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Abstract. We propose a new approach to diagnosis
of hybrid systems. In this approach, questions about
the behavior of the system are asked and translated
into Satisfiability Modulo Theory (SMT) problems,
which are then solved by an SMT solver. We show the
reduction to SMT. We also discuss the benefits and the
drawbacks of this approach and conclude with a num-
ber of research directions that will make this approach
applicable to large systems.

1 Introduction

Because of imperfection, misuse, or natural ageing,
any system is prone to malfunction. Diagnosis is the
problem of detecting these malfunctions and identi-
fying/isolating which components and what type of
faults are involved. Model-based diagnosis uses a de-
scription of the system, the model, to reason about the
possible defects of the system.

Hybrid systems are a class of models for dynamic
systems that involve both discrete dynamics and con-
tinuous dynamics. This combination of different vari-
able types makes diagnosis of hybrid systems a hard
problem, as discrete dynamics generally require to
branch while continuous dynamics involve complex
computations. Narasimhan and Biswas [17] used the
hybrid bond graph formalism. The approach pioneered
by Bayoudh et al. [4] decomposes the problem in a con-
tinuous state estimation followed to a reasoning at the
discrete level.

In this paper we propose the first diagnoser that
fully incorporates both aspects of hybrid systems.
Our approach builds on the consistency-based the-
ory of diagnosis developed by de Kleer, Reiter, and
Williams [19, 5] that we recently revived for discrete
event systems [14]. Our diagnoser generates “diagnos-
tic questions”, in practice consistency checks, that ask
whether the model allows for a behaviour consistent
with the observations and satisfying a specified as-
sumption (e.g., that the behaviour is nominal). An ex-
ternal solver performs these consistency check and the
diagnosis is logically inferred from these answers, un-
less the diagnoser needs to ask more questions. Fault
detection (determining that a fault occurred on the
system) is a special case of our approach.

1 Optimisation Research Group, NICTA, and Artificial
Intelligence Group, Australian National University.
NICTA is funded by the Australian Government through
the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence
Program.

More concretely each consistency check is formu-
lated as a Satisfiability Modulo Theory (SMT) prob-
lem, similarly to Bounded Model Checking by SMT
[2, 9, 15]. SMT is an extension of the problem of propo-
sitional satisfiability (SAT) to contain operations from
various theories such as the Boolean, bit-vectors, arith-
metic, arrays, and recursive datatypes [6]; the linear
arithmetic is sufficient for this paper. The reduction
to SMT consists in finding the values of the (discrete
and continuous) state variables at relevant instants of
the diagnostic window. The solution to the SMT prob-
lem represents a system behaviour; SMT constraints
are defined that make sure that the set of solutions is
exactly the set of behaviours authorized by the model,
and consistent with the observation and the assump-
tion. Using the linear arithmetic capabilities of SMT
solvers allows us to handle both the discrete dynamics
and the continuous dynamics.

Next section we present the diagnosis of hybrid sys-
tems with an emphasis on how we model the system.
We then show how we can solve this problem with a
consistency-based approach powered by SMT solvers.
Section 4 illustrates the current state of this approach.
A long discussion concludes the paper which presents
a critical analysis of this approach.

2 Diagnosis of Hybrid Systems

2.1 Hybrid Systems

We are interested in model-based diagnosis, a general
approach to diagnosis where a model of the system
is provided. We are dealing here with hybrid systems,
that is, systems that involve both discrete and contin-
uous variables. A discrete variable would for instance
represent the state open/close of a switch whilst a con-
tinuous variable would model the temperature of a
component. Importantly we do not assume that dis-
crete changes are observable: the value of the discrete
variables at a time is a priori unknown.

There exist many different types of hybrid system
formalisms. Many approaches in the continuous com-
munity use the model to simulate the system be-
haviour and estimate the likelihood of these simula-
tions compared to the actual observations. In contrast
the consistency-based approach to diagnosis essentially
just necessitates a description of how the system can-

not operate in certain situations. For instance in a
nominal state (and at a certain level of abstraction)
a closed circuit breaker cannot have different voltages
at its two ends.

A hybrid system is a tuple 〈V,C, T 〉 where
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• V is the set of state variables;
• C is a set of state constraints over the value of the

state variables;
• T is a set of transition constraints defined over the

value of the state variables V and a copy V ′ of the
state variables.

A state s of the system is a total assignment of the
variables in their domain (Boolean or real); the set
of variables includes a variable t which represents the
current time t(s). The set C represents constraints that
the system state cannot violate, such as the circuit
breaker constraint mentioned before.

Transition constraints describe what sequences of
states are allowed by the model: given two states s and
s′, the system may evolve from state s to state s′ iff all
the constraints in T are satisfied by s and s′ where the
variables of s′ are replaced by their copy in V ′. This
is represented by the proposition T (s, s′[V/V ′]). If the
times of s and s′ are different (t(s) �= t(s′)) the tran-
sition is said to be continuous; otherwise it is discrete.
It is implicitely assumed that every continuous transi-
tion could be split into infinitely many transitions, i.e.,
for all τ ∈ [t(s), t(s′)], there exists a state sτ such that
(t(sτ ) = τ ) ∧ T (s, sτ [V/V

′]) ∧ T (sτ , s
′[V/V ′]). This

can generally be ensured by defining convex transition
constraints.

A system behaviour is a sequence of states bhv =
s0, . . . , sk that satisfies the state and transition
constraints: ∀i ∈ {0, . . . , k}. C(si) ∧ ∀i ∈
{1, . . . , k}. T (si−1, si[V/V

′]).

2.2 Diagnosis of Hybrid Systems

Diagnosis is the problem of determining and identi-
fying/isolating malfunctions in a system. We assume
that a subset Vf ⊆ V of the Boolean-valued state vari-
ables represents the possible faults. The faults are per-
manent but they can take place during the diagnostic
window, i.e., some variables could evaluate to false at
the beginning of the behaviour and to true at its end.

Faults must be defined explicitely; however the sys-
tem behaviour may remain partially unspecified in case
of faults (but also in case of non faulty behaviours).
For instance, if a component binds together three vari-
ables v1, v2, and v3, and if fault variable v represents
the health of the component, then a state constraint
may model this binding ¬v → f(v1, v2, v3) where f is
some constraint. If the behaviour of the component is
(possibly partially) specified when faulty, then another
constraint may be defined: v → f ′(v1, v2, v3); no such
constraint is defined otherwise.

Observations The system behaviour is partially
observed. For simplicity we assume that the observa-
tion is state based as opposed to event based although
there is no specific difficulty associated with observed
events.

An (atomic) observation o is a pair 〈τ,A〉 where
τ is a time and A is a partial assignment of the
state variables. A behaviour bhv = s0, . . . , sk is con-
sistent with the observation o iff it includes a state

that is consistent with the observed values, i.e., ∃i ∈
{0, . . . , k}. t(si) = τ ∧A ⊆ si.

The observations are very flexible as there is no
explicit definition of observed variables, which allows
to easily accomodate sensor disruptions, different fre-
quency rates, or dynamic observability (preprocessed
based methods cannot handle this flexibility). Obser-
vations can also be used to represent the initial state:
the known state variables in the initial state can be
treated as observations. This is very permissive as
simulation-based approaches generally require to know
the initial state, or at least to have a probability dis-
tribution over the (initial) set of states.

For notational simplicity we assume that the obser-
vations are precise (the exact value of the observed
variable is known). This implies that the noise on the
sensor has to be integrated to the model. If for instance
the voltage is being monitored at some point of the sys-
tem, the model will include two variables: volt will rep-
resent the voltage at this point and obs volt will repre-
sent the observed value; a state constraint will define
the possible noise, e.g., volt − 1 < obs volt < volt + 1.

Consistency-Based Diagnosis A diagnosis δ is
a subset of faults that are consistent with the model
and the observations, meaning that there exists a be-
haviour of the system that is consistent with the ob-
servations and such that the subset of faulty variables
that evaluate to true in the final state is exactly δ. Be-
cause the number of diagnoses can be very large and
many of them are unlikely, we are interested in mini-

mal diagnoses which are diagnoses such that no strict
proper subset is a diagnosis.

Notice that our definition of diagnosis is free of prob-
abilities, as were the observations and their associated
noise. Probabilities are useful because they allow to
handle the noise on observations and the imprecisions
of the model quite nicely. They also allow to rank the
diagnoses and put forward the most probable ones.
However realistic probabilities are very hard to obtain
and their validity as well as the assumptions (for in-
stance Gaussian or white noise) are often questionable.
We can however incorporate apriori fault probabilities
to rank the diagnoses [22] (the minimal-cardinality di-
agnoses are one such example).

Because diagnosis only asks for consistency, a sig-
nificant part of the model can be left unspecified, for
instance the behavior of the system in certain situa-
tions. Probabilistic methods in contrast require to be
able to assign a probability distribution on the future
state, even under faulty conditions.

3 Consistency-Based Diagnosis

We now present our approach to diagnosis of hybrid
systems. This approach is consistency based, not only
in the sense that the diagnosis is defined in terms of
consistency (as opposed to probabilities), but also in
the sense that the diagnosis procedure is based on op-
erations that test the logical consistency of the model,
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the observations, and some assumption on the faulty
state of the system.

These consistency tests are reduced to SMT prob-
lems that are solved using SMT solvers. We first
present SMT and show the reduction from a consis-
tency test to an SMT problem. Finally we show how a
diagnoser can choose the tests in order to extract the
diagnosis.

3.1 SAT Modulo Theory

The Satisfiability Modulo Theory (SMT) problem is a
decision problem akin to the propositional satisfiability
problem (SAT) with a background theory such as the
Boolean, bit-vectors, arithmetic, arrays, and recursive
datatypes [3]; the linear arithmetic (LA) is sufficient
for this paper.

SMT problems using LA will typically involve two
types of variables: the traditional SAT (Boolean) vari-
ables as well as real-valued variables. An SMT formula
is defined as a collection of Boolean formulas where
each literal is either a Boolean variable (or its nega-
tion) or a linear inequality over the real-valued vari-
ables. Here is an example of an SMT formula:

(A ∨ (x > 3 ∗ y)) ∧ (B ∨ (x < 2 ∗ y)) ∧ (¬A ∨ ¬B)

where A and B are the SAT variables and x and y are
the real-valued variables.

The procedure for deciding SMT problems is gen-
erally two-level [10]. The background theory sentences
(the inequalities in the example above) are treated as
SAT variables, which leads to a SAT problem that is
solved with standard SAT solving techniques. When a
solution is found to the SAT problem, the consistency
of the set of sentences that were assigned to true is
tested by an external solver (depending on the strat-
egy of the SMT solver, the consistency may actually
be performed before the SAT problem has been fully
solved). If this external solver finds this set inconsis-
tent, it returns a subset of incompatible sentences that
are turned into a clause (a logical constraint that for-
bids this set of sentences at the SAT level) that is
added to the SAT problem.

3.2 Consistency Tests as SMT
Problems

We now show how a (diagnosis) consistency test is re-
duced to an SMT problem. The reduction is similar
to the one used in bounded model checking of hybrid
systems with SMT.

Recall that a consistency test is defined by a model
〈V,C, T 〉, a set of observations O, and an assumption
over the faulty state. For simplicity we limit ourselves
to the case where an assumption is a set of faults δ ⊆ Vf

assumed to have occurred (other faults have not).
The test is said to be consistent if the model allows

for a trajectory (which we refer to as a support) that
is consistent with the observations and the assump-
tion. Consistency test therefore amounts to searching
for such a support. We assume that this trajectory

has a bounded length, i.e., that it involves at most
a bounded number of states k (other approaches to
diagnosis of continuous or hybrid systems often make
similar assumptions, for instance that only one discrete
transition is allowed between two consecutive observa-
tions). This assumption is reasonable if we assume that
the set of observations is small enough, i.e., in general
we assume that only the last observations will be used
to diagnose the current situation.

The reduction from the test to an SMT problem
is done as follows. We define a set of variables that
represent the value of the state variables at every one
of the k states of the support. For instance variables
v@1, v@2, . . . will represent the value of the state vari-
able v in the first, second, etc., state of the support.
If v is a Boolean variable, then v@i will be a Boolean
variable; otherwise it will be a real-valued variable. We
write V@i the set of variables associated with the ith
state of the support, and V =

⋃
i∈{1,...,k}

V@i is the

set of variables used in the SMT problem.
We will then define an SMT formula Φ such that

the set of assignments of V that satisfy Φ represents
exactly the set of supports to the consistency test. The
test is therefore consistent iff there exists at least one
support, i.e., iff the set of solutions to the SMT prob-
lem is non empty, i.e., iff the SMT problem is satisfi-
able. The set of assignments of V that represent a sup-
port are those that are consistent with i) the model,
ii) the observations, and iii) the fault assumption.

We first look at the model. The following SMT for-
mula enforces the state and transition constraints on
the variables of the SMT problem:

∧

i∈{1,...,k}

C[V @i/V ]∧
∧

i∈{1,...,k−1}

T [V@i/V, V@i+1/V ′].

(1)
For instance if the state constraints specify that a

working closed circuit breaker has the same voltage at
both end:

closed cb ∧ ok cb → (v in = v out),

this will translate in the SMT problem as

(closed cb@1 ∧ ok cb@1 → (v in@1 = v out@1)) ∧
(closed cb@2 ∧ ok cb@2 → (v in@2 = v out@2)) ∧

. . .

Similarly if the transition constraints specify that the
water level decreases in a leaking tank:

leaking ∧ level > 0 → level
′ < level ,

this will translate in the SMT problem as

(leaking@1 ∧ level@1 > 0 → level@2 < level@1) ∧
(leaking@2 ∧ level@2 > 0 → level@3 < level@2) ∧

. . .

Consider now the observations O. We assume that
the number i of the state si when each observation oi
is made is known. (The assumption can be made non-
restrictive by increasing the value of k. It can also be

A. Grastien / Diagnosis of Hybrid Systems with SMT: Opportunities and Challenges 407



lifted, or one could assume more complex observations
such as untimed partially-ordered observations as was
done in SAT-based diagnosis of discrete event systems
[12].) Let io be this state number associated with ob-
servation o. The following SMT formula enforces the
observations on the variables of the SMT problem:

∧

o=〈τ,A〉∈O

(t@io = τ ) ∧A[V@io/V ]. (2)

For instance the observation that the voltage was 24.1
at time 10.0:

o = 〈10.0, (volt = 24.1)〉

this will translate in the SMT problem as

(t@io = 10.0) ∧ (volt@io = 24.1) .

Finally consider the fault assumption δ ⊆ Vf . We
want the support to involve exactly all the faults in
the specified set δ. Because the faults are permanent,
it suffices to specify their occurrence at the end of the
support. The following SMT formula enforces the fault
assumption on the variables of the SMT problem:

∧

f∈δ

(f@k) ∧
∧

f∈Vf\δ

(¬f@k) . (3)

The SMT problem that we reduce the consistency
test to is the conjunction of these three constraints (1),
(2) and (3).

In general, and apart for the time steps associated
with observations, the time of the state s@i is not pre-
specified. Practically, t@is are real-valued variables. If,
for instance, the observations imply a discrete transi-
tion at time τ (which will imply t@i = τ = t@(i+1) for
some i), the SMT solver will automatically deduce the
value of t@i, Therefore this approach does not require
to search explicitely for the time of the transition.

3.3 Diagnosis of Hybrid Systems as
Consistency Tests

Diagnosis can be performed by asking the right con-
sistency tests as has been acknowledged by de Kleer,
Reiter, and Williams [19, 5]. Because we are interested
in minimal diagnoses, we start by checking the con-
sistency of the nominal assumption, i.e., the assump-
tion δ0 = ∅. If the test is successful (the consistency
holds), the system is diagnosed as non-faulty. Other-
wise a fault was detected and more tests need to be
performed. To this end, the original theory used con-

flicts. A diagnosis conflict is a subset of fault variables
which, when assumed to be nominal, allow the test
solver to infer the inconsistency of the formula. It is
well-known that all minimal diagnoses are supersets
of a minimal hitting set of any collection of conflicts.
Therefore the classical diagnosis strategy consists in
testing the consistency of such minimal hitting sets,
which will either allow to prove that they are diag-
noses or produce more conflicts.

SMT solvers are able to produce conflicts, and we
therefore use this approach to compute diagnosis. The
standard approach consists in labeling every conjunct
in Equation (3), and passing these conjuncts as as-
sumptions to the SMT solver.

Different strategies can be used to solve the diagno-
sis problem. We have shown [13] that it is possible to
ask a completely different set of tests. The Preferred-
Last strategy for instance searches for any support
(hence producing a diagnosis) and then tries to im-
prove this diagnosis by asking for a support strictly
“better” than the previous one. In general, this strat-
egy implies more consistent tests and fewer inconsis-
tent tests than the original strategy. In our experi-
ments, the SMT solver needs significantly more time
to solve consistent tests than inconsistent ones, so we
did not explore this strategy much further.

4 Experiments

We show some experimental validation of the approach
we proposed. We first introduce the AdaptLite system
from the 2009 DX competition [16]. We then illustrate
our approach on different problem instances. Finally
we demonstrate the power of this approach when the
number of observations reduces.

4.1 The Adapt System

The Adapt System was introduced in the first DX
competition in 2009. It features the Electrical Power
System testbed in the ADAPT lab at NASA Ames
Research Center. The AdaptLite variant consists of
roughly 10 components (depending on how one counts
them) monitored by 20 sensors (only 16 were kept in
our experiments as some of them are irrelevant).

We modeled AdaptLite the way we would model
the (larger) Adapt system. The latter system allows
to reconfigure the system during diagnosis, meaning
that the flow of electricity may change. Our model
for instance contains variables that are useful only if
the power flows in a direction that is impossible in
AdaptLite. We end up with 129 real-valued state vari-
ables and 154 Boolean state variables.

4.2 Experiment 1

In the first set of experiments, we use a setting similar
to the original competition. We assume that every sen-
sor communicates its current reading at a frequency of
2Hz, i.e., twice every second. We diagnose windows of
10 consecutive observations. We limit ourselves to min-
imal cardinality diagnoses, as the number of minimal
diagnoses can get absurdly high.

The experiments were performed on an Intel i5-
2520M 2.5GHz with 3.75GiB and running GNU/Linux
Mint 16 “petra”. The diagnoser was implemented on
Java 7 using SMT solver Z3 version 4.3.1. (Experi-
ments with cvc3 gave similar results, bearing in mind
that the runtime can be very volatile. The new version
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Prob. instance Time (s) Card # δ

1 3.428 0 1
2 5.314 1 2
3 5.298 1 1
4 3.476 1 1
5 6.477 2 4

Table 1. Example runtime: computation time,
cardinality of the diagnoses, number of

minimal-cardinality diagnoses.

cvc4 of the cvc family does not implement conflict gen-
eration yet.)

The results are summarized on Table 1. Most of the
runtime is used by the SMT solver. As it turns out,
SMT problems that are consistent are the most time-
consuming. We conjecture that this is due to the ex-
pansive procedure of verifying consistency of a set of
linear inequalities and that any reduction in the num-
ber of real-valued variables for instance would speed
up the process.

Traditional methods can treat this particular sys-
tem as a continuous one and still remain accurate.
Their runtime is much better than our method; this
is mainly because the system is very observable and
nearly every state variable in the system is observed
(although through noise). The next set of experiments
is meant to show that our approach does not suffer for
a reduction in observability.

4.3 Experiment 2: Reducing the
Observations

For this set of experiments we reused the problem in-
stances from the previous subsection but deleted some
values observed at random. We run the diagnoser on
these truncated observations. The runtime is reported
on Figure 1; the x-axis shows the percentage of ob-
servations that were deleted. The line stops when the
returned diagnoses differ from the original diagnosis:
in a problem with no observation for instance the sin-
gle minimal diagnosis is δ = ∅, and comparing such
problems is not relevant.

Traditional approaches do not cope well with this
type of problems: we discuss this point in more details
in the next section.

As we can see, the runtime of the diagnosis approach
is very uncertain but is not clearly correlated to the
number of observations. Most existing benchmarks on
continuous systems assume a very large number of sen-
sors as well as a synchronized flow of observations; un-
der these assumptions, our approach is at a disadvan-
tage, but outside them, it becomes much more com-
petitive.

5 Discussion

We presented a consistency-based approach to diagno-
sis of hybrid systems. We now conclude by presenting
the benefits of our approach as well as possible future
works to address its current shortcomings.
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Figure 1. Evolution of runtime when observations get
removed.

5.1 Benefits of Our Approach

The approach presented in this paper is the first one
that handles both the discrete and continuous aspects
of hybrid systems. Previous approaches either have to
concentrate on one aspect (previous work on diagnosis
of hybrid system with SMT [8] only considered snap-
shots) or look at these aspects separately [4].

Continuous or switching systems are often diagnosed
by identifying patterns of faults, such as possible con-
flicts and indicators [18]. This approach requires pre-
processing and is very rigid with respect to observabil-
ity. Consider for instance a system where the voltage
and intensity are linked through a constraint when the
system is not faulty; imagine that three successive ob-
servations are available, a voltage reading, an intensity
reading, and a voltage reading similar to the first one;
if the readings contradict the constraint, approaches
based on preprocessed patterns will most likely not be
able to detect the fault.

Another common approach to diagnose continuous
systems is through simulation, generally coupled with
probabilistic reasoning. This type of approach requires
a predictive model, i.e., a model that can either predict
how the system state will evolve or assign a probability
distribution over this evolution. Such a model may not
be available, and may require to ignore entirely parts
of the system whose behavior is only partly known.
Furthermore simulating a system requires being able
to maintain the belief state (the set of states that the
system is believed to be in) or the probability distribu-
tion of this belief state. This is very hard or even im-
possible, especially because of the interaction between
the continuous and discrete variables, and approximate
approaches—when applicable—are quite involved and
are subject to overapproximation.

Finally we would like to emphasize a last benefit
of our approach. Pattern-based approaches (such as
indicators or possible conflicts) are good at explain-
ing why an assumption is not valid: they essentially
prove that such assumptions lead to a contradiction.
Simulation-based approaches are good at explaining
why an assumption seems valid: the simulation actu-
ally produces supports for these assumptions. Our ap-
proach exhibits both characteristics, being both able
to justify why a hypothesis should be rejected and able
to provide supports for its diagnoses.
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5.2 Disadvantages and Future Works

At this stage the main issue of SMT-based diagnosis
of hybrid systems is the computational cost. We be-
lieve however that the scope for improvement here is
quite large. Experience in different domains but us-
ing similar test-based approaches shows that simple
changes can better the runtime dramatically: chang-
ing the search strategy for diagnosis and using an in-
cremental SMT solver reduced the runtime by up to
one order of magnitude compared to our first works
[11]. Other improvements include: pruning irrelevant
variables [3], using dedicated SMT solvers [21, 9], im-
proving the reduction to SMT [1, 20].

Whilst the current approach requires no preprocess-
ing, this does not mean that preprocessing cannot be
used to speed up the diagnosis. Possible conflicts can
be used in the first phase of diagnosis to already narrow
down the search. SMT solvers are then used mostly
as validation. Amongst other possible preprocessing
techniques, diagnosability or similar techniques can be
used to determine how the problem can be decom-
posed; for instance diagnosability might allow to de-
termine that reasoning about a given subset of the
network is sufficient to accurately diagnose a fault.

An issue of the approach presented here is that it is
only applicable on “short” windows. In an online con-
text, this means that only the last observations can be
taken into account, which may harm the precision of
diagnoser. Simulation-based approaches are not con-
cerned by this issue because the current belief state
carries all the relevant information about past obser-
vations. One way to address this issue would be to
discover facts about the current window that can be
carried over to the next window. Such facts should be
compact (otherwise, it would be equivalent to comput-
ing the belief state), for instance: the circuit breaker is

known to be open, or either one of the two bulbs in the

system is broken. This information would help both
the precision of diagnosis and the computation time.

Finally of interest would be to consider nonlinear
systems as proposed by Eggers et al. [7]. The current
method handles such systems by overapproximating
the state and behavior space (in the worst case, just
ignoring the nonlinear constraints) at the cost of preci-
sion. SMT solvers are not limited to linear arithmetic
but to what extend they can handle more complex
constraints is uncertain.
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