
“Distance”? Who Cares? Tailoring Merge-and-Shrink
Heuristics to Detect Unsolvability

Jörg Hoffmann and Peter Kissmann and Álvaro Torralba1

Abstract. Research on heuristic functions is all about estimating the
length (or cost) of solution paths. But what if there is no such path?
Many known heuristics have the ability to detect (some) unsolvable
states, but that ability has always been treated as a by-product. No
attempt has been made to design heuristics specifically for that pur-
pose, where there is no need to preserve distances. As a case study
towards leveraging that advantage, we investigate merge-and-shrink
abstractions in classical planning. We identify safe abstraction steps
(no information loss regarding solvability) that would not be safe for
traditional heuristics. We design practical algorithm configurations,
and run extensive experiments showing that our heuristics outper-
form the state of the art for proving planning tasks unsolvable.

1 Introduction
Research on heuristic functions is all about estimating the length (or
cost) of solution paths. There even is a perception that, on unsolvable
problems, state ordering does not matter so computing a heuristic is
a waste of time. That is false for heuristics with the ability to detect
(some) dead-end states, like almost all known heuristics in planning.
This is not in itself a new observation, but it has never been systemat-
ically explored. Unsolvability detection has always been treated as a
by-product of estimating goal distance/cost. For example, all relaxed-
plan based heuristics (e. g. [11]), all landmark heuristics (e. g. [16]),
and the recent red-black plan heuristics [12], are no better at unsolv-
ability detection than the “Methuselah heuristic” hmax. We introduce
unsolvability heuristics, returning either ∞ or 0, as an alternative re-
search focus aiming to address the questions: How to design heuris-
tics specifically for unsolvability detection? Can we leverage the lack
of need to preserve distances? Is search with such heuristics compet-
itive with other approaches for proving unsolvability?

These are long-term research challenges, that are relevant due to
(a) the practical importance of unsolvable problems (e. g., directed
model checking [3] and over-subscription planning [4]), and (b) the
practical importance of detecting dead-ends in solvable problems
(e. g., when dealing with limited resources [15, 2]).

We investigate merge-and-shrink abstractions [8] as a case study.
M&S abstractions iteratively merge all state variables (build the
cross-product of these variable’s transition systems), and shrink the
intermediate outcomes to keep abstraction size at bay. A key issue is
how to shrink without losing too much information. We identify safe
abstraction steps, that do not incur any information loss regarding
solvability (but that do lose information regarding goal distance so
would not be safe for traditional heuristics). Leveraging prior work
on K-catching bisimulation [13], where the behavior of a subset of
actions K is reflected exactly in the M&S abstraction, we identify

1 Saarland University, Saarbrücken, Germany,
{hoffmann,kissmann,torralba}@cs.uni-saarland.de

sets K rendering this kind of abstraction safe. Approximating such
K yields practical heuristics. We collect a suite of unsolvable bench-
marks, and run comprehensive experiments. Competing approaches,
including BDDs, are outperformed drastically; the advantage over
previous M&S methods is less pronounced but still significant.

Our work is partly inspired by recent work [1] on unsolvable plan-
ning problems, testing whether projections onto a subset of variables
(a special case of M&S) are unsolvable, where the tested variable
subsets are systematically enumerated (starting with small ones). In
contrast, we stick to the standard M&S process incorporating all vari-
ables, and investigate in-depth the abstraction steps (shrinking) dur-
ing that process. Two prior works [6, 5] identify conditions under
which a state variable can be projected away without affecting solv-
ability. Helmert’s condition [6] is a special case of our techniques;
Haslum’s generalized condition [5] is not. We get back to this later.

2 Background
A planning task is a 4-tuple Π = (V,A, I,G). V is a finite set of
variables v, each associated with a finite domain Dv . A complete as-
signment to V is a state; we identify (partial) assignments to V with
sets of facts (variable-value pairs). I is the initial state, and the goal

G is a partial assignment. A is a finite set of actions. Each action
a ∈ A is a pair (prea, effa) of partial assignments called precondi-

tion and effect. Each action is associated with a real-valued cost.
The semantics of planning tasks are defined via their state spaces,

which are (labeled) transition systems. Such a system is a 5-tuple
Θ = (S,L, T, I, SG) where S is a finite set of states, L is a finite set
of labels, T ⊆ S×L×S is a set of transitions, I ∈ S is the initial

state, and SG ⊆ S is the set of goal states. We will usually write
transitions (s, l, s′) ∈ T as s l−→ s′, or s → s′ if the label does not
matter. The state space of a planning task Π is the transition system
Θ where: S is the set of all states; L = A; s ∈ SG if G ⊆ s; and
s

a−→ s′ if a is applicable to s and s′ is the resulting state. Here, a
is applicable to s if prea ⊆ s, and s′ is the resulting state if s′(v) =
effa(v) where effa(v) is defined, and s′(v) = s(v) elsewhere. Π is
solvable if Θ has a path from I to a state in SG.

For a state s, remaining cost h∗(s) is defined as the cost of a
cheapest path from s to a state in SG, or ∞ if there is no such path. A
heuristic is a function h : S → R+

0 ∪{∞}. A heuristic is perfect if it
coincides with h∗. Herein, we consider heuristics based on abstrac-

tions. An abstraction is a function α mapping S to a set of abstract

states Sα. The abstract state space Θα is (Sα, L, Tα, Iα, Sα
G),

where α(s)
l−→ α(s′) in Tα iff s

l−→ s′ in T , Iα = α(I), and
Sα
G = {α(s) | s ∈ SG}. The abstraction heuristic hα maps each s

to the remaining cost of α(s) in Θα. We will sometimes consider the
induced equivalence relation ∼α, where s ∼α t if α(s) = α(t). If
s ∼α t, we also say that s and t are aggregated by α.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-441

441

Merge-and-shrink [8], short M&S, is a practical method to con-
struct abstractions. The approach builds the abstraction in an in-
cremental fashion, iterating between merging and shrinking steps.
Namely, M&S abstractions are constructed using the following rules:

(i) For v ∈ V , π{v} is an M&S abstraction over {v}.
(ii) If β is an M&S abstraction over W and γ is a function on Sβ ,

then γ ◦ β is an M&S abstraction over W .
(iii) If α1 and α2 are M&S abstractions over disjoint sets W1 and

W2, then α1 ⊗ α2 is an M&S abstraction over W1 ∪W2.
Rule (i) allows to start from atomic projections. These are simple
abstractions π{v} (also written πv) mapping each state s ∈ S to the
value of one selected variable v. Rule (ii), the shrinking step, allows
to iteratively aggregate an arbitrary number of state pairs, in abstrac-
tion β. Formally, this simply means to apply an additional abstraction
γ to the image of β. In rule (iii), the merging step, the merged ab-
straction α1 ⊗ α2 is defined by (α1 ⊗ α2)(s) := (α1(s), α2(s)).

Throughout the construction of α, for every intermediate abstrac-
tion β, M&S also maintains the corresponding abstract state space
Θβ . The details are not relevant to our work here.

To implement M&S in practice, we need a merging strategy de-
ciding which abstractions to merge in (iii), and a shrinking strategy

deciding which (and how many) states to aggregate in (ii). Like all
prior work on M&S in planning, we will use linear and full merging

strategies only, where the variables V are ordered v1, . . . , vn (hence
“linear”) and we iteratively merge v1 with v2, merge their prod-
uct with v3, and so on until all variables have been merged (hence
“full”). Prior to every merging step, a shrinking step is applied to
both, the current abstraction over {v1, . . . , vi} and the atomic pro-
jection onto the variable vi+1 to be merged-in next.

Following recent work [13], each shrinking step is based on the
notion of K-catching bisimulation. If Θ = (S,L, T, I, SG) is a
transition system and K ⊆ L is a subset of its labels, then an equiv-
alence relation ∼ on S is a K-catching bisimulation for Θ if s ∼ t
implies that: (a) either s, t ∈ SG or s, t
∈ SG; (b) for every l ∈ K

we have that {[s′] | s
l−→ s′} = {[t′] | t

l−→ t′}, where [s] for
a state s denotes the equivalence class of s. An abstraction α is a
K-catching bisimulation if the induced equivalence relation ∼α is.
Intuitively, a K-catching bisimulation (a) preserves goal states, and
(b) preserves the behavior of transitions labeled with K. If K = L
then α is called a bisimulation, and preserves all transition behav-
ior exactly. Note that a bisimulation does not actually have to make
any aggregations: the identity function is a bisimulation. Whenever
we say “K-catching bisimulation”, we mean the coarsest one, ag-
gregating maximally. Given a transition system Θ as input, coarsest
K-catching bisimulations can be computed efficiently.

In difference to previous works, we will consider composed

shrinking strategies, that (within every shrinking step) sequentially
apply individual (component) shrinking steps. We will give each in-
dividual strategy a name “X”; “X+Y” is the sequential application
of X and Y in that order. The strategy names will be postfixed with
“-shrinking”. The K-shrinking strategy chooses a subset K ⊆ A of
actions up front in a pre-process, and whenever rule (ii) is applied,
defines γ as the coarsest K-catching bisimulation for Θβ . When us-
ing full bisimulation (K = A), the strategy is called A-shrinking.

It is easy to see that K-catching bisimulation is invariant over
M&S steps (i–iii). So, with K-shrinking, the outcome of M&S is
a K-catching bisimulation of the concrete state space Θ, and par-
ticular choices of K allow to guarantee qualities of hα. The simple
limiting case is A-shrinking where hα is perfect. More interesting
choices of K were first explored by Katz et al. [13]; we will adapt
their observations to the unsolvability setup considered herein.

We run M&S with label reduction [8]: The transition labels
a = (prea, effa) in the current abstraction over the already merged-in
variables W = {v1, . . . , vi} are projected onto V \W . This yields
the same heuristic, but it saves memory as previously distinct labels
may collapse, and it can reduce bisimulation size exponentially.

For any W ⊆ V , we use ΘW as a short-hand for the abstract
state space ΘπW of the projection onto W . Any M&S abstraction
α over W can be cast as an abstraction of ΘW . We will use s, t to
denote concrete states, sα, tα to denote abstract states, and sW , tW

to denote projected states. Any abstract state sα is identified with a
set of states, namely the equivalence class of states mapped to sα.
We will view abstract states as both, sets of concrete states s from
Θ, and sets of projected states sW from ΘW . We sometimes denote
assignments

⋃
v∈U{v = d} to a subset of variables U simply by dU .

3 Unsolvability Heuristics
The definition of “unsolvability heuristic” is trivial. But as this is
the basic concept distinguishing our setup from traditional heuristic
search, and as that concept has (as best we know) not been introduced
before, it seems appropriate to give it a name and make it explicit:

Definition 1 An unsolvability heuristic is a function u : S →
{0,∞} such that u(s) = ∞ only if h∗(s) = ∞.

Our function u now merely indicates whether a state is recognized
to be unsolvable (u(s) = ∞), or not (u(s) = 0).

Definition 2 Let h be a heuristic that returns h(s) = ∞ only if
h∗(s) = ∞. Then the induced unsolvability heuristic h|u is defined
by h|u(s) = ∞ if h(s) = ∞, and h|u(s) = 0 otherwise.

The perfect unsolvability heuristic u∗ is defined by u∗ = h∗|u,
and an unsolvability heuristic u is perfect if u = u∗.

Note the close connection to “disregarding action costs”: Denoting
by Π[0] the planning task with all action costs reduced to 0, h|u is
perfect iff h is perfect in Π[0]. Moreover, for the abstraction heuris-
tics we consider here, and more generally for any heuristic h whose
R+

0 (i. e., non-∞) return values result from summing up action costs
in an approximate solution, we have h|u = h(Π[0]).

4 Unsolvability-Perfect M&S Abstractions
Abstractions induce unsolvability heuristics in the obvious manner.
Focusing on M&S, in this and the next section we are concerned
with conditions under which such use of abstractions is loss-free,
i. e., where the resulting unsolvability heuristics are perfect:

Definition 3 Let α be an abstraction. Then uα is defined by uα =
hα|u. We say that α is unsolvability perfect if, for every pair s, t of
states in Θ where s ∼α t, u∗(s) = ∞ iff u∗(t) = ∞.

It is easy to see that uα is perfect iff α is unsolvability perfect. We
derive “safety” conditions on M&S, guaranteeing the latter property:

Definition 4 Let W ⊆ V and let sW , tW be projected states in
ΘW . Then sW and tW are safe to aggregate if, for every assignment
dV \W to V \W , u∗(sW ∪ dV \W) = ∞ iff u∗(tW ∪ dV \W) = ∞.

Let α be an abstraction of ΘW . An abstract state sα is safe if, for
every pair of projected states sW , tW ∈ sα, sW and tW are safe to
aggregate; α is safe if all its abstract states are.

For W = V , being safe is equivalent to being unsolvability per-
fect. But not for W � V : The aggregated states s ∼α t in Θ are,
then, all s = sW ∪ d

V \W
s , t = tW ∪ d

V \W
t where sW ∼α tW and

d
V \W
s , d

V \W
t are arbitrary extensions to the remaining variables. By

contrast, safety only considers identical extensions dV \W
s = d

V \W
t .

This is appropriate provided that α will be merged with any safe ab-
straction of the remaining variables:

J. Hoffmann et al. / “Distance”? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability442

Lemma 1 If α1 is a safe abstraction of ΘW1 , and α2 is a safe ab-
straction of ΘW2 where W1 ∩ W2 = ∅, then α1 ⊗ α2 is a safe
abstraction of ΘW1∪W2 .
Proof: Let sW1∪W2 and tW1∪W2 be any pair of projected states in
ΘW1∪W2 so that sW1∪W2 ∼α1⊗α2 tW1∪W2 , and let dV \(W1∪W2) be
any extension to the remaining variables. Denote by sW1 , tW1 , sW2 ,
and tW2 the respective projections onto W1 and W2. By prerequisite,
(1) u∗(sW1 ∪ d′V \W1) = ∞ iff u∗(tW1 ∪ d′V \W1) = ∞ for all
extensions d′V \W1 to V \W1, and (2) u∗(sW2 ∪ d′V \W2) = ∞ iff
u∗(tW2∪d′V \W2) = ∞ for all extensions d′V \W2 to V \W2. Putting
(1) and (2) together shows the claim: u∗(sW1∪W2 ∪dV \(W1∪W2)) =

∞ ⇔ u∗(sW1 ∪ sW2 ∪ dV \(W1∪W2)) = ∞ (1)⇔ u∗(tW1 ∪ sW2 ∪
dV \(W1∪W2)) = ∞ (2)⇔ u∗(tW1 ∪ tW2 ∪ dV \(W1∪W2)) = ∞ ⇔
u∗(tW1∪W2 ∪ dV \(W1∪W2)) = ∞. �

In other words: safety is invariant over merging steps. Therefore,
as atomic projections are trivially safe, if we start from a safe abstrac-
tion and merge in the remaining variables, then the final abstraction
over all variables W = V is safe and hence unsolvability perfect.
Unless, of course, we apply any more shrinking steps in between.

As M&S without shrinking steps is void, our question now boils
down to examining these steps. A safe shrinking strategy is one
that, given a safe abstraction β as input, returns a safe abstraction γ ◦
β as its output. Obviously, if all components of a composed shrinking
strategy are safe, then the composed strategy is also safe.
Corollary 1 If the shrinking strategy is safe, then the final abstrac-
tion α of Θ is safe, and thus uα is perfect.

5 Safe Shrinking Strategies
We introduce safe shrinking strategies based on label simplifications,
and safe selections of K for K-catching bisimulation.

5.1 Label Inheritance and Bisimulation
Consider any M&S abstraction over W ⊆ V . Consider transi-
tions sW

a−→ s′W in ΘW where every variable occurring in a =
(prea, effa) is contained in W . Clearly, such transitions are persis-

tent in the sense that, for every dV \W , sW ∪dV \W → s′W ∪dV \W

is a transition in Θ. We refer to these transitions as own-label tran-

sitions, denoted sW
own−−−→ s′W .2 Our core observation is that we can

exploit them to safely relax bisimulation:
Definition 5 Given an M&S abstraction β of ΘW , ModLabelA-
shrinking computes an abstraction γ of Θβ as follows:
(1) Label inheritance. Obtain transition system Θ1 from Θβ as fol-

lows: Set Θ1 := Θβ; whenever sα own−−−→ tα, sα in Θ1 inherits
all outgoing transitions of tα, and if tα is an abstract goal state
then sα is made an abstract goal state in Θ1 as well.

(2) Goal-label pruning. Obtain transition system Θ2 from Θ1 as
follows: Set Θ2 := Θ1; denoting the variables on which the
goal G is defined as VG, if VG ⊆ W then remove all outgoing
transitions from abstract goal states in Θ2.

(3) Obtain γ as a bisimulation of Θ2, and interpret γ as an abstrac-
tion of Θβ .

Explaining this definition bottom-up, step (3) works because all
of Θβ , Θ1, and Θ2 share the same set of abstract states.3 Intuitively,

2 As configured here, either W = {v1, . . . , vi} for the current abstraction,
or W = {vi+1} for the atomic projection onto the variable vi+1 to be
merged-in next. In the former (but not in the latter) case, own-label transi-
tions are exactly those whose labels are empty after label reduction.

3 We remark that the intermediate transition systems Θ1 and Θ2, as opposed
to the final abstraction γ ◦ β, are not abstractions of Θ in our sense, as they
have additional transitions and goal states with respect to Θ.

step (2) is justified because β’s abstract goal states will always re-
main goal states, so there is no point in distinguishing the ways by
which we can leave them (note that this applies to any M&S abstrac-
tion, not just the ones we consider here). Intuitively, step (1) is justi-
fied because, the transition from sα to tα being persistent, the corre-
sponding concrete states will have a transition in the state space, so if
we only need to preserve solvability then we can just as well pretend
that tα’s outgoing transitions/goal-state-flag are attached directly to
sα. Note that the latter does not work if we need to preserve path
cost, as we are discounting the cost of getting from sα to tα.
Theorem 1 ModLabelA-shrinking is safe.
Proof Sketch: We need to prove that, for all abstract states sβ and
tβ of Θβ aggregated by bisimulation relative to Θ2, sβ ∪ tβ is safe.
Our proof is by assuming any sβ , tβ , and extension dV \W where
s = sW ∪ dV \W is solvable, and proving by induction over the
length n of that solution that t = tW ∪ dV \W is solvable as well.

In the base case, n = 0, s is a goal state. Hence tβ must be an
abstract goal state in Θ2, which (as we’re using label inheritance)
implies that tβ has a path �p in Θβ of own-label transitions to an
abstract state xβ that contains a goal state x0. Because dV \W must
agree with the goal, we can assume WLOG that x0 = xW

0 ∪ dV \W .
Considering the last abstract transition on �p, yβ → xβ , we know that
there exist yW0 ∈ yβ and xW

1 ∈ xβ so that yW0 has an own-label
transition to xW

1 . Obtaining x1 as x1 := xW
1 ∪ dV \W , as xβ is safe

and x0 is solvable, x1 is solvable. Obtaining y0 as y0 := yW
0 ∪dV \W ,

as the transition yW
0 → xW

1 is persistent, there is a transition from
y0 to x1, so y0 is solvable. Iterating this argument backwards over �p,
we obtain a solvable state t0 = tW0 ∪ dV \W in tβ . With safety of tβ ,
we get that tW ∪ dV \W is solvable as well, as we needed to prove.

In the inductive case, say the length-n solution to s starts with
action a, yielding resulting state s′ whose solution length is n − 1.
By definition of abstractions, sβ has an outgoing transition labeled
with a in Θβ , say to abstract state s′β . We distinguish case (1) where
the transition sβ

a−→ s′β was not removed by goal-label pruning so is
still present in Θ2; and the opposite case (2). In case (2), similarly as
in the base case, we know that tβ is an abstract goal state in Θ2; we
know that dV \W agrees with the goal simply because V \W cannot
contain any goal variables; the rest of the proof is the same. In case

(1), with Θ2-bisimilarity of sβ and tβ , Θ2 has a transition tβ
a′−→ t′β ,

where t′β is Θ2-bisimilar with s′β , and a′ is an action that (per label
reduction, if it is applied to Θβ) agrees with a on the variables V \W .
This implies that tβ has a path �p in Θβ of own-label transitions to an
abstract state xβ that contains a state x0 to which a′ is applicable,
yielding the resulting state t′ where t′ ∈ t′β . Because a and a′ agree
on V \W , we can assume WLOG that x0 = xW

0 ∪dV \W . Applying
the induction hypothesis to the states s′ = s′W ∪ d′V \W and t′ =
t′W ∪ d′V \W , we get that t′ is solvable and hence x0 is solvable.
From there, the argument is the same as in the base case. �

Our fully detailed proof of Theorem 1 is available in a TR [10].
As all aggregations made by ModLabelA-shrinking would be made
by A-shrinking (i. e., using just bisimulation) as well, we have:
Corollary 2 A-shrinking is safe.

Recall that, with Corollary 1, any (combination of) safe shrinking
strategies yields perfect uα.

5.2 Own-Label Shrinking
The problem with ModLabelA-shrinking, as quickly became appar-
ent in our experiments, is that label inheritance consumes way too
much runtime (and if one explicitly copies the labels, blows up mem-
ory as well). We hence defined the following sound approximation,
which turns out to be very effective in practice:

J. Hoffmann et al. / “Distance”? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability 443

Definition 6 Given an M&S abstraction β of ΘW , OwnPath-
shrinking computes an abstraction γ of Θβ as follows:
(1) Own-label cycles. Compute the strongly connected components

C of Θβ when considering only own-label transitions; aggregate
each C into a single abstract state.

(2) Own-label goal paths. Denoting the variables on which the goal
G is defined as VG, if VG
⊆ W then do nothing. Otherwise,
whenever tα is an abstract goal state: if sα is an abstract goal
state as well then aggregate sα and tα into a single abstract
state; else, if sα has an own-label path to tα, then aggregate sα,
tα, and all states on the path into a single abstract state.

Intuitively, (1) is sound as, with persistence of own-label paths, the
strongly connected components will still be strongly connected at the
end of the M&S process so are equivalent with respect to solvability.
(2) is sound because, with VG ⊆ W , abstract goal states remain goal
states, so there is no need to distinguish them and no need to distin-
guish states that have a persistent path to them. For formal proof, our
previous result on ModLabelA-shrinking is sufficient:

Lemma 2 If a pair of abstract states is aggregated by OwnPath-
shrinking, then it would be aggregated by ModLabelA-shrinking.

Proof: For rule (1), as the aggregated states are strongly connected
with own-label transitions, they would inherit each other’s outgoing
transitions; if any of them is a goal state, all would be marked as goal
states. Hence they would become bisimilar, and be aggregated.

For rule (2), say sα and tα are aggregated. Then tα is an abstract
goal state, and as VG ⊆ W , its outgoing transitions would be re-
moved by goal-label pruning. If sα is not already a goal, as there is
an own-label path from sα to tα and tα is a goal, label inheritance
would mark sα as a goal. So all outgoing transitions would be re-
moved from sα as well, making the two states bisimilar. �

Together with Theorem 1, this lemma immediately implies:

Theorem 2 OwnPath-shrinking is safe.

Once all variables are merged in (so all labels are own-labels), rule
(2) will aggregate the entire solvable part of the state space into a sin-
gle abstract state. Also, if a variable v has no incoming edges in the
causal graph and a strongly connected DTG, then, when v is merged
in, all its values are strongly connected by own-labels, so rule (1) will
aggregate all values of v into a single abstract state. In our implemen-
tation, such variables v are ignored in the M&S construction.4

ModLabelA-shrinking can be exponentially stronger than
OwnPath+A-shrinking, which can be exponentially stronger than us-
ing just bisimulation: (the proof is in the TR)

Theorem 3 There exist families of planning tasks {Πn} and merg-
ing strategies so that M&S abstractions are exponentially smaller
with ModLabelA-shrinking than with OwnPath+A-shrinking. The
same is true for OwnPath+A-shrinking and A-shrinking.

5.3 K-Catching Bisimulation
Let us finally consider K
= A. This is important as catching less ac-
tions can substantially reduce bisimulation size, and as approximate
methods choosing the actions to catch will be our primary method
for generating approximate unsolvability heuristics.

4 Such v are exactly those that satisfy Helmert’s [6] “safe abstraction” con-
dition, so in that sense our techniques subsume that condition. The same
is not true of Haslum’s [5] generalized condition (his Theorem 1), which
exploits values of v that are neither “externally required” nor “externally
caused”. It remains an open question whether Haslum’s condition can be
adapted to yield additional safe shrinking in M&S.

Definition 7 A subset K of actions is safe, or path preserving, if
removing all transitions not labeled by an action from K does not
render any solvable state in Θ unsolvable. K is shortest-path pre-
serving if, for every solvable s in Θ, K contains an action a starting
a shortest solution path from s.

Being shortest-path preserving obviously is a sufficient condition
for being path preserving, and is sometimes useful as an approxima-
tion because actions can be selected locally on a per-state basis.5

Theorem 4 If K is safe, then K-shrinking is safe.
Proof: Say β is any safe abstraction. Denote by ΘK the concrete
state space where all non-K transitions are removed. As solvability
in ΘK is the same as in Θ, β viewed as an abstraction on ΘK is safe.
By definition, any K-catching bisimulation γ of Θβ is a bisimulation
of Θβ

K . Hence, by Corollary 2, γ is safe as an abstraction of ΘK .
Now, viewing γ as an abstraction on Θ, since solvability in ΘK is
the same as in Θ, γ is safe as we needed to prove. �

6 Practical M&S Strategies

Finding K guaranteed to be safe is not feasible (we would need to
construct the concrete state space Θ first). Katz et al. [13] introduced
two approximation strategies. We experimented with these as well
as a variety of modified ones adapted to our context. The only one
that turned out to be relevant empirically (i. e., for proving unsolv-
ability effectively) is Intermediate Abstraction (IntAbs): Run A-
shrinking until abstraction size has reached a parameter M . The la-
bels are collected on that abstraction, and M&S continues with K-
shrinking. M controls a trade-off as actions affecting only yet-to-
be-merged variables form self-loops so will not be collected. This
strategy was proposed by Katz et al. already. We proceed in the same
way, but where Katz et al. collect all labels starting optimal paths,
we instead collect a path preserving label set K. Trying to keep K
small (finding minimum-size K is NP-hard in the size of the abstract
state space), we start from K = ∅ and iteratively include the action
rendering the largest number of yet non-covered states solvable.

Like all previous works on M&S, we also use a parameter N
which imposes an upper bound on abstraction size throughout M&S.

Merging strategies have so far been largely neglected in the plan-
ning literature: a grand total of 2 strategies has been tried (although
it was observed that they can be important empirically). We con-
ducted a comprehensive study in the context of proving unsolvabil-
ity. There are two plausible main objectives for the merging strategy
in that context: (a) find an unsolvable variable subset quickly; and
(b) make transition labels empty (and thus own-labels in the cur-
rent abstraction) quickly, to yield smaller bisimulations and more
OwnPath-shrinking. We approximate these by lexicographic combi-
nations of simple preference rules:
Goal: Prefer goal variables over non-goal variables. This addresses
(a). It was used by Helmert et al. [8] to obtain larger goal distances
within the abstraction.
CG, CGRoot, and CGLeaf: Prefer variables with an outgoing causal
graph arc to an already selected variable. For CGRoot and CGLeaf,
if there are several such variables v, v′, prefer v over v′ if, in the
strongly connected components (SCC) of the causal graph, that of
v is ordered before that of v′ (CGRoot), respectively behind that of
v′ (CGLeaf). This also addresses (a): unsolvability must involve con-
nected variables, and might involve “more influential” variables close

5 Katz et al. define “globally relevant actions” K as the set of all actions start-
ing a cheapest path for any solvable s. They prove that, with such K, K-
shrinking yields perfect hα. They overlook that, for that purpose, it would
actually be enough to preserve at least one optimal solution path for each s.

J. Hoffmann et al. / “Distance”? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability444

to the causal graph roots (CGRoot), respectively “more influenced”
variables close to the causal graph leaves (CGLeaf). Helmert et al.
used just CG, for the same reason as Goal.
Empty: Prefer merging variables which maximize the number of
empty-label transitions leading to abstract goal states. If there are
several such variables v, prefer v maximizing the number of empty-
label transitions, and if there are several such variables v, prefer v
maximizing the number of transitions whose labels contain v. This
addresses (b). It was not used in earlier works on M&S.
LevelRoot and LevelLeaf: Derived from FD’s full linear order [7].
LevelRoot prefers variables “closest to be causal graph roots”, and
LevelLeaf prefers variables “closest to be causal graph leaves”.

Variables are added one-by-one, always selecting a most preferred
one next. Ties remaining after all criteria were applied are broken ar-
bitrarily. For example, CGRoot-Goal-Empty, after selecting a goal
variable, selects all its causal graph predecessors, preferring ones
close to the root and yielding many empty labels. We use at most
one of CG, CGRoot, and CGLeaf. We use at most one of Level-
Root and LevelLeaf, and they are included only at the end as they
allow no more tie breaking. Finally, we do not use Goal at the start
as that yields very bad performance (selecting only goal variables
neither results in unsolvable sub-problems nor in abstraction size re-
ductions, often breaking our memory limit before any other variable
is selected). This leaves a total of 81 possible merging strategies.

7 Experiments

There is no standard set of unsolvable benchmarks. Bäckström et al.
[1] have made a start, but their set consists of only 6 instances. We
have vastly extended this, hoping to establish, or at least seed, a stan-
dard.6 The benchmarks will be made available for download, and a
full description will be in the TR. A brief summary follows. Mystery

IPC’98: 9 unsolvable instances from the standard instance set (those
not detected by FD’s pre-processor). UnsNoMystery, UnsRovers,
UnsTPP: As used by Nakhost et al. [15] (their “large” suites for No-
Mystery and Rovers) with instances scaled systematically on “con-
strainedness” C, but using C ∈ {0.5, 0.6, 0.7, 0.8, 0.9} where there
are insufficient resources. UnsTiles: The sliding tiles puzzle with
initial states from the unsolvable part of the state space; we used
10 8-Puzzle instances, and 10 (rectangular) “11-Puzzle” instances.
UnsPegsol: As in the net-benefit track of IPC’08, but with the tradi-
tional goal state having only a single peg in the middle of the board
(in this setting, all these instances are unsolvable); we skipped the 6
instances detected by FD’s pre-processor. 3UNSAT (extended from
[1]): random unsolvable 3SAT formulas from the phase transition
region, with n ∈ {5, 10, 15, 20, 25, 30} variables and 5 random in-
stances per n value. Bottleneck (extended from [1]): n agents travel
to individual goal positions on an n × n grid. Once a cell has been
visited, it becomes impassable. The agents all start on the left-hand
side, and there is a wall in the middle with a hole of size m < n. We
used n ∈ {4, 5, 6, 7, 8}, with all m = 1, . . . , n− 1 for each n.

All our techniques are implemented in Fast Downward. All exper-
iments were run on a cluster of Intel E5-2660 machines running at
2.20 GHz, with runtime (memory) limits of 30 minutes (4 GB). Sim-
ilarly as Katz et al. [13], as a hypothetical experiment we collected
perfect label sets K, in instances small enough for that purpose. We
cannot describe this for lack of space. The overall conclusion is that

6 Bäckström et al. considered two domains, “Grid” and “Trucks”, that we
do not adopt: Unsolvability is trivially detected by h2, and the domains
appear non-natural in using a “key cycle” irrelevant to unsolvability (Grid)
respectively consisting of two completely separate sub-problems (Trucks).

our label sets typically are smaller than Katz et al.’s, yielding mostly
moderate, and sometimes strong, abstraction size reductions.

Consider Table 1. We compare against the main competing ap-
proaches for proving unsolvability, and we conduct comprehensive
experiments with M&S strategies. “Blind” (which returns 0 on goal
states and 1 elsewhere) respectively hmax dominate, in terms of
dead-end detection power vs. runtime overhead, many state-of-the-
art heuristics (like hFF and LM-cut [9]). “H2” runs h2 just once, on
the initial state; we use the implementation of Torralba and Alcázar’s
recent work on constrained BDDs [17], where h2 forms part of an
extended FD pre-processor. “BDD H2” are these constrained BDDs.
“BDD std” is that implementation with all h2 parts switched off
(thus representing a standard BDD state space exhaustion). “[1]” is
Bäckström et al.’s enumeration of projections (their implementation
in C#). We did not run hm (for m > 2) and PDBs, leaving this to fu-
ture work, because they are dominated by “[1]” in Bäckström et al.’s
paper (plus, the hm implementation in FD is extremely ineffective,
and PDBs are not geared to proving unsolvability).

Regarding M&S strategies, “BestOf [13]” is, for each of the two
underlying merging strategies, the best-performing M&S configu-
ration (in terms of total coverage on our benchmarks) of the 12
ones shown in Table 2 of [13]; the same configuration N=100k
M=100k is best for both merging strategies.7 “A” is for A-shrinking,
“Own+A” for OwnPath+A-shrinking, “MLA” for ModLabelA-
shrinking, and “Own+K” for OwnPath+K-shrinking. We run a strat-
egy geared towards selecting an accurate label set and not do-
ing much additional shrinking (N=1million M=500k), and a strat-
egy geared towards greedy label selection and shrinking (N=100k
M=100k, like in BestOf [13]). In the “hmax” variants of Own+K,
the heuristic we use is max(hmax, uα). In the “K[13]” variants, we
use Katz et al.’s “globally relevant labels” (the best label selection
method in [13]) instead of our path preserving label set. All heuristic
functions (except h2) are run in greedy best-first search.

Let us first discuss merging strategies (rightmost part of Ta-
ble 1). For this part of the evaluation, we fixed Own+A as a canon-
ical well-performing shrinking strategy. It turns out that, of the 81
possible merging strategies, 3 are enough to represent the high-
est coverage achieved in every domain. CGRoot-Goal-LevelLeaf
(Mrg1) has maximal total coverage, as well as maximal coverage in
all domains except Bottleneck and UnsTPP. Empty-CGRoot-Goal-
LevelLeaf (Mrg2) has maximal coverage among a total of 13 merg-
ing strategies that achieve coverage 11 and 17 in Bottleneck and
UnsTPP, respectively. CGLeaf-Goal (Mrg3) is the only strategy with
coverage > 17 in UnsTPP. The reasons for this behavior are fairly
idiosyncratic per domain. CGRoot-Goal-LevelLeaf seems to make a
good compromise between “influential” and “influenced” variables
(note here how these two conflicting directions are traded against
each other via a preference for “more influential” variables in CG-
Root and a preference for “more influenced” variables in LevelLeaf).

For the evaluation of shrinking strategies (middle part of Table 1),
we fixed the best merging strategy (Mrg1). The only exceptions are
BestOf [13] and A, where we also ran the best previous merging
strategy (“OldMrg”), for comparison.

The competing approaches (leftmost part of Table 1) are clearly
outperformed by M&S. Coverage in most cases is dominated either
by Own+A or by Own+K with N=100k M=100k. The most notable
exception is hmax, which is best in Bottleneck. The “H2” column
for Own+A employs Torralba and Alcázar’s [17] extended FD pre-
processor. This shows that Own+A benefits as well, though not as
7 In [13], that configuration is listed as “N=∞M=100k”, but there was a bug

in the implementation causing it to behave exactly like N=100k M=100k.

J. Hoffmann et al. / “Distance”? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability 445

BestOf [13] Own+K Merging Strategies
BDD N100k M100k A Own+A N1m M500k N100k M100k Own+A

domain (# instances) Blind hmax [1] H2 std H2 OldMrg Mrg1 OldMrg Mrg1 std H2 MLA std hmax std K[13] hmaxK[13] std hmax Mrg1 Mrg2 Mrg3
Bottleneck (25) 10 21 10 10 10 15 10 10 5 5 5 10 5 9 15 4 4 10 21 5 11 7
3UNSAT (30) 15 15 0 0 15 15 15 15 15 15 15 15 14 14 14 12 15 15 15 15 12 15
Mystery (9) 2 2 6 9 3 9 2 6 1 6 6 9 5 6 6 6 6 6 6 6 1 1
UnsNoMystery (25) 0 0 8 0 5 14 23 23 25 25 25 25 15 25 25 25 25 25 25 25 25 23
UnsPegsol (24) 24 24 0 0 24 24 24 24 24 24 24 24 0 24 24 24 24 24 24 24 0 0
UnsRovers (25) 0 1 3 3 6 10 0 9 0 17 17 17 7 11 11 11 11 9 9 17 17 0
UnsTiles (20) 10 10 10 0 10 10 10 10 0 0 10 10 0 10 10 10 10 10 10 10 10 10
UnsTPP (25) 5 5 2 1 0 1 14 11 17 9 9 9 3 11 8 10 8 11 9 9 17 19
Total (183) 66 78 39 23 73 98 98 108 87 101 111 119 49 110 113 102 103 110 119 111 93 75

Table 1. Coverage results on unsolvable benchmarks, i. e., number of instances proved unsolvable within the time/memory bounds. “Mrg1” stands for
CGRoot-Goal-LevelLeaf, “Mrg2” for Empty-CGRoot-Goal-LevelLeaf, “Mrg3” for CGLeaf-Goal, and “OldMrg” for the shrinking strategy of [8].

drastically as BDD H2, because in difference to that approach which
uses h2 mutexes to prune the BDDs, we do not use these mutexes
within the M&S abstraction; doing so is a topic for future work.

The closest competitors are the previous M&S configurations, i. e.,
BestOf [13] and A. From the OldMrg vs. Mrg1 columns, the impor-
tance of our new merging strategies is immediately apparent.

For OwnPath-shrinking, compare “A Mrg1” vs. “Own+A std”
(which differ only in not using vs. using OwnPath-shrinking).
Own+A has a coverage advantage, but only due to the sliding tiles
puzzle. Apart from that domain, OwnPath-shrinking yields signifi-
cant advantages in NoMystery, and moderate advantages in Bottle-
neck. This does not result in increased coverage here, but results in
increased coverage, e. g., in Nakhost et al.’s [15] “small” NoMystery
test suite (which contains less packages etc. but 2 trucks instead of
1): Coverage goes up from 84% to 100% when C is close to 1, i. e.,
when there is just not enough fuel. In our other domains, OwnPath-
shrinking has no effect at all. The picture is similar for approximate
strategies, i. e., for (OwnPath+)K-shrinking. ModLabelA-shrinking
(MLA), on the other hand, yields some reduction in all domains ex-
cept UnsPegSol, but never pays off due to the overhead it incurs.

For the effect of our new label catching strategy, consider the
Own+K part of the table. When using Katz et al.’s “globally rele-
vant labels” (K[13]), leaving everything else the same (in particu-
lar still using OwnPath-shrinking), coverage remains the same for
N=100k M=100k and hence no separate data is shown. But perfor-
mance does become considerably weaker for N=1m M=500k. Katz
et al.’s method, while selecting more labels resulting in more expen-
sive abstractions, does not provide more accurate estimates. This is
drastic in Bottleneck, reducing coverage, and yields larger total run-
times in all other domains (except 3UNSAT with hmax) as well, most
significantly in UnsPegSol with a mean of 200 vs. 76 seconds.

commonly OwnPath+K
solved N1m M500k N100k M100k

domain instances hmax std hmax std hmax

Bottleneck 9 1844.61 1.45 21560.89 2.74 28022.86
3UNSAT 14 3.18 ∞ ∞ ∞ ∞
Mystery 2 5.26 ∞ ∞ ∞ ∞

UnsPegsol 24 1.84 1.01 1.86 1.01 1.86
UnsTiles 10 1.00 1.00 1.00 1.00 1.00
UnsTPP 4 49.99 ∞ ∞ 4450.88 4572.16

Table 2. Number of expansions relative to blind search: Median, over
instances commonly solved by all shown approaches, of the ratio blind/X,

taken to be ∞ where X has 0 expansions.

Table 2 sheds some light on the number of expansions required
by approximate approaches (imperfect unsolvability heuristics). In
difference to hmax, our M&S strategies yield excellent dead-end de-
tectors in half of these domains. In Bottleneck, where hmax is dras-
tically better, combining both heuristics yields an advantage (which
does not pay off in total runtime, due to the abstraction overhead).
The intended advantage of N1m M500k over N100k M100k, yield-
ing a more accurate heuristic, manifests itself in UnsTPP, as well as in
3UNSAT and UnsPegsol (not visible in the median) and UnsRovers
(not contained in this table for lack of commonly solved instances).

8 Conclusion
A crystal clear message from our experiments is that heuristic search,
in particular with M&S heuristics, is a viable method to prove un-
solvability in planning. It clearly beats BDDs, a method traditionally
used for state space exhaustion. The empirical impact of our merging
strategies is good. Our theory results (i. e., OwnPath-shrinking) yield
significant advantages in 2 of 8 domains. It remains an open question
whether that can be improved, e. g., by approximating ModLabelA-
shrinking more tightly or by exploiting Haslum’s [5] notions.

The big open lines of course are the use of unsolvability heuristics
for dead-end detection on solvable tasks (we had limited success with
this so far), and tailoring other heuristics to unsolvability detection.
An example that immediately springs to mind are semi-relaxed plan
heuristics obtained from explicit compilation of a fact conjunction
set C [14], where (a) unsolvability heuristics correspond to hmax so
are easier to extract, and (b) one may tailor the selection of C.

REFERENCES

[1] C. Bäckström, P. Jonsson, and S. Ståhlberg, ‘Fast detection of unsolv-
able planning instances using local consistency’, in SoCS’13.

[2] A. Coles, A. Coles, M. Fox, and D. Long, ‘A hybrid LP-RPG heuristic
for modelling numeric resource flows in planning’, JAIR, 46, 343–412,
(2013).

[3] S. Edelkamp, A. Lluch-Lafuente, and S. Leue, ‘Directed explicit-state
model checking in the validation of communication protocols’, Inter-
national Journal on Software Tools for Technology, (2004).

[4] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos, ‘Deter-
ministic planning in the 5th IPC: PDDL3 and experimental evaluation
of the planners’, AI, 173(5-6), 619–668, (2009).

[5] P. Haslum, ‘Reducing accidental complexity in planning problems’, in
IJCAI’07.

[6] M. Helmert, ‘Fast (diagonally) downward’, in IPC 2006 planner ab-
stracts, (2006).

[7] M. Helmert, ‘The Fast Downward planning system’, JAIR, 26, 191–
246, (2006).

[8] M. Helmert, P. Haslum, and J. Hoffmann, ‘Flexible abstraction heuris-
tics for optimal sequential planning’, in ICAPS’07.

[9] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in ICAPS’09.

[10] J. Hoffmann, P. Kissmann, and A. Torralba, ‘“Distance”? Who Cares?
Tailoring merge-and-shrink heuristics to detect unsolvability’, Techni-
cal report, Saarland University, (2014). Available at http://fai.
cs.uni-saarland.de/hoffmann/papers/tr14.pdf.

[11] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan genera-
tion through heuristic search’, JAIR, 14, 253–302, (2001).

[12] M. Katz and J. Hoffmann, ‘Red-black relaxed plan heuristics reloaded’,
in SoCS’13.

[13] M. Katz, J. Hoffmann, and M. Helmert, ‘How to relax a bisimulation?’,
in ICAPS’12.

[14] E. Keyder, J. Hoffmann, and P. Haslum, ‘Semi-relaxed plan heuristics’,
in ICAPS’12.

[15] H. Nakhost, J. Hoffmann, and M. Müller, ‘Resource-constrained plan-
ning: A monte carlo random walk approach’, in ICAPS’12.

[16] S. Richter and M. Westphal, ‘The LAMA planner: Guiding cost-based
anytime planning with landmarks’, JAIR, 39, 127–177, (2010).

[17] A. Torralba and V. Alcázar, ‘Constrained symbolic search: On mutexes,
BDD minimization and more’, in SoCS’13.

J. Hoffmann et al. / “Distance”? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability446

