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Abstract. Maximum Satisfiability (MaxSAT) is a well-known op-
timization version of Propositional Satisfiability (SAT), that finds a
wide range of relevant practical applications. Despite the significant
progress made in MaxSAT solving in recent years, many practically
relevant problem instances require prohibitively large run times, and
many cannot simply be solved with existing algorithms. One ap-
proach for solving MaxSAT is based on iterative SAT solving, which
may optionally be guided by unsatisfiable cores. A difficulty with this
class of algorithms is the possibly large number of times a SAT solver
is called, e.g. for instances with very large clause weights. This paper
proposes the use of geometric progressions to tackle this issue, thus
allowing, for the vast majority of problem instances, to reduce the
number of calls to the SAT solver. The new approach is also shown
to be applicable to core-guided MaxSAT algorithms. Experimental
results, obtained on a large number of problem instances, show gains
when compared to state-of-the-art implementations of MaxSAT al-
gorithms.

1 INTRODUCTION

The problem of (plain) Maximum Satisfiability (MaxSAT) consists
in identifying the largest set of simultaneously satisfied clauses. Ex-
tensions of MaxSAT consider different types of clauses. Clauses can
be hard, in which case they must be satisfied. Clauses can have
weights, in which case the goal is to maximize the sum of weights
of satisfied clauses. MaxSAT finds an ever growing range of practi-
cal aplications that include planning, fault localization in C code and
design debugging [27, 23, 11, 25], among others.

The development of MaxSAT algorithms is an active area of re-
search. On the one hand, MaxSAT algorithms have been developed
for improving worst-case upper bounds [5, 7]. On the other hand,
many algorithms with practical significance have been developed
for MaxSAT. These include branch-and-bound search [13] and itera-
tive SAT solving with or without unsatisfiable core-guidance [18, 2],
among others. The results of the annual MaxSAT evaluation [3] con-
firm that different algorithmic approaches are effective at solving dif-
ferent classes of problem instances. Nevertheless, a general trend is
that, for problem instances originating from practical domains, ap-
proaches based on iterative SAT solving, that may or may not be
core-guided, are in general the most effective.

A well-known difficulty with MaxSAT approaches based on itera-
tive SAT solving is that the number of iterations grows with the log-
arithm of the sum of weights of the clauses. For some applications,
clause weights can be large, and this impacts the worst-case num-
ber of SAT solver calls. More importantly, the analysis of the results
from the last MaxSAT evaluations reveals that, for most instances,
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the MaxSAT solution (represented as the minimum cost of falsified
clauses) is usually much smaller than the trivial upper bound given
by the sum of weights of the soft clauses. As a result, for MaxSAT
solving approaches where the number of iterations depends on com-
puted upper bounds, the number of iterations may well be signifi-
cantly larger than necessary, provided the actual optimum cost was
to be known.

This paper develops a new approach for solving MaxSAT that pro-
vides guarantees on the cost of the upper bound. The proposed ap-
proach uses a geometric progression for refining the lower bound by
iterative SAT solving. The geometric progression is guaranteed to
eventually reach a value above the optimum cost, which represents
an upper bound on the optimum value. However, this value cannot
be much larger than the optimum value. As a result, one can guar-
antee that the number of iterations grows with the logarithm of the
optimum cost and not with the logarithm of the sum of the weights
of the soft clauses.

The paper is organized as follows. Section 2 introduces the nota-
tion and definitions used throughout the paper. Section 3 develops a
basic progression-based MaxSAT algorithm, and analyzes its worst-
case number of calls to a SAT solver. Section 4 uses the basic al-
gorithm to develop core-guided algorithms using geometric progres-
sions. Related work is briefly overviewed in Section 5. Section 6 ana-
lyzes experimental results comparing the new algorithms with state-
of-the-art MaxSAT solvers. Finally, Section 7 concludes the paper.

2 PRELIMINARIES

This section briefly introduces the definitions used throughout. Stan-
dard definitions are assumed (e.g. [6]). Let X = {x1, x2, . . . , xn}
be a set of Boolean variables. A literal l is either a variable xi or
its negation x̄i. A clause c is a disjunction of literals. A clause may
also be regarded as a set of literals. An assignment A is a mapping
A : X → {0, 1} which satisfies (unsatisfies) a Boolean variable x
if A(x) = 1 (A(x) = 0). Assignments can be extended in a natural
way for literals (l) and clauses (c)

A(l) =
{ A(x), if l = x

1−A(x), if l = x̄
A(c) = max{A(l) | l ∈ c}

Assignments can also be regarded as sets of literals, in which
case the assignment A satisfies (unsatisfies) a variable x if x ∈ A
(x̄ ∈ A). A complete assignment contains a literal for each variable,
otherwise it is a partial assignment.

A formula F in conjunctive normal form (CNF) is a conjunction
of clauses. A formula may also be regarded as a set of clauses. A
model is a complete assignment A that satisfies all the clauses in a
CNF formula F . Propositional Satisfiability (SAT) is the problem of
deciding whether there exists a model for a given formula.

Given an unsatisfiable formula F , a subset of clauses U (i.e. U ⊆
F ) whose conjunction is still unsatisfiable is called an unsatisfiable
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core of the original formula. Modern SAT solvers can be instructed
to generate an unsatisfiable core for unsatisfiable formulas [28].

The standard definitions of MaxSAT are assumed (e.g. [13]).
Moreover, the following definitions also apply. A weighted clause
is a pair (c, w), where c is a clause and w is the cost of its falsifica-
tion, also called its weight. Many real problems contain clauses that
must be satisfied. Such clauses are called mandatory (or hard) and
are associated with a special weight �. Non-mandatory clauses are
also called soft clauses. A weighted CNF formula (WCNF) F is a set
of weighted clauses. For MaxSAT, a model is a complete assignment
A that satisfies all mandatory clauses. The cost of a model is the sum
of weights of the soft clauses that it falsifies. Given a WCNF for-
mula, Weighted Partial MaxSAT is the problem of finding a model of
minimum cost (denoted by C). A trivial upper bound (UB) is given
by 1 +W , where W �

∑
i wi.

The pseudo-codes shown in the paper assume the following nota-
tion. An initial WCNF formula F is given as input. The set of hard
clauses of F is the set FH , and FH is assumed in the algorithms
to be satisfiable (which can be tested with an initial call to the SAT
solver on the set FH ). The set of soft clauses of F is the set FS , and
contains m soft clauses (m = |FS |).

The algorithms use relaxation variables, which are fresh Boolean
variables. The proposed algorithms add at most one relaxation vari-
able per clause, and it is assumed that each relaxation variable ri is
associated to one (and only one) soft clause ci having weight wi,
1 ≤ i ≤ m. The process of extending a clause with a relaxation
variable is called relaxing the clause, and in the pseudo-codes it is
performed by function Relax(). Function Relax(R0,F0,F ′) re-
ceives a set of relaxation variables R0, a set of clauses F0, a set
of clauses that need to be relaxed F ′ (F ′ ⊆ F0), and returns a pair
(R1,F1). F1 corresponds to the clauses of F0, but with the clauses
in F ′ relaxed. R1 is the set R0 augmented with the relaxation vari-
ables created when relaxing clauses in F ′.

The algorithms use cardinality or pseudo-Boolean constraints [21,
24]. These correspond to

∑
i ri ≤ k or

∑
i wiri ≤ k (respectively),

and are encoded into clauses through the function CNF(). Function
CNF(c) returns the set of clauses that encodes c into CNF.

The calls to the SAT solver4 are performed through the function
SAT(F), that given a CNF formula F , returns the tuple (st,U ,A).
If the formula F is satisfiable, then st is true andA is a model of F .
Otherwise, st is false and U is an unsatisfiable core of F .

3 MAXSAT WITH PROGRESSIONS

Existing approaches for solving MaxSAT by iterative SAT solving
can either refine lower bounds, upper bounds, or perform some form
of binary search [18]. These approaches can either relax all soft
clauses at the outset or relax the clauses on demand, given computed
unsatisfiable cores. Of existing approaches, algorithms that imple-
ment some form of binary search guarantee that in the worst-case
(i.e. for weighted formulas) a polynomial number of calls is made
to the SAT solver. As motivated earlier, the main drawback of ap-
proaches exploiting binary search is that the inital upper bound can
be significantly larger than the (usually small) optimum value, and
this of course impacts the number of SAT calls.

This section develops an alternative approach that uses a geomet-
ric progression to refine the lower bound, and such that, when the
search is above the optimum value, the algorithm switches to stan-
dard binary search. The approach, although simple to build on top of

4 It is assumed a complete SAT solver able to prove unsatisfiability and pro-
vide unsatisfiable cores.

Input: F = FS ∪ FH

1 (R,FW )← Relax(∅,F ,FS)
2 (λ, j)← (0, 0)
3 while true do

4 τ ← 2j − 1
5 if τ >

∑
ri∈R wi then return Bin(FW , R, λ, ∅)

6 (st,A)← SAT(FW ∪ CNF(∑ri∈R wiri ≤ τ))

7 if st = true then return Bin(FW , R, λ,A)
8 else

9 j ← j + 1
10 λ← τ

Algorithm 1: Progression-based MaxSAT Algorithm

standard binary search, provides guarantees in terms of the number
of calls to a SAT solver. Binary search for MaxSAT requires a num-
ber of calls in O(logW ), where W is the sum of weights of all soft
clauses. In contrast, as shown in this section, the use of approaches
based on a geometric progression guarantees that the worst number
of calls is in O(logC), where C is the optimum cost. Algorithm 1
summarizes the progression algorithm for MaxSAT, based on iter-
ative SAT solving (core-guided versions are detailed in Section 4).
While the outcome of the SAT solver call is false, the progression
is (exponentially) incremented. This is reflected in a tentative lower
bound value τ , which is used in the right-hand side of the constraint
bounding the cost of the falsified clauses. If the lower bound τ ex-
ceeds the sum of the weights of the soft clauses (line 5), then plain
binary search (Bin) is executed between the known lower bound (λ)
and the default upper bound (1 +W ). Once the outcome of the SAT
solver call is true, the solver switches to a standard model of solving
MaxSAT with binary search (Bin) between the known lower bound
(λ) and the upper bound given by the computed truth assignment (A).

Proposition 1. The worst case number of SAT solver calls for Algo-
rithm 1 is in O(logC), where C is the cost of the MaxSAT solution.

Proof. Clearly, as soon as τ is larger than or equal to C, the
outcome of the SAT solver will be true. Hence, the number of calls
made to the SAT solver until it returns true is O(logC). Binary
search for MaxSAT requires O(logUB) calls to a SAT solver
in the worst-case, where UB denotes some upper bound on the
MaxSAT solution. Since τ cannot exceed 2C, then binary search
also requiresO(logC) calls to a SAT solver in the worst case. Thus,
the worst-case number of calls to a SAT solver for Algorithm 1 is in
O(logC). �

As indicated earlier, for most known instances, the optimum cost
is much smaller than the sum of the weights of the soft clauses. As
a result, the use of geometric progressions in MaxSAT is expected to
enable reductions in the number of SAT solver calls. In practice, the
use of geometric progressions has a few other advantages. Since the
right-hand side of the AtMost of Pseudo-Boolean (PB) constraints
associated with each SAT solver call are in general smaller, then
the resulting CNF encoding will be smaller for most CNF encod-
ings used in practice. Thus, the resulting CNF formulas have fewer
variables and fewer clauses.

Additionally, please note that the correctness of the proposed al-
gorithm (as well as of the core-guided algorithms described in Sec-
tion 4) follows from the fact that the value of the tentative lower
bound τ grows only if the working formula is unsatisfiable and then,
when it gets satisfiable, relies on the correctness of the Bin algorithm
(BC or BCD in the case of the core-guided progression algorithms
proposed below).
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Input: F = FS ∪ FH

1 (R,FW )← (∅,F)
2 (λ, j)← (0, 0)
3 while true do

4 τ ← 2j − 1
5 if τ >

∑
ri∈R wi then return BC(FW , R, λ, ∅)

6 (st,U ,A)← SAT(FW ∪ CNF(∑ri∈R wiri ≤ τ))

7 if st = true then return BC(FW , R, λ,A)
8 else

9 if U ∩ FS = ∅ then

10 j ← j + 1
11 λ← τ

12 else (R,FW )← Relax(R,FW ,U ∩ FS)

Algorithm 2: PRG BC MaxSAT Algorithm

4 CORE-GUIDED ALGORITHMS

This section shows how to apply the lower bound refinement using
geometric progression to algorithms that relax clauses on demand. In
particular, the geometric progression approach of the previous sec-
tion is applied to the BC [10] and the BCD [19] algorithms.

First the PRG BC is presented which uses BC as the supporting
algorithm. As in Algorithm 1, the main goal of the PRG BC algo-
rithm is to refine the lower bound λ with exponential increments.
However, PRG BC must take in consideration the current set of re-
laxation variables. Unlike Algorithm 1, in PRG BC the soft clauses
are not relaxed beforehand. Instead, and similarly to the BC algo-
rithm, the set of relaxation variables R increases as (yet unrelaxed)
soft clauses are identified in unsatisfiable cores. As a result, the lower
bound λ and the progression step j are updated only when the current
unsatisfiable core does not contain unrelaxed soft clauses.

The pseudo-code of PRG BC is shown in Algorithm 2. Similar to
Algorithm 1, PRG BC maintains two values for the computation of
the geometric increments: the known lower bound λ and the progres-
sion step j from which the cost τ is defined to test for unsatisfiability
in each iteration (τ = 2j − 1, line 4). Whenever the cost to test τ
becomes greater than the sum of weights of all soft clauses, then the
BC algorithm is called with the last known lower bound (line 5).

In each iteration, PRG BC calls the SAT solver on the cur-
rent working formula FW , together with a constraint restricting
the weighted sum of relaxation variables assigned value true to be
smaller than or equal to τ (line 6). If the formula is satisfiable, then
the BC algorithm is called with the last known lower bound λ and
the assignment A as a witness of satisfiability (used in BC for the
computation of an upper bound) (line 7).

Otherwise, an unsatisfiable core U is obtained from the SAT
solver. If all clauses in U are relaxed (line 9), then the lower bound
can be safely updated. As a result, j is incremented by one and λ is
updated to the new lower bound τ (lines 10-11). If U contains unre-
laxed soft clauses, then those soft clauses are relaxed (line 12) and
values of λ and j remain unchanged.

Observe that in the worst case the PRG BC relaxes all soft clauses
and then proceeds as the iterative Algorithm 1.

Proposition 2. The worst case number of SAT solver calls for the
PRG BC Algorithm is in O(logC + m), where C is the cost of the
MaxSAT solution, and m is the number of soft clauses.

The second algorithm presented in this section is PRG BCD which
uses BCD as the supporting algorithm. As in the previous algo-
rithms, the goal of PRG BCD is to refine the lower bound. However,

Input: F = FS ∪ FH

1 (FW , μ)← (F ,
∑

(ci,wi)∈FS
wi)

2 (D, k)← (∅, 0)
3 while true do

4 if
∑

di ∈ D(2ji − 1) > μ then return BCD(FW ,D, ∅)
5 FD ← ⋃

di ∈ D CNF(
∑

rl∈Ri
wlrl ≤ (2ji − 1))

6 (st,U ,A)← SAT(FW ∪ FD)
7 if st = true then return BCD(FW ,D,A)
8 else

9 DU ← Intersect(D,U)
10 if U ∩ FS = ∅ and |DU | = | < Ri, λi, ji > | = 1

then

11 λi ← 2ji − 1
12 ji ← ji + 1

13 else

14 k ← k + 1
15 (Rk,FW )← Relax(

⋃
di∈DU Ri, FW , U ∩FS)

16 jk ← min {j | (2j − 1) >
∑

di∈DU λi}
17 D ← D \ DU ∪ {< Rk,

∑
di∈DU λi, jk >}

Algorithm 3: PRG BCD MaxSAT Algorithm

PRG BCD also takes advantage of disjoint cores, similar to BCD.
If two unsatisfiable cores of a formula do not intersect (in terms of
the soft clauses), then two lower bounds can be considered (one for
each of the disjoint cores), whose sum defines a lower bound for the
overall formula. If an unsatisfiable core is found to intersect one or
more of the previously found disjoint cores, then the associated lower
bounds can be merged.

As such, PRG BCD maintains the information of a disjoint core
di in a structure < Ri, λi, ji >, where Ri is the set of relaxation
variables, λi is the known lower bound, and ji defines the progres-
sion step such that a limit cost of (2ji−1) is to be tested. The current
set of structures di’s is kept in D. We abuse the notation and refer to
such structures as disjoint cores.

The pseudo-code of PRG BCD is shown in Algorithm 3. In
PRG BCD, the overall cost to test in each iteration is not defined
explicitly. It is in fact a sum of the costs for each of the current dis-
joint cores

∑
di∈D(2ji − 1). As in the previous algorithms, if such

cost is greater than the sum of all the weights of the soft clauses,
then the supporting algorithm BCD is called with the current set of
disjoint cores D (line 4).

In each iteration, PRG BCD calls the SAT solver on the current
working formula FW together with a set of clauses FD that defines
the tentative cost limit to each disjoint core. Unlike the previous al-
gorithms that considered only one cardinality (or pseudo-Boolean)
constraint, PRG BCD considers one such constraint for each disjoint
core in D. All these constraints are encoded into FD (lines 5-6).

If the working formula is satisfiable, then BCD is called with the
current set of disjoint cores D, as well as model A as a witness of
satisfiability (used in BCD to obtain an upper bound) (line 7).

If the working formula is not satisfiable, then an unsatisfiable core
U is obtained. Function Intersect(D,U) is called to obtain the
set DU of disjoint cores in D that have at least one soft clause in
common with U (line 9).

If U does not contain unrelaxed soft clauses andDU contains only
one disjoint core di, then PRG BCD updates the lower bound λi

and the progression step ji (lines 11-12). Otherwise, there are dis-
joint cores that need to be merged and/or U contains unrelaxed soft
clauses. Either way, a new disjoint core is created (with updated in-
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dex k). The new set of relaxation variables Rk is the union of the
relaxations variables of the disjoint cores inDU , together with the re-
laxation variables obtained from relaxing the unrelaxed soft clauses
of U (line 15). The known lower bound of the new disjoint core is
the sum of the known lower bounds of the previous disjoint cores
(
∑

di∈DU λi). The new jk is the minimum j whose cost 2j − 1 is
greater than the new known lower bound (line 16). The new disjoint
core thus obtained is added to D, while the previous disjoint cores
are removed (line 17).

Observe that in the worst case, PRG BCD is going to consider m
iterations each with an unsatisfiable core containing only one soft
clause, thus creating m disjoint cores. Then it performs m − 1 it-
erations that merge the previous disjoint cores into a single disjoint
core, and finally proceeds with iterations similar to the iterative Al-
gorithm 1.

Proposition 3. The worst case number of SAT solver calls for the
PRG BCD Algorithm is inO(logC +m), where C is the cost of the
MaxSAT solution, and m is the number of soft clauses.

5 RELATED WORK

The area of MaxSAT algorithms have been active over the last
decade, with many different algorithmic solutions proposed. Some of
this work is surveyed in a number of recent publications [13, 2, 18].
Moreover, additional classes of MaxSAT algorithms have been pro-
posed in recent years [8, 9]. For the algorithms described in this pa-
per, the algorithms BC [10] and BCD [19] are used.

The use of geometric progressions to improve lower bounds has
been studied in the recent past [17, 26], and can be related with
earlier work, e.g. [22]. To our best knowledge, the use of geomet-
ric progression has not been considered in iterative algorithms for
MaxSAT solving, nor have geometric progressions been integrated
in core-guided approaches for MaxSAT.

Moreover, the use geometric progressions has recently been pro-
posed in algorithms for the minimal set subject to a monotone pred-
icate (MSMP) problem [15], that finds applications in the compu-
tation of minimal unsatisfiable subformulas and minimal correction
subformulas. However, the approaches differ substantially, in that the
algorithms described in this paper aim to refine a lower bound to
compute a tight upper bound of the MaxSAT problem.

6 RESULTS

This section conducts an experimental evaluation of some of the al-
gorithms proposed in this paper, namely PRG BC and PRG BCD,
with state-of-the-art MaxSAT algorithms. The experiments were per-
formed on an HPC cluster, each node having two processors E5-2620
@2GHz, with each processor having 6 cores, and with a total of 128
GByte of physical memory. Each process was limited to 4GByte of
RAM and to a time limit of 1800 seconds. The set of problem in-
stances considered includes all the industrial benchmarks from the
2013 MaxSAT Evaluation [3] and contains 55 MaxSAT industrial in-
stances, 627 partial MaxSAT industrial instances, and 396 weighted
partial MaxSAT industrial instances. Thus, the total number of prob-
lem instances considered is 1078.

A prototype of a MaxSAT solver implementing all the
progression-based algorithms described in Section 3 and Section 4
has been developed. The underlying SAT solver of the prototype im-
plementation is Glucose [4]. The algorithms use the modulo total-
izer cardinality encoding proposed in [20]. Additionally, the follow-
ing heuristics were used: disjoint unsatisfiable core enumeration for

computing a lower bound (e.g. see [16]) and complete Boolean mul-
tilevel optimization (complete BMO) (e.g. described in [14]).

Besides, in the experiments we also used the following MaxSAT
solvers, which took best places (among non-portfolio complete
solvers) in different industrial categories of the 2013 MaxSAT Eval-
uation: QMaxSAT5 0.21 [12], WPM1 [2], WPM2 [1, 2], MSUn-
Core [19], and MiFuMaX6. QMaxSAT 0.21 implements the iterative
linear search SAT-UNSAT and is also based on Glucose [4] as the
backend SAT solver. The versions of WPM1 and WPM2 are from
2013. In contrast to other considered solvers, WPM1 and WPM2 are
based on the Yices SMT solver7, and so do not directly use a SAT
solver as the backend. Also note that the configuration of MSUn-
Core used in the experiments is the enhanced version of the BCD
algorithm [19]. In the experimental evaluations QMaxSAT, WPM1,
WPM2, MSUnCore, and MiFuMaX are denoted by QMXS, WPM1,
WPM2, MSUC, and MFMX, respectively.

Figure 1a shows a cactus plot illustrating the performance of the
considered solvers on the total set of all instances in MaxSAT in-
dustrial, Partial MaxSAT industrial, and Weighted Partial MaxSAT
industrial. PRG BCD exhibits the best overall performance, being
able to solve 878 instances out of 1078. WPM2 comes second with
812 instances solved. Thus PRG BCD solves 8.13% more instances
than WPM2. Also note (and it is also suggested by the scatter plot
in Figure 3b) that there is a significant gap in the cactus plot, in
terms of the running times, between PRG BCD and WPM2. For
example, whereas PRG BCD can solve 575 instances within 40 sec-
onds each, WPM2 can solve 329. To solve the same 575 instances
as PRG BCD, the run time limit of WPM2 must be increased un-
til 335 seconds. Moreover, MSUC comes third with 781 instances
solved within the 1800 seconds timeout. Detailed information about
the number of solved instances is presented in Figure 1b.

The virtual best solver (VBS) among all the considered solvers
is able to solve 972 instances, while the VBS incorporating
PRG BCD and WPM1 copes with 950 instances, and the VBS
among PRG BCD and WPM2 — 940. In order to get a deeper
understanding of which solver contributes to the VBSes the most,
we carried out a pairwise comparison between the best perform-
ing algorithms in the experiments. The comparison of PRG BCD
and MSUC is shown in Figure 3a while the difference between
PRG BCD and WPM2 is detailed in Figure 3b. The summaries of
the comparison can be seen in Table 1a. Here we declare a winner
if the difference between the run times exceeds 10%; otherwise, a
tie is declared. Let us analyze the case of PRG BCD and WPM2.
Assuming the time spent by PRG BCD is denoted by T1 and the
time of WPM2 is denoted by T2, it is important to note that for
731 instances PRG BCD is more than 10% faster than WPM2 (i.e.
100 × T2−T1

T2
> 10), whereas WPM2 is more than 10% faster (i.e.

100× T1−T2
T1

> 10) for 184 instances. Finally, for the remaining 163
instances the run times are within 10% of each other.

Note that the QMXS version used in the experiments supports
only unweighted partial formulas. Thus, we considered the set of
Partial MaxSAT industrial instances separately, and analyzed the per-
formance of all the solvers. The corresponding cactus plot is shown
in Figure 2a. The cactus plot indicates that PRG BCD performs
better than other solvers and is able to solve 548 instances (out
of 627). QMXS, which took the first place in the 2013 MaxSAT
Evaluation for this set of benchmarks (for non-portfolio MaxSAT

5 https://sites.google.com/site/qmaxsat/.
6 http://sat.inesc-id.pt/˜mikolas/sw/mifumax/.
7 http://yices.csl.sri.com/.
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(a) Cactus plot for all benchmarks

Solver
# solved

(out of 1078)

PRG BCD 878
WPM2 812
MSUC 781
WPM1 738
PRG BC 691
MFMX 565

(b) Number of solved instances

Figure 1: Cactus plot and statistics for the all problem instances

Table 1: Pairwise comparison (win: >10% diff)

(a) MS+PMS+WPMS industrial

Row wins WPM2 MSUC PRG BCD

WPM2 – 426 184
MSUC 426 – 91

PRG BCD 731 788 –

(b) PMS industrial

Row wins QMXS WPM2 MSUC PRG BCD

QMXS – 432 424 247
WPM2 116 – 258 114
MSUC 120 256 – 73

PRG BCD 283 425 471 –

solvers), comes second with 534 instances solved. The performance
of PRG BCD and QMXS is compared by the scatter plot in Fig-
ure 3c. The pairwise comparison of the numbers of wins (for more
than 10%) for QMXS and PRG BCD is shown Table 1b. The num-
ber of solved instances per each solver is detailed in Figure 2b.

In summary, the experimental results indicate that the proposed
progression-based algorithms represent one of the most robust ap-
proaches for Maximum Satisfiability, which can be successfully ap-
plied to a wide range of practical problem instances. Considering the
total set of benchmarks, the PRG BCD algorithm solves more in-
stances than all the other algorithms considered in our experimental
evaluation including WPM1, WPM2, and BCD. Moreover, the use
of VBSes indicates that in most of the cases PRG BCD is also the
fastest algorithm in comparison to others. As for the Partial MaxSAT
industrial set of benchmarks cosidered separately, PRG BCD solves
more instances than QMaxSAT even though QMaxSAT solely targets
partial MaxSAT formulas, being optimized for those instances.

7 CONCLUSIONS

This paper describes the use of geometric progressions in MaxSAT
algorithms based on iterative SAT solving, which may optionally use
unsatisfiable core finding. The objective of using a geometric pro-
gression is to refine lower bounds on the MaxSAT solution, such that
a guaranteedly tight upper bound is eventually identified. As a result,

the number of calls to the SAT solver is guaranteed to be bounded
by the logarithm of the optimum solution and not by the logarithm
of the sum of soft clause weights. The paper shows how the use of
geometric progressions can be used with plain iterative algorithms,
but also with core-guided MaxSAT algorithms, namely the recently
proposed BC and BCD algorithms [10, 19]. Experimental results,
obtained on the (industrial) instances from the most recent MaxSAT
evaluation, show consistent performance gains over state-of-the-art
MaxSAT solvers, both in terms of the number of solved instances and
in terms of pairwise performance comparison. This is also observed
separately for the case of Partial MaxSAT industrial instances, where
the new algorithms outperform QMaxSAT [12], a solver that is spe-
cific for partial MaxSAT. The experimental results also indicate that
the practical deployment of MaxSAT solvers should consider the use
of portfolios of MaxSAT solvers. This observation is also indepen-
dently supported by the results of the 2013 MaxSAT evaluation.

A number of research directions can be envisioned. Given the re-
sults for the VBS in Section 6, one line of research are algorithm
portfolios for MaxSAT. Nevertheless, even considering all the algo-
rithms compared in this paper, there are still more than 100 instances
that cannot be solved to optimality. As a result, another line of re-
search is the integration of recently proposed techniques for core-
guided MaxSAT algorithms [2, 1].
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