
Controlling Two-Stage Voting Rules

Jiong Guo 1 and Yash Raj Shrestha 2

Abstract. We study the computational complexity of control prob-
lems for two-stage voting rules. An example of a two-stage voting
rule is the Black’s procedure. The first stage of the Black’s procedure
selects the Condorcet winner if one exists; otherwise, in the second
stage the Borda winner is selected. The computational complexity of
the manipulation problem of two-stage voting rules has recently been
studied by Narodytska and Walsh [20] and Fitzsimmons et al. [14].
Extending their work, we consider the control problems for simi-
lar scenarios, focusing on constructive control by adding or deleting
votes, denoted as CCAV and CCDV, respectively.

Let X be the voting rule applied in the first stage and Y the one in
the second stage. As for the manipulation problem shown in [20, 14],
we prove that there is basically no connection between the complex-
ity of CCAV and CCDV for X or Y and the complexity of CCAV and
CCDV for the two-stage election X THEN Y : CCAV and CCDV for
X THEN Y could be NP-hard, while both problems are polynomial-
time solvable for X and Y . On the other hand, combining two rules
X and Y , both with NP-hard CCAV and CCDV, could lead to a two-
stage election, where both CCAV and CCDV become polynomial-
time solvable. Hereby, we also achieve some complexity results for
the special case X THEN X . In addition, we show that, compared to
the manipulation problem, the control problems for two-stage elec-
tions admit more diverse behaviors concerning their complexity. For
example, there exist rules X and Y , for each of which CCAV and
CCDV have the same complexity, but CCAV and CCDV behave dif-
ferently for X THEN Y .

1 Introduction

There exist several voting procedures involving two or more stages.
For example, the Black’s procedure is a two-stage voting rule, where
in the first stage the Condorcet winner is elected if one exists; oth-
erwise, it moves to the second stage which elects the Borda winner
[13]. As a real-world example, the French presidential elections use
a two-stage runoff voting system [20]. If there is a majority winner
in the first stage, then this candidate is the overall winner; otherwise,
the second stage applies a runoff vote between the two candidates
with the most votes in the first stage. As mentioned in [20], these
two-stage voting rules can inherit a number of attractive axiomatic
properties from the rules applied in the individual stages. For exam-
ple, the Black’s procedure inherits the Condorcet consistency from
its first stage, and properties like monotonicity, participation and the
Condorcet loser property from its second stage. Inheriting such prop-
erties could be one attractive feature of voting rules involving more
than one stage. On the negative side, some less desirable property of

1 Cluster of Excellence, Universitäte des Saarlandes, Germany, email:
jguo@mmci.uni-saarland.de

2 Cluster of Excellence, Universitäte des Saarlandes, Germany, email:
yashraj@mmci.uni-saarland.de

the rules of the individual stages could also affect the overall two-
stage rules. For example, with single-peaked votes, many types of
control and manipulation problems are polynomial-time solvable for
the Black’s procedure [3]. This polynomial cost is inherited from the
first stage of the rule, which selects the Condorcet winner (which
must exist with single-peaked votes). Such vulnerability to manip-
ulation control is considered as an undesirable property of voting
rules.

Recently, two-stage voting rules have been extensively studied.
Initialized by studies in economics, multi-stage elections and runoffs
have become more and more influential in computational social
choice during the past decade [6, 4]. Particularly, some interesting
work concerning strategic attacks on two-stage voting has been done
by Narodytska and Walsh [20]. They focused on election systems of
the form X THEN Y , i.e., an initial-round election under voting rule
X , after which if there are multiple winners, then only those winners
enter a runoff election under voting rule Y , with the initial votes now
restricted to these winners. Hereby, the manipulation problem asks
whether a given manipulation coalition can vote in such a way to
make a distinguished candidate win (namely, win in the initial round
if there is a unique winner in the initial round, or if not, then be a
winner of the runoff). They mainly studied the issue of how the ma-
nipulation complexity of the rules X and Y affects the manipulation
complexity of X THEN Y . Using the tools from classical complexity
theory where polynomial-time solvability (P for short) is considered
as being easy and NP-hardness (NP-h for short) as being hard, they
showed that every possible combination of these manipulation com-
plexities can be achieved for X , Y and X THEN Y . Fitzsimmons
et al. [14] studied the complexity of the manipulation problem of
the special two-stage voting rules X THEN X . They also considered
the case, where revoting is allowed in the second stage. There are
real-world examples of such same-system runoff elections as well.
For instance, in North Carolina and many districts of California, the
election law specifies that if there are two or more candidates tied in
the initial plurality election, a plurality runoff election is held among
these winners [14].

Elkind and Lipmaa [6] considered manipulating the
multiple-state elections with the same rule applying in all stages.
However, their model, in contrast to the one used by Narodytska
and Walsh [20] and Fitzsimmons et al. [14] and also in this paper,
is based on removing only the least successful candidate after each
round. Recently, Bag et al. [1] and Davies et al. [5] also studied the
manipulation of the multiple-stage model with removing only the
weakest candidates sequentially. Related to the model by Elkind and
Lipmaa [6], Conitzer and Sandholm [4] introduced the “universal
tweaks”, and showed that adding one so-called pairwise CUP-like
“pre-round”, which cuts out about half of the candidates, can
tremendously boost the manipulation complexity for a broad range
of election systems.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-411

411

This paper extends the work of Narodytska and Walsh [20] and
Fitzsimmons et al. [14] to the control problems. We study the com-
plexity of the arguably most important types of control in two-stage
elections, that is, adding and deleting votes. Control by deleting
(adding) votes asks whether in a given election a candidate who is
preferred by the controlling agent can be made to win by deleting
(adding) at most a certain number of votes (at most a certain number
of votes from potential additional votes). These control types model
strategic behaviors that arise in many electoral settings ranging from
human to electronic. These issues are often faced by people seek-
ing to steer an election, such as experts doing campaign manage-
ment, and deciding for example which k people to offer rides to the
polls [11].

The study of computational complexity of control behav-
iors was initialized in 1992 in the seminal paper by Bartholdi,
Tovey and Trick [2], who considered constructive control by
adding/deleting/partitioning candidates/votes under the plurality and
Condorcet rules. A major motivation for the study of control was to
obtain “hardness” results based on classical complexity theory, that
is, results showing that determining optimal strategy for various con-
trol attacks is computationally infeasible. This research direction was
continued by Hemaspaandra, Hemaspaandra, and Rothe [17], who
studied destructive control attacks which prevent a particular can-
didate from being a winner through various control actions. Since
then, many studies have been conducted on electoral control prob-
lems in various settings and for many different rules; we refer the
readers to the survey [9]. Some recent research, not covered in that
survey, considered control problems for the k-approval rules [18],
for the Bucklin’s rule (and for the fallback rule and its extension for
truncated votes) [7, 8], for the maximin rule [10], for the range vot-
ing [19] and for the Schultze’s rule and the ranked pairs rule [21].
Faliszewski et al. [11] have recently studied the computational com-
plexity of weighted electoral control.

We focus on the constructive control problems by
adding/deleting votes for the X THEN Y elections. Here, both
X and Y could be same or different. In a similar fashion as shown
by Narodytska and Walsh [20] and Fitzsimmons et al. [14] for the
manipulation problem, we prove that there is no general relation
between the control complexity of X THEN Y and the control
complexity of the rules X and Y . More precisely, depending on
X and Y , every combination of polynomial-time solvability and
NP-hardness could be possible for the control complexities of X ,
Y and X THEN Y , as shown in Table 1. Note that, for X and
Y being natural concrete voting rules, we witness a “complexity
increment” of control problems by combining X and Y . In other
words, a control problem of X THEN Y with two natural voting
rules X and Y is polynomial-time solvable, only if the same control
problem is polynomial-time solvable for both X and Y . We can
only prove, for two artificially created rules X and Y , that even if
a control problem is NP-hard for both X and Y , one can solve the
same control problem in polynomial time for the overall two-stage
election. As a byproduct, we also achieve some complexity results
for the case X = Y as shown in Table 2, complementing the
work by Fitzsimmons et al. [14] for the manipulation problems
for X THEN X . Hereby, we examine several combinations of
prominent voting rules, for instance, r-Approval THEN r-Approval,
Veto THEN r-Approval, r-Approval THEN CONDORCET, etc. Of
particular interest is the two-stage rule Veto THEN Veto. With all
other examples, we can observe an identical complexity behavior of
control by adding votes and control by deleting votes for X THEN

Y , if both control problems have the same complexity for X as well

as for Y . However, for Veto THEN Veto, although both adding votes
and deleting votes versions are polynomial-time solvable for Veto
voting, control by deleting votes remains polynomial-time solvable
for Veto THEN Veto, but control by adding votes turns out to be
NP-hard. It is open whether there are other rule combinations with
this property. By this example, we believe that the control problems,
compared to the manipulation problems, seemingly offer more
research opportunities with two-stage rules.

Preliminaries We take an election to be a pair E = (C, V), where
C is a set of candidates and V is a set of votes. Each vote represents
the “preference” of the corresponding voter over C. A preference is
a total, linear order that ranks the candidates from the most preferred
one to the least preferred one. For example, if C = {a, b, c} and
some voter likes a best, then b, and then c, then his or her preference
is a � b � c.

A voting rule is a function R that given an election E = (C, V)
returns a subset R(E) ⊆ C of the candidates, that are said to win
the election. Typically, we expect rules to have a unique winner, but
sometimes ties can happen. In the initial round of the X THEN Y
election, we assume a non-unique winner model where all tied-for-
winning candidates are called winners. However, the second round
should provide a unique winner.

In this paper, we consider the following voting rules. An m-
candidate scoring rule is defined through a nonincreasing vector
α = (α1, . . . , αm) of nonnegative integers. A candidate c ∈ C
is given αi points from each voter that ranks c in the ith position
of his preference. The candidate(s) with the maximum score are the
winners. Many election rules can be considered as scoring rules, for
instance, Veto and Approval-based systems. The Veto rule has the
vector (1, 1, . . . , 1, 0). In Veto voting, a candidate c is said to have k
vetoes, if c is the last preferred candidate in k votes. In k-Approval
voting, each voter gives one point to each of his or her k most fa-
vorite candidates. Given an election E = (C, V), a candidate c is a
Condorcet (or weak Condorcet) winner if for every other candidate
d ∈ C \ {c}, it holds that more than half (or at least half) of the
voters prefer c to d. Note that it is possible that there is no (weak)
Condorcet winner in a given election.

We consider a general class of two-stage voting rules. Given vot-
ing rules X and Y , the rule X THEN Y applies the voting rule Y to
the profile constructed by eliminating all but the winning candidates
from the voting rule X . Both X and Y can themselves be two-stage
voting rules. Moreover, X and Y could be same or different voting
rules.

Definition 1. In X THEN Y elections, for the problem of construc-
tive control by adding votes (denoted as CCAV) and the problem of
constructive control by deleting votes (denoted as CCDV), the in-
put contains a tuple (E = (C, V), p, k) where C is a set of can-
didates, V is a collection of registered votes (with preferences over
C), p ∈ C is a preferred candidate, and k a nonnegative integer. In
CCAV we also have an additional collection W of unregistered votes
(with preferences over C). The questions are:

CCAV. Is there a subcollection W ′ of W with at most k votes, such
that p ∈ R(C, V +W ′)?

CCDV. Is there a subcollection V ′ of V with at most k votes, such
that p ∈ R(C, V − V ′)?

In the above definition, “+” and “−” represent adding and delet-
ing a set of votes, respectively.

Most NP-hardness reductions are from the Exact Cover by 3-Sets
(X3C) problem:

J. Guo and Y.R. Shrestha / Controlling Two-Stage Voting Rules412

Table 1. CCAV and CCDV in X THEN Y

X Y X THEN Y Evidence
CCAV CCDV CCAV CCDV CCAV CCDV

P P P P P P Theorem 1
P P P P NP-h NP-h Theorem 2
P P P P NP-h P Theorem 3
P P NP-h NP-h P P Theorem 6
P P NP-h NP-h NP-h NP-h Theorem 4

NP-h NP-h P P P P Theorem 7
NP-h NP-h P P NP-h NP-h Theorem 5
NP-h NP-h NP-h NP-h P P Theorem 11
NP-h NP-h NP-h NP-h NP-h NP-h Theorem 9

Table 2. CCAV and CCDV in X THEN X

X X THEN X Evidence
CCAV CCDV CCAV CCDV

P P P P Corollary 1
P P NP-h NP-h Theorem 2
P P NP-h P Theorem 3

NP-h NP-h NP-h NP-h Theorem 10

Input: A set B = {B1, . . . , B3m}, and a collection S =
{S1, . . . , Sn} of 3-element subsets of B

Question: Does S have an exact cover S′ for B, i.e., a subcollection
S′ of S such that every element of B occurs in exactly one subset
of S′ ?

RESTRICTED EXACT 3-SET COVER (RX3C) is defined similarly to
X3C, with the additional condition that each element in B appears in
exactly three subsets of S. RX3C is NP-complete [16].

Another problem we use is NP-hard VERTEX COVER on 3- regu-
lar graphs [15] which is defined as follows:

Input: A 3-regular graph G′ = (V ′, E′) and an integer t.
Question: Does there exist a subset S ⊆ V ′ of size at most t such

that each edge in E′ has at least one endpoint in S ?

A 3-regular graph is a graph where exactly three edges are inci-
dent to every vertex. We also use NP-hard INDEPENDENT SET in
3-regular graphs [16] which is defined as follows:

Input: A 3-regular graph G = (V ′, E′) and an integer k
Question: Does there exist a subset S ⊆ V ′ of size at least k such

that there is no edge in E′ with both its endpoints in S?

2 X and Y are both in P

In this section, we consider the case that CCAV and CCDV for both
X and Y are polynomial-time solvable.

Theorem 1. CCAV and CCDV for Identity THEN 1-Approval are
polynomial-time solvable.

Proof. In an Identity election, all candidates participating the
election are winners and CCAV and CCDV for 1-Approval are
polynomial-time solvable [2]. Identity THEN 1-Approval is in fact a
1-Approval election as a whole. Hence, CCAV and CCDV for Iden-
tity THEN 1-Approval are polynomial-time solvable.

Corollary 1. CCAV and CCDV for Identity THEN Identity are
polynomial-time solvable.

Theorem 2. CCAV and CCDV for 1-Approval THEN 1-Approval are
NP-hard.

Proof. First we consider CCAV. CCAV for 1-Approval is
polynomial-time solvable [2]. We reduce from VERTEX COVER

problem on 3-regular graphs.
Given a 3-regular graph G = (V ′, E′) where |V ′| = n and

|E′| = m, we create an instance (C, V,W, p, k) for CCAV of
1-Approval THEN 1-Approval in the following way. Our election has
the following candidates: p is the preferred candidate. For each edge
e′i ∈ E′, we have a candidate ei ∈ C, and for each vertex v′i ∈ V ′,
we have a candidate vi ∈ C. Moreover, we have a dummy candidate
d which will lose the initial round. We have the following registered
votes (here “. . .” means that the remaining candidates are ordered
arbitrarily):

• For every i, 1 ≤ i ≤ m, four registered votes: ei � . . .
• Four registered votes: p � · · ·
• Two registered votes: d � p � · · ·
• For every v′i ∈ V such that e′i1, e′i2 and e′i3 are the edges incident
to v′i, we have the following three registered votes:
vi � ei1 � . . ., vi � ei2 � . . . and vi � ei3 �

Now, we create a set W of unregistered votes by adding one vote
vi � . . . for every 1 ≤ i ≤ n. Next, we show that G has a size-k
vertex cover, if and only if p becomes the unique winner after adding
k unregistered votes.

Note that every candidate in C \ ({d} ∪ {vi|v′i ∈ V }) receives
4 approval votes from the registered votes in the initial round, while
d receives 2 approval votes and every candidate in {vi|v′i ∈ V ′}
receives 3 approval votes. If none of the unregistered votes is added,
we have p and the candidates in {ei|e′i ∈ E′} as winners in the
initial round, and d and the candidates in {v′i|vi ∈ V ′} lose the
initial round.

Let S = {v′1, v′2, . . . , v′k} be a size-k vertex cover of G. For 1 ≤
i ≤ k, let the ith unregistered vote vi � . . . be added to the set of
registered votes. We claim that by doing so, p becomes the winner
in the overall election. It is obvious that after adding these votes, the
winner set of the initial round is C \ ({d} ∪ {vi|v′i /∈ S}). Then,
the set of votes should be restricted to these candidates. Since d loses
the initial round, p gains in the second round two points from the
votes d � p � Note that after the addition of votes vi � . . .
for all vi’s with v′i ∈ S, for each candidate in {ei|e′i ∈ E′} there
exists at least one candidate vi ∈ C such that v′i is an endpoint of

J. Guo and Y.R. Shrestha / Controlling Two-Stage Voting Rules 413

e′i and vi is the winner in the initial round. Hence, each candidate in
{ei|ei ∈ E′} gets at most one additional vote in the second round
after the candidates in {vi|v′i /∈ S} are omitted due to losing the
initial round. Hence, in the second round, p gets totally 6 votes, each
candidate in {ei|ei ∈ E′} gets at most 5 votes and each candidate
in {vi|v′i ∈ S} gets 4 votes. Hence, p is the unique winner of the
overall election.

For the reverse direction, recall that in the initial round, d receives
only two votes and there are no unregistered votes which approve d.
Hence, whatever k unregistered votes are added, d will lose the initial
round and be omitted from the second round. By this, p gains in
the second round two approval votes from the registered votes d �
p � Since we can only add k votes, at most k candidates in
{vi|v′i ∈ V ′}will be among the winners of the initial round. Suppose
there is a candidate vj that is omitted from the second round of the
election. Then, the candidates ej1, ej2, and ej3 which correspond
to the edges incident to v′j ∈ V ′ gain one vote each in the second
round from the votes approving vj . Hence, the addition of k votes
from W must assure that each candidate in {ei|e′i ∈ E′} gains at
most one vote by omitting the candidates in {vi|v′i ∈ V ′}, whose
scores remain the same after the addition of these k votes. This means
that for each candidate in {ei|e′i ∈ E′}, at least one candidate vi,
whose corresponding vertex v′i is one endpoint of e′i, must be kept
in the second round. Hence, the added votes must correspond to a
vertex cover of G.

Next, we show the NP-hardness of CCDV. 1-Approval-CCDV is
polynomial-time solvable [2]. We give a reduction from INDEPEN-
DENT SET in 3-regular graphs to CCDV for 1-Approval THEN 1-
Approval.

Given an instance G = (V ′, E′) where |V ′| = n and |E′| = m,
we create an instance (C, V, p, k) of CCDV for 1-Approval THEN

1-Approval in the following way. Let p be the preferred candidate.
For each e′i ∈ E′, we create a candidate ei ∈ C and for each
v′i ∈ V ′, create a candidate vi ∈ C and another dummy candidate x.
Moreover, create another set of candidates D = {d, di,j , dl} for all
1 ≤ i ≤ m, 1 ≤ j ≤ k2 − 1 and 1 ≤ l ≤ k2, which will lose in the
initial round and never participate in the second round. Moreover,
for every i we denote em+i as ei. We have the following votes:

• A set P of k + 4 vote : p � . . .
• A set Q containing three votes for each vi ∈ V such that ei1, ei2
and ei3 are the edges incident to vi :
vi � ei1 � ei1+1 � ei1+2 � . . . � ei1+m � . . . � p,
vi � ei2 � ei2+1 � ei2+2 � . . . � ei2+m � . . . � p and
vi � ei3 � ei3+1 � ei3+2 � . . . � ei3+m � . . . � p.
• A set R containing one vote for each 1 ≤ i ≤ n :
vi � x � e1 � e2 � . . . � em � . . . � p
• A set X containing k + 4 votes of the following form:
x � e1 � e2 � . . . � em � . . . � p
• A set T containing k + 4 votes of the following form for each
ei ∈ E: ei � ei+1 � . . . � ei+m � . . . � p
• A set U containing k votes of the following form for each vi ∈ V :
vi � p � . . .
• A set W of votes of the following form for each 1 ≤ i ≤ k and
1 ≤ j ≤ k2 − 1:
di,j � ei � ei+1 � ei+2 � . . . � ei+m � . . . � p
• A set Y with one vote for each 1 ≤ l ≤ k2:
dl � x � e1 � e2 � . . . � em . . . � p
• A set Z with one vote: d � p � · · ·

With this construction and argument similar to above proof, we
can show that CCDV for 1-approval THEN 1-Approval is NP-hard.

We omit the detailed proof to the full version of the paper.

Theorem 3. CCAV for Veto THEN Veto is NP-hard, while CCDV for
Veto THEN Veto is solvable in polynomial time.

Proof. It is known that CCAV for Veto is polynomial-time solv-
able [2]. Now, we show that its runoff counterpart becomes hard. We
reduce from the NP-complete VERTEX COVER on 3-regular graphs
problem [15].

We reduce an instance G = (V ′, E′) to an instance
(C, V,W, p, k) of CCAV for Veto THEN Veto in the following way:
Let p be the preferred candidate. For each e′i ∈ E′ create a candi-
date ei and for each v′i ∈ V ′ create a candidate vi. Create a dummy
candidate l which will lose in the initial round and two other dummy
candidates d and x. We have the following set of registered votes:
• For every i, 1 ≤ i ≤ n, three registered votes:
. . . � p � ei1 � vi,
. . . � p � ei2 � vi, and
. . . � p � ei3 � vi,
where e′i1, e′i2 and e′i3 are edges incident to v′i in G.
• Three registered votes: · · · � p
• Three registered votes: · · · � d
• Three registered votes: · · · � x
• Three registered votes for each 1 ≤ i ≤ m : · · · � x � ei
• n− k registered votes: · · · � d � l
• n− 1 registered votes : · · · � p � l
• n− 1 registered votes: · · · � ei � l
• n registered votes for each 1 ≤ i ≤ n: · · · � x � vi � l

We also have a set W with one unregistered vote for each 1 ≤
i ≤ n: · · · � d � vi. With this construction, and arguments similar
to above theorem we can prove that CCAV for Veto THEN Veto is
NP-hard. We omit the detailed proof to the final version of the paper.

Next, we consider CCDV. It is known that CCDV for Veto is
polynomial-time solvable [2]. In contrast to CCAV, we prove that
CCDV for Veto THEN Veto is polynomial-time solvable. Let p be
the preferred candidate in the election. Without loss of generality, as-
sume that if no vote is allowed to delete, p loses the election. Let W
be the set of winners of the initial round if no vote is deleted. Let
ν(c) denote the number of vetoes gained by c. For each candidate
c ∈ W , if ν(p) − ν(c) < k, we can delete k votes which veto p. In
this case p becomes the unique winner in the first round and the other
candidates will be omitted. Otherwise, if ν(p)− ν(w) = k, the only
way to prevent p from losing the initial round is to delete k votes that
veto p. Now, in this case the only way to make p the unique winner in
second round is by deleting the votes which veto p in such a way that
each candidate c ∈ W gains more vetoes than p in the second round
from the remaining votes. The possibility of doing so can clearly be
checked in polynomial time. Finally, if ν(p) − ν(w) > k, p will
always lose the initial round and be omitted in the second round, a
“no”-instance.

3 One of X and Y is NP-hard

We move now to the case that for one of X and Y , we have NP-hard
CCAV and CCDV.

Theorem 4. CCAV and CCDV for Veto THEN 4-Approval are NP-
hard.

Proof. We know that CCAV and CCDV for 4-Approval elections
are NP-hard and for Veto are polynomial-time solvable [18]. The

J. Guo and Y.R. Shrestha / Controlling Two-Stage Voting Rules414

NP-hardness reduction of CCAV and CCDV for 4-Approval can be
modified to show the same result for Veto THEN 4-Approval. In the
construction given in [18], we add a new candidate at the end of
each vote. Now, since only these new candidates have veto score
more than 0, all candidates in the original election are winners in
the initial round. Then, in the second round, we have an instance of
CCAV/CCDV for 4-Approval.

With the same construction, we can prove that CCAV and CCDV
for Veto THEN Y are NP-hard for many other elections Y with NP-
hard CCAV and CCDV such as Copeland, Condorcet, Maximin,
Borda etc.

Theorem 5. CCAV and CCDV for 4-Approval THEN 1-Approval are
NP-hard.

Proof. CCAV for 4-Approval is NP-hard, but for 1-Approval is
polynomial-time solvable [18]. We give a reduction from an X3C-
instance (B,S) to an instance (C, V,W, p, k) of CCAV for 4-
Approval THEN 1-Approval which is similar to the NP-hardness re-
duction for CCAV for 4-Approval in [18].

Without loss of generality, we assume that n ≥ m and
3m mod 4 = 0. Recall that n = |S| and 3m = |B|. We construct
the following instance (C, V,W, p,m) of CCAV for 4-Approval
THEN 1-Approval. We set C = {p} ∪ {bi|Bi ∈ B}. We assign
registered votes to V such that in the initial 4-Approval election,
p receives no approval and bi receives m − 1 approvals for each
1 ≤ i ≤ 3m. This is possible since 3m mod 4 = 0. Thus there
are 3m + 1 candidates and 3m(m−1)

4
registered votes. For each

Si ∈ S with Si = {Bi1, Bi2, Bi3}, we add an unregistered vote
vi := p � bi1 � bi2 � bi3 � . . . to W . We can show that (B,S)
has an exact covering if and only if it is possible to make p the winner
by adding m votes from W .

Next, we consider CCDV. CCDV is NP-hard for 4-approval
[18]. We give a reduction from RX3C to CCDV for 4-Approval
THEN 1-Approval. Let (B,S) be the input instance, where B =
{B1, . . . , B3m} and S = {S1, . . . , Sn} is a collection of 3-element
subsets of B.

Given this instance of RX3C, we construct the following instance
(C, V, p,m) of CCDV for 4-Approval THEN 1-Approval. We set
C = {p, p′, p′′, p′′′′}∪{bi|Bi ∈ B}∪{x1, . . . , xm}. For each 3-set
Si = {Bi1, Bi2, Bi3} we add a vote whose the first three preferred
candidates are {bi1, bi2, bi3} and the fourth preferred candidate is
xi, while the remaining candidates are in arbitrary order. We create
these votes in such a way that no candidate in {b1, . . . , b3m} appears
in two of these votes as the first preferred candidate. Finally, we add
two votes with the first four preferred candidates p � p′ � p′′ � p′′′

while the remaining part of these votes is in the arbitrary order.

Theorem 6. There exist rules X and Y , such that CCAV and CCDV
are polynomial-time solvable for X and X THEN Y but NP-hard
for Y .

Proof. We consider X being 1-Approval* election, where 1-
Approval* is the special case of 1-Approval which breaks ties in
favor of the preferred candidate, and Y being 4-Approval election.
We know that CCAV and CCDV for 1-Approval are polynomial-time
solvable [18] and the same algorithm can be applied for 1-Approval*
as well. CCAV and CCDV for 4-Approval are NP-hard [18]. Ob-
serve that p must be the unique winner in the initial stage and all
the remaining candidates are omitted in the second stage. Hence,
polynomial-time algorithms for CCAV and CCDV for 1-Approval*
can also be applied for the overall election.

Theorem 7. There exist rules X and Y , such that CCAV and CCDV
are NP-hard for X but polynomial-time solvable for Y and X THEN

Y .

Proof. We consider X= α-Condorcet, which is the multi-winner vot-
ing rule that given a set of candidates, each assigned a label elects
both the Condorcet winner and the candidate with the lexicograph-
ically smallest label. The lexicographic order on labels is the rela-
tion defined by i < j, if i comes (strictly) before j in the dictio-
nary. Let Y be the election rule which elects the candidate with the
lexicographically smallest label. Now, since CCAV and CCDV for
Condorcet Voting are NP-hard [2], the same holds for α-Condorcet
as well. With these two rules, X THEN Y elects a candidate with
the lexicographically smallest label. Hence, CCAV and CCDV are
polynomial-time solvable for Y and X THEN Y .

Theorem 8. There exist rules X and Y , such that CCAV and CCDV
are NP-hard for X and X THEN Y but polynomial-time solvable
for Y .

Proof. We consider X= Condorcet, which always elects the Con-
dorcet winner, and Y = Identity. CCAV and CCDV for Condorcet
Voting are NP-hard [2] but polynomial-time solvable for Identity. It
is easy to observe that the overall election is Condorcet and hence
both CCAV and CCDV for X THEN Y are NP-hard.

4 X and Y are both NP-hard

Finally, we study X THEN Y , where CCAV and CCDV for both X
and Y are NP-hard.

Theorem 9. CCAV and CCDV for r-Approval THEN Condorcet are
NP-hard.

Proof. CCAV for r-Approval election with r ≥ 4 and Condorcet
voting are NP-hard [18, 2]. We give a reduction from RX3C. Let
(B,S) be an input instance of RX3C, where B = {B1, . . . , B3m}
and S = {S1, . . . , S3m} is a collection of 3-element subsets of B.
Next, we construct the following instance (C, V,W, p,m) of CCAV
for r-Approval THEN Condorcet. For an instance of RX3C, create
an election with candidates p, bi’s for i = 1, . . . , 3m and a dummy
candidate d. Let V consist of m − 3 voters, all with the preference
b1 � . . . � b3m � p � d. Let W contain one unregistered voter
corresponding to each Sj ∈ S with preference bj1 � bj2 � bj3 �
p � B \ {bj1 ∪ bj2 ∪ bj3} � d, where the first three candidates
correspond to the elements in Sj and the candidates between p and
d are in arbitrary order. Now, in the above election we claim that p
can become the unique winner of r-Approval THEN Condorcet where
r = 3m+1 if and only if there is a solution to RX3C of size k = m.

Similar to the proof of Theorem 9, we can modify the proof of
the NP-hardness of CCDV for Condorcet in [12] to show the NP-
hardness of CCDV for r-Approval THEN Condorcet where r =
3m+ 1.

We remark that CCDV for r-Approval THEN Y is NP-hard for
many other voting rules Y with NP-hard CCDV such as Copeland,
Borda, Maximin, etc.

Theorem 10. CCAV and CCDV for 4-Approval THEN 4-Approval
are NP-hard .

Proof. CCAV for 4-Approval election is NP-Hard [18]. We give a
reduction from X3C to CCAV for 4-Approval THEN 4-Approval. Let

J. Guo and Y.R. Shrestha / Controlling Two-Stage Voting Rules 415

(B,S) be an input instance of X3C, where B = {B1, . . . , B3m} and
S = {S1, . . . , Sn} is a collection of 3-element subsets of B. Without
loss of generality we assume that n ≥ m.

Next, we construct the following instance (C, V,W, p,m) for 4-
Approval THEN 4-Approval. We set C = {p} ∪ {bi|Bi ∈ B} ∪
{d1, d2, . . . , dm(m−1)}. Thus, there are m(m − 1) + 3m + 2 can-
didates. We construct the registered votes in V in such a way that in
votes in V , p is always the fifth preferred candidates. Each candidate
in {bi|Bi ∈ B} occurs exactly m− 1 times in the votes in V as one
of the first three preferred candidates. This makes a total of m(m−1)
votes in V . The ith vote in V has di as its fourth preferred candidate.
For each Si ∈ S with Si = {Bi1, Bi2, Bi3} in the instance of X3C,
we add an unregistered vote vi to W whose first four preferred can-
didates are p � bi1 � bi2 � bi3. The rest of the candidates in these
votes are in arbitrary order.

Next, we consider CCDV. CCDV for 4-Approval election is NP-
hard [18]. We give a reduction from a RX3C instance (B,S) to an
instance (E = (C, V), p, k) of CCDV for 4-Approval THEN 4-
Approval, which is similar to the reduction given for Theorem 5.
We set C = {p, p′, p′′, p′′′′, p′′′′} ∪ {bi|Bi ∈ B} ∪ {x1, . . . , xm}.
For each 3-set Si = {Bi1, Bi2, Bi3}, we add one vote whose first
three preferred candidates are {bi1, bi2, bi3} and next two preferred
candidates are xi � p. Finally, we add 2 votes with the first four
candidates being p � p′ � p′′ � p′′′. This makes a total of m + 2
votes in V . The rest of the candidates in these votes are in arbitrary
order.

Theorem 11. There exist rules X and Y , such that CCAV and CCDV
are NP-hard for both X and Y but polynomial-time solvable for X
THEN Y .

Proof. We set X = α-Condorcet and Y =α-k-Approval, which is the
multi-winner voting rule that elects both the winner of k-Approval
election and the candidate with the lexicographically smallest label.
Moreover, if there are ties, then Y breaks the ties in favor of the can-
didate with the lexicographically smallest label. CCAV and CCDV
in both Condorcet [2] and k-Approval [18] elections are NP-hard,
and the same holds for α-Condorcet and α-k-Approval as well. With
these two rules, X THEN Y elects a candidate with the lexicograph-
ically smallest label. Hence, CCAV and CCDV in X THEN Y are
polynomial-time solvable.

5 Conclusions

This paper explored the complexity of constructive control by adding
votes and deleting votes in two-stage elections. Complementing the
results on complexity of manipulating two-stage elections [20, 14],
we observed that there is no general relation between the control
complexity of the rules applied in the stages and the control com-
plexity of the whole two-stage elections. The current work can be
considered as the first step towards understanding the computational
complexity of controlling two-stage voting rules. The next step could
be to study the computational complexity of other control types, for
instance, constructive controlling by adding and deleting candidates
and destructive controlling with the same operations, in two-stage
scenario. Another interesting research direction would be to study the
complexity of control problems in two-stage elections in the presence
of weighted votes. One could also study the complexity of bribery
for two-stage elections. Finally, we leave the question open whether
there exists a natural, concrete voting rule X such that CCAV and
CCDC for X are NP-hard but for X THEN X become polynomial-
time solvable.

REFERENCES

[1] Parimal Kanti Bag, Hamid Sabourian, and Eyal Winter, ‘Multi-stage
voting, sequential elimination and condorcet consistency’, J. Economic
Theory, 144(3), 1278–1299, (2009).

[2] John J. Bartholdi, Craig A. Tovey, and Michael A. Trick, ‘How hard is
it to control an election’, in Mathematical and Computer Modeling, pp.
27–40, (1992).

[3] Felix Brandt, Markus Brill, Edith Hemaspaandra, and Lane A. Hemas-
paandra, ‘Bypassing combinatorial protections: Polynomial-time algo-
rithms for single-peaked electorates’, in AAAI, (2010).

[4] Vincent Conitzer and Tuomas Sandholm, ‘Nonexistence of voting rules
that are usually hard to manipulate’, in AAAI, pp. 627–634, (2006).

[5] Jessica Davies, Nina Narodytska, and Toby Walsh, ‘Eliminating the
weakest link: Making manipulation intractable?’, in AAAI, (2012).

[6] Edith Elkind and Helger Lipmaa, ‘Hybrid voting protocols and hard-
ness of manipulation’, in ISAAC, pp. 206–215, (2005).

[7] Gábor Erdélyi, Markus Nowak, and Jörg Rothe, ‘Sincere-strategy
preference-based approval voting fully resists constructive control and
broadly resists destructive control’, Math. Log. Q., 55(4), 425–443,
(2009).

[8] Gábor Erdélyi and Jörg Rothe, ‘Control complexity in fallback voting’,
in CATS, pp. 39–48, (2010).

[9] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra,
‘Using complexity to protect elections’, Commun. ACM, 53(11), 74–
82, (2010).

[10] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra,
‘Multimode control attacks on elections’, J. Artif. Intell. Res. (JAIR),
40, 305–351, (2011).

[11] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra,
‘Weighted electoral control’, in AAMAS, pp. 367–374, (2013).

[12] Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and
Jörg Rothe, ‘Llull and copeland voting computationally resist bribery
and constructive control’, J. Artif. Intell. Res. (JAIR), 35, 275–341,
(2009).

[13] Peter C. Fishburn, ‘Condorcet social choice functions’, SIAM Journal
on Applied Mathematics, 33(3), pp. 469–489, (1977).

[14] Zack Fitzsimmons, Edith Hemaspaandra, and Lane A. Hemaspaandra,
‘X THEN X: Manipulation of same-system runoff elections’, CoRR,
abs/1301.6118, (2013).

[15] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer, ‘Some sim-
plified np-complete problems’, in STOC, pp. 47–63. ACM, (1974).

[16] Teofilo F. Gonzalez, ‘Clustering to minimize the maximum intercluster
distance’, Theor. Comput. Sci., 38, 293–306, (1985).

[17] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe, ‘Any-
one but him: The complexity of precluding an alternative’, Artif. Intell.,
171(5-6), 255–285, (2007).

[18] Andrew Lin, ‘The complexity of manipulating k-approval elections’, in
ICAART (2), pp. 212–218, (2011).

[19] Curtis Menton, ‘Normalized range voting broadly resists control’, The-
ory Comput. Syst., 53(4), 507–531, (2013).

[20] Nina Narodytska and Toby Walsh, ‘Manipulating two stage voting
rules’, in AAMAS, pp. 423–430, (2013).

[21] David C. Parkes and Lirong Xia, ‘A complexity-of-strategic-behavior
comparison between schulze’s rule and ranked pairs’, in AAAI, (2012).

J. Guo and Y.R. Shrestha / Controlling Two-Stage Voting Rules416

