openstacks-opt08 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
openstacks-opt11 - - 1.00 1.00 1.00 1.00 1.00 1.00
parcprinter-08 .99 1.00 .92 .92 1.00 1.00 1.00 1.00
parcprinter-opt11 .99 1.00 .94 .94 1.00 1.00 1.00 1.00
parking-opt11 .90 1.00 .97 .97 .94 .87 .94 .86
pegsol-08 0 1.00 .81 .72 1.00 .68 1.00 .86
pegsol-opt11 0 1.00 .88 .73 1.00 .67 1.00 .86
pipes-notankage .62 1.00 .94 .95 .92 .83 .97 .90
pipes-tankage .62 1.00 .95 .96 .98 .87 1.00 .96
psr-small .87 1.00 .38 .38 1.00 1.00 1.00 1.00
rovers .63 1.00 .86 .77 1.00 1.00 1.00 1.00
satellite .99 1.00 .99 .99 1.00 1.00 1.00 1.00
scanalyzer-08 1.00 1.00 1.00 1.00 1.00 .96 1.00 1.00
scanalyzer-opt11 1.00 1.00 1.00 1.00 1.00 .96 1.00 1.00
sokoban-opt08 .37 1.00 .88 .87 .99 .95 .99 .94
sokoban-opt11 .34 1.00 .90 .88 .99 .97 1.00 .96
storage .55 1.00 .95 .91 1.00 1.00 1.00 1.00
transport-opt08 .26 1.00 3.42 1.00 .99 .36 1.00 .58
transport-opt11 - - - - .99 .43 - -
visitall-opt11 1.00 1.00 .95 .93 .99 .97 .99 .95
woodworking08 .81 1.00 .94 .94 1.00 1.00 1.00 1.00
woodworking11 .80 1.00 .94 .94 1.00 1.00 1.00 1.00
zenotravel .99 1.00 .92 .98 .96 .90 1.00 .99

6.2 Evaluating ILP for Delete-free planning

To evaluate the speed of our ILP approach, we compared IPe(T+)
with Haslum et al.’s h+ algorithm [10] (“HST”), which is one of the

state-of-the art solvers for the delete relaxation, of a set of 1,346 IPC

benchmarks from the Fast Downward benchmark suite. Both solvers

were run with a 15-minute time limit on each instance. The most

recent version of HST was configured to use CPLEX to solve the

hitting set subproblem, as suggested by Haslum [9].

The number of delete-free, relaxed instances that are solved by

both planner is 905. HST solved 1,117 instances, and IPe(T+)
solved 1,186 instances. IPe(T+) was faster than HST on 575 in-

stances, and HST was faster than IPe(T+) on 330 instances. Figure 3

shows the ratio of runtimes of HST to our solver, sorted in increasing

order of the ratio, time(HST’s h+)/time(IPe(T+)). The horizontal

axis is the cumulative number of instances. Overall, IPe(T+) outper-

form the state-of-the-art delete-free solver and indicates that direct

computation of h+ using integer programming is a viable approach

(at least for computing h+ once for each problem).
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Figure 3. Computation of h+: Comparison of IPe(T+) and HST on
delete-free, relaxed problems

6.3 Evaluating h
+-based heuristics in a

cost-optimal planner

We embedded the ILP model into a A*-based, cost-optimal forward

search planner. We first compared various configurations of our plan-

ner, as well as several configurations of Fast Downward (FD), given

5 minutes per problem instance and a 2GB memory limit. For the FD

bisimulation merge-and-shrink heuristic, we use the IPC2011 hybrid

bisimulation m&s configuration (seq-opt-merge-and-shrink).3

The # of problems solved by each configuration is shown in Table 2.

Table 2. IPC benchmark problems: # solved with 5 minute time limit.

Configuration # solved Description
FD/LM-cut 746 Landmark Cut (seq-opt-lmcut)
FD/M&S IPC2011 687 IPC 2011 Merge-and-Shrink [13]
FD/hmax 551 hmax

A*/h+ 342 hsp f planner using A* and h+ heuristic [10, 8]

A*/IP(T+) 358 basic IP formulation for h+

A*/LP(T+) 477 LP relaxation of IP(T+)

A*/IP(T+)+land 425 IP(T+) + Landmarks

A*/LP(T+)+land 564 LP relaxation of IP(T+)

A*/IPe(T+) 582 IP(T+) with all enhancements in Sections 3.1-3.6

A*/LPe(T+) 652 LP relaxation of IPe(T+)

A*/IPe(T ) 463 IPe(T+) with counting constraints (Section 4)

A*/LPe(T ) 608 LP relaxation of IPe(T )

A*/IPe
tr(T

+) 606 time-relaxation (Section 3.7) of IPe(T+)

A*/LPe
tr
(T+) 674 LP relaxation of IPe

tr
(T+)

A*/IPe
tr
(T ) 554 time-relaxation of IPe(T )

A*/LPe
tr
(T ) 661 LP relaxation of IPe

tr
(T )

A*/autoconf 722 Automated selection of LP at root node(Section 5.1)

As shown in Table 2, the basic IP model performs the worst, and is

comparable to A*/h+. As noted in [8], straightforward use of h+ as

a heuristic is unsuccessful (significantly worse than FD using hmax).

However, the addition of landmark constraints is sufficient to signif-

icantly increase the number of solved problems compared to A*/h+,

and A*/IPe(T+), outperforms hmax and can be considered a some-

what useful heuristic. The time-relaxation results in significantly

increases performance compared to A*/IPe(T+) and A*/IPe(T ).
In addition, for all IP models, A* search using their correspond-

ing LP relaxations as the heuristic function performs significantly

better than directly using the IP as the A* heuristic. A*/LPe(T+),
A*/LPe

tr(T
+), and A*/LPe

tr(T ), are all competitive with the bisim-

ulation merge-and-shrink heuristic. While A*/LPe(T ), does not per-

form quite as well, there are some problems where A*/LPe(T ) per-

3 While this is tuned for 30 minutes and suboptimal for 5 minutes, we wanted
to use the same configuration as in the 30-minute experiments below.
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forms best. Finally, A*/autoconf, which uses LP heuristic selection

(Section 5.1) performs quite well, significantly better than its 4 com-

ponents (LPe(T+), LPe
tr(T

+), LPe
tr(T ), LP

e(T )).

Table 3. 30 minutes, 2GB RAM: “evals”=# of calls to heuristic function

Fast Downward LM-Cut Fast Downward M&S A*/autoconf

Domain (# problems) solved evals solved evals solved evals
airport(50) 28 13403 23 461855 25 4640
barman-opt11(20) 4 1614605 4 5944586 3 473561
blocks(35) 28 95630 28 880799 29 51523
depot(22) 7 261573 7 1746549 7 34046
driverlog(20) 14 245920 13 4355507 13 56933
elevators-opt08(30) 22 1189951 14 10132421 13 66011
elevators-opt11(20) 18 1196979 12 11811143 10 65695
floortile-opt11(20) 7 2354266 7 10771362 7 152836
freecell(80) 15 180560 19 6291413 45 2177
grid(5) 2 94701 3 11667600 3 14197
gripper(20) 7 1788827 20 3131130 6 404857
logistics98(35) 6 169645 5 6825245 7 143897
logistics00(28) 20 212998 20 3007288 20 212985
miconic(150) 141 16635 77 3872365 141 15087
movie(30) 30 29 30 29 30 31
no-mprime(35) 24 55549 22 1490714 18 7260
no-mystery(30) 16 880031 17 3725239 12 1105
nomystery-opt11(20) 14 20744 19 9951860 14 754
openstacks(30) 7 157100 7 202732 7 4973
openstacks-opt08(30) 19 3254361 21 6347048 11 165070
openstacks-opt11(20) 14 4412937 16 8326670 6 294006
parcprinter-08(30) 19 699592 17 3129238 29 668
parcprinter-opt11(20) 14 949416 13 4091925 20 854
parking-opt11(20) 3 435359 7 8044843 1 2991
pegsol-08(30) 27 224149 29 705639 26 85760
pegsol-opt11(20) 17 370401 19 1092529 16 151110
pipes-notankage(50) 17 234717 17 1777823 13 6021
pipes-tankage(50) 12 361767 16 2447552 7 1926
psr-small(50) 49 178328 50 221152 50 4056
rovers(40) 7 77783 8 3395947 11 209551
satellite(36) 7 155990 7 1890912 10 26897
scanalyzer-08(30) 15 259961 14 6785907 8 4374
scanalyzer-opt11(20) 12 324943 11 8636568 5 6975
sokoban-opt08(30) 30 669669 24 3938226 23 75743
sokoban-opt11(20) 20 173004 19 3338708 19 77681
storage(20) 15 86439 15 1006600 15 21598
transport-opt08(30) 11 16807 11 1158282 10 58616
transport-opt11(20) 6 30550 7 4473292 5 116375
trucks(30) 10 462320 8 8478357 15 61067
visitall-opt11(20) 11 1255455 16 129229 17 20378
woodworking08(30) 17 759825 14 876479 28 767
woodworking11(20) 12 1076372 9 1357935 18 699
zenotravel(20) 13 318142 12 6727643 12 16571
Total (1366) 787 727 785

Table 3 compares the coverage following algorithms on the IPC

benchmark suite with 30 minute CPU time limit and 2GB memory

limit: (1) A*/autoconf, which uses the LP heuristic selection mecha-

nism described in Section 5.1 to choose among LPe(T+), LPe(T ),
LPe

tr(T
+), LPe

tr(T ), (2) FD using the Landmark Cut heuristic [11],

and (3) FD using the IPC2011 bisimulation merge-and-shrink con-

figuration (seq-opt-merge-and-shrink)[13].

Our results indicate that A*/autoconf is competitive with both Fast

Downward using Landmark Cut, as well as the IPC2011 Merge-and-

shrink portfolio configuration. None of these planners dominate the

others, and each planner performs the best on some subset of do-

mains. Compared to the two other methods, A*/autoconf seems to

perform particularly well on the freecell, parcprinter, rovers, trucks,

and woodworking domains. A*/h+[10] solved 443 problems with a

30-minute time limit, which is significantly less coverage than than

our LP-based planners with a 5-minute time limit (Table 2).

As described in Section 5.1, A*/autoconf selects the LP heuristic

to use for each problem based on a comparison of LP values at the

root node. LPe
tr(T

+) was selected on 755 problems, LPe
tr(T ) on

447 problems, LPe(T+) on 119 problems, and LPe(T ) on 25 prob-

lems. On the remaining 20 problems, A*/autoconf timed out during

LP computations for the bound selection process at the root node,

indicating that for some difficult problems, the LP computation can

be prohibitively expensive.

7 Conclusion

This paper proposed a new, integer-linear programming formulation

of the delete relaxation h+ for cost-optimal, domain-independent

planning. The major contribution of this paper are: (1) We propose an

enhanced IP model for h+ using landmarks, relevance analysis, and

action elimination, which is outperforms one of the previous state-

of-the-art techniques for computing h+ [10]; (2) We showed that the

LP relaxations of the IP models are quite tight; and (3) We embedded

our relaxed LPs in a A*-based forward search planner, A*/autoconf.

We showed that A* search using LPe(T+), LPe
tr(T

+), or LPe
tr(T )

as its heuristic is competitive with the hybrid bisimulation merge-

and-shrink heuristic [13]. Using a simple rule to select from among

LPe(T+), LPe(T ), and LPe
tr(T

+), LPe
tr(T ), A*/autoconf is com-

petitive with the landmark cut heuristic. A*/autoconf performs well

in some domains where other planners perform poorly, so our ILP-

based methods are complementary to previous heuristics.

While it has long been believed that h+ is too expensive to be

useful as a heuristic for forward-search based planning, our work

demonstrates that an LP relaxation of h+ can achieve the right trade-

off of speed and accuracy to be the basis of a new class of heuristics

for domain-independent planning. Integrating additional constraints

to derive heuristics more accurate than h+ (e.g., the inclusion of net

change constraints [15] in Section 4) offers many directions for fu-

ture work.
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