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Abstract. We study the complexity of the Strategic Argumentation
Problem for 2-player dialogue games where a player should decide
what move (set of rules) to play at each turn in order to prove (dis-
prove) a given thesis. We show that this is an NP-complete problem.

1 Introduction and Motivation

In the most typical forms of strategic argumentation, two players
exchange arguments in a dialogue game: in the simplest case, a pro-
ponent (hereafter Pr) has the aim to prove a claim, and an opponent
(hereafter Op) presents counterarguments to the moves of Pr. Almost
all the AI literature on the strategic aspects of argumentation works
with argument games with complete information, i.e., dialogues where
the structure of the game is common knowledge among the players.
Consider, however, the following example due to [17]:

Pr0 : “You killed the victim.”
Op1 : “I did not commit murder! There is no evidence!”
Pr1 : “There is evidence. We found your ID card near the scene.”

Op2 : “It’s not evidence! I had my ID card stolen!”
Pr2 : “It is you who killed the victim. Only you were near the

scene at the time of the murder.”
Op3 : “I didn’t go there. I was at facility A at that time.”
Pr3 : “At facility A? Then, it’s impossible to have had your ID

card stolen since facility A does not allow a person to enter
without an ID card.”

The peculiarity of this argument game is that the exchange of ar-
guments reflects an asymmetry of information between the players:
first, each player does not know the other player’s knowledge, thus
she cannot predict which arguments are attacked and which coun-
terarguments are employed for attacking the arguments; second, the
private information disclosed by a party could be eventually used by
the adversary to construct and play justified counterarguments: Pr3
attacks Op2, but only when Op3 is given. Hence, the attack Pr3 of the
proponent is made possible only when the opponent discloses some
private information with the move Op3.

In scenarios with incomplete information, parties have different
logical theories. Not knowing the other party’s arguments implies
that there is no general way to determine which argument is the most
likely to succeed. A party does not know whether an argument is not
attacked by arguments from the opponent or whether it allows counter-
arguments based on it or parts of it (i.e., subarguments). The example
above reveals that the internal logical structure of arguments plays a
key role, which cannot be overlooked, in strategic argumentation.
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In this paper, we explore the computational cost of argument games
with incomplete information where the (internal) logical structure of
arguments is considered. We study strategic argumentation in proof-
theoretic settings, such as in those developed in [4, 13, 19] where
arguments are defined as logical inference trees, and exchanging
arguments means exchanging logical theories proving conclusions.

Assume, for instance, that the argument game is based on a finite
set F of indisputable facts and a finite set R of rules: facts initially
fire rules which build proofs for literals. If R and F are common
knowledge of Pr and Op, successful strategies in argument games
are trivially identified: each player can compute if the entire theory
(consisting of F and R) logically entails any l. In this situation the
game consists of a single move. The computational complexity of
the whole dialogue game reduces to the complexity of deciding the
entailment problem in the underlying logic. Suppose now that F
is known by both players, but R is partitioned into three subsets:
a set RCom known by both players and two subsets RPr and ROp
corresponding, respectively, to Pr’s and Op’s private knowledge (what
Pr and Op privately know to be true). In this context, at each turn
a player chooses a theory to prove her claim. A move may use any
(i) formulas in RCom, (ii) formulas played in previous turns (by both
players), and (iii) selection of formulas (not previously used) from
her private knowledge. Hence, we add the complexity of deciding
which theory (i.e., subset of her formulas) to play to win the game to
the entailment problem. Is there any safe criterion to select successful
strategies? Consider a setting where F = {a,d, f }, RCom = ∅, and the
players have the following rules:

RPr = {a ⇒ b, d ⇒ c, c ⇒ b}
ROp = {c ⇒ e, e, f ⇒ ¬b}.

If Pr’s intent is to prove b and she plays {a ⇒ b}, then Pr wins the
game. If Pr plays {d ⇒ c, c ⇒ b} (or even RPr), this allows Op to
succeed. Here, a minimal subset of RPr is successful. The situation
can be reversed for Pr. Replace the sets of private rule with

RPr = {a ⇒ b, d ⇒ ¬c}
ROp = {d,c ⇒ ¬b, f ⇒ c}.

In this second case, the move {a ⇒ b} is not successful for Pr, while
playing with the whole RPr ensures victory.

In the remainder, we will show that the problem of deciding what
set of rules to play (Strategic Argumentation Problem) at a given turn
is NP-complete even when the problem of deciding whether a given
theory (defeasibly) entails a literal can be computed in polynomial
time. We will map the NP-complete Restoring Sociality Problem pro-
posed in [7] into the Strategic Argumentation Problem. To this end,
we first propose a standard Defeasible Logic to formalise the argu-
mentation framework (Subsection 3.1) and then we present the BIO
agent defeasible logic (Subsection 3.2). In Section 5 we show how to
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transform an agent defeasible logic into an equivalent argumentation
one and we present the main theorem of computational complexity.

2 Related Work

Most existing investigations of strategic argumentation in AI, such
as [14, 10, 16, 15, 8] assume that argument games have complete
information, which, we noticed, is an oversimplification in many real-
life contexts (such as in legal disputes). [10] presents a notion of
argument strength within the class of games of strategy while [14, 16,
8] work on two-player extensive-form games of perfect information.

It is still an open problem how to reconstruct formal argumentation
with incomplete information in a game-theoretic setting (such as
typically in Bayesian extensive games). Preliminary to that, it is
crucial to study the computation cost for logically characterizing the
problems that any argumentation game with incomplete information
potentially rises. Relevant recent papers that studied argumentation
of incomplete information without any direct game-theoretic analysis
are [11] and [17], which worked within the paradigm of abstract
argumentation. The general idea in these works is to devise a system
for dynamic argumentation games where agents’ knowledge bases can
change and where such changes are precisely caused by exchanging
arguments. [11] presents a first version of the framework and an
algorithm, for which the authors prove a termination result. [17]
generalises this framework (by relaxing some constraints) and devises
a computational method to decide which arguments are accepted by
translating an argumentation framework into logic programming; this
further result, however, is possible only when players are eager to
give all the arguments, i.e., when proponent and opponent eventually
give all possible arguments in the game.

A relevant computational investigation of argumentation-based
dialogues is [12]. The underlying formal system of argumentation
is again based on Dung’s work, but they allow preferences between
arguments. The work focuses on persuasion dialogues with incomplete
information, which resembles the type of dialogue we model in the
present work, as well as the protocol parties use to carry on the
argumentation. The analysis shows that given the knowledge base of a
party, the problem of determining if a consistent argument to support
a given thesis exists is NPNP-complete. [12] argue that the source
of such an high complexity resides in the choice of using standard
propositional logic to model the argumentation mechanism. In this
respect, they leave an open research question, that is, how exploiting
a more efficient mechanism for establishing proofs effectively lower
the complexity of the whole problem.

3 Logic

We shall introduce the two logics used in this paper. The first logic,
called “Argumentation Logic”, reformulates Defeasible Logic (DL)
[1] used in a dialogue game to represent the knowledge of the players,
the structure of the arguments, and to perform reasoning. [4] provides
the relationships between this logic (and some of its variants) and
abstract argumentation, and [18] shows how to use this logic for dia-
logue games. The second logic, called “Agent Logic”, was proposed
in [7] to model rational agent and to prove that the Restoring Sociality
Problem is NP-complete, and is reported in this paper only to express
the mechanisms behind our demonstration of NP-completeness.

3.1 Argumentation Logic

Let PROParg be a set of propositional atoms and Lblarg be a set of
labels. The set Litarg = PROParg ∪ {¬p|p ∈ PROParg} is the set of

literals. If q is a literal, ∼q denotes the complementary literal: if q is
a positive literal p then ∼q is ¬p, and if q is ¬p, then ∼q is p. A rule
is an expression of the form r : φ1, . . . , φn ↪→ ψ, where r ∈ Lblarg is
a unique label, A(r) = {φ1, . . . , φn } ⊆ Litarg is the set of antecedents
of r , C(r) = ψ ∈ Litarg is the consequent of r , and ↪→∈ {→,⇒,�} is
the type of r .→ denotes strict rules, i.e., rules such that whenever the
premises are indisputable, so is the conclusion.⇒ denotes defeasible
rules, i.e., rules that can be defeated by contrary evidence. � denotes
defeaters, i.e., rules that are used to prevent some conclusion but
cannot be used to draw any conclusion. Given a set of rules R, R[q]
indicates all rules in R with consequent q; (i) Rs, (ii) Rd, (iii) Rsd, (iv)
and Rdft are the subsets of R of (i) strict rules, (ii) defeasible rules,
(iii) strict and defeasible rules, (iv) defeaters.

Definition 1. A Defeasible Argumentation Theory (DArT) is a struc-
ture Darg = (F,R,>), where (i) F ⊆ Litarg is a finite set of facts, (ii)
R is the finite set of rules, and (iii) >⊆ R × R is a binary, acyclic,
irreflexive, and asymmetric relation called superiority relation.

Given a DArT Darg, a proof P of length n in Darg is a finite se-
quence P(1), . . . ,P(n) of tagged literals of the type +Δq, −Δq, +∂q
and −∂q, with q ∈ Litarg. The proof conditions below define the
logical meaning of such tagged literals. P(1..n) denotes the first n
steps of proof P.

Given # ∈ {Δ, ∂} and a proof P in Darg, a literal q is #-provable
in Darg at n (or simply #-provable) if there is a line P(m) of P such
that m ≤ n and P(m) = +#q. A literal q is #-rejected in Darg at n (or
simply #-rejected) if there is a line P(m) of P such that m ≤ n and
P(m) = −#q. We use statements “Δ-provable” (resp. “∂-provable”)
and “definitely provable” (resp. “defeasibly provable”) as synonyms.
Similar conventions apply for rejected literals.

In what follows, for space reasons, we only present proof conditions
for +Δ and +∂: the negative ones are obtained via the principle of
strong negation. This is closely related to the function that simplifies
a formula by moving all negations to an inner most position in the
resulting formula, and replaces the positive tags with the respective
negative tags, and the other way around [2].

The proof conditions for +Δ describe just forward chaining of strict
rules.

+Δ: If P(n + 1) = +Δq then
(1) q ∈ F or
(2) ∃r ∈ Rs[q] s.t. ∀a ∈ A(r). a is Δ-provable.

Literal q is definitely provable if either (1) is a fact, or (2) there is a
strict rule for q, whose antecedents have all been definitely proved.

Definition 2. Given a proof P in Darg, a rule r ∈ Rsd is (i) applicable
(at P(n+1)) iff ∀a ∈ A(r), a is #-provable; (ii) discarded (at P(n+1))
iff ∃a ∈ A(r) such that a is #-rejected.

The proof conditions for +∂ are as follows.

+∂: If P(n + 1) = +∂q then
(1) q is Δ-provable or
(2) (2.1) ∼q is Δ-rejected and

(2.2) ∃r ∈ Rsd[q] s.t. r is applicable, and
(2.3) ∀s ∈ R[∼q]. either s is discarded, or

(2.3.1) ∃t ∈ R[q] s.t. t is applicable and t > s.

Literal q is defeasibly provable if (1) q is already definitely provable,
or (2) we argue using the defeasible part of the theory. For (2), ∼q is
not definitely provable (2.1), and there exists an applicable strict or
defeasible rule for q (2.2). Every attack s is either discarded (2.3), or
defeated by a stronger rule t (2.3.1).
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3.2 Agent Logic

A defeasible agent theory is a standard defeasible theory enriched
with (i) modes for rules, (ii) modalities (belief, intention, obligation)
for literals, and (iii) relations for conversions and conflict resolution.
We report below only the distinctive features, that is, the language and
the basics behind the logic. For a detailed exposition see [7].

Let PROPsoc be a set of propositional atoms, Litsoc = PROPsoc ∪
{¬p|p ∈ PROPsoc} be the set of literals, MOD = {BEL, INT,OBL}
be the set of modal operators, and Lblsoc be a set of labels. The set
ModLit = {Xl |l ∈ Litsoc,X ∈ {OBL, INT}} is the set of modal literals.
A rule is an expression of the form r : φ1, . . . , φn ↪→X ψ, where
r ∈ Lblsoc is a unique label, A(r) = {φ1, . . . , φn } ⊆ Litsoc ∪ModLit
is the set of antecedents of r, C(r) = ψ ∈ Litsoc is the consequent
of r, ↪→∈ {→,⇒,�} is the type of r, X ∈ MOD is the mode of r.
RX (RX [q]) denotes all rules of mode X (with consequent q), and
R[q] =

⋃
X ∈{BEL,OBL, INT} RX [q].

Notice that rules for intention and obligation are meant to introduce
modalities: for example, if we have the intention rule r : a ⇒INT b
and we derive a, then we obtain INTb. On the contrary, belief rules
produce literals and not modal literals.

We define two relations among different modalities.
Rule conversion. We define an asymmetric binary convert relation
Cv ⊆ MOD ×MOD such that Cv(Y,X ) means ‘a rule of mode Y can
be used also to produce conclusions of mode X ’. This corresponds to
the following inference rule:

Xa1, . . . ,Xan r : a1, . . . ,an ⇒Y b
Xb

Cv(Y,X )

where A(r) � ∅ and A(r) ⊆ Lit.
Conflict-detection/resolution. We define an asymmetric binary con-
flict relation Cf ⊆ MOD ×MOD such that Cf(Y,X ) means ‘modes Y
and X are in conflict and mode Y prevails over X’.

Definition 3. A Defeasible Agent Theory (DAgT) is a structure
Dsoc = (Fsoc,RBEL,RINT, ROBL,>soc,V ,F ), where

• Fsoc ⊆ Litsoc ∪ModLit is a finite set of facts.
• RBEL, ROBL, RINT are three finite sets of rules for beliefs, obliga-

tions, and intentions.
• The superiority (acyclic) relation >soc=>smsoc ∪ >Cf

soc is such that
(i) >smsoc⊆ RX × RX such that if r >soc s then r ∈ RX [p] and
s ∈ RX [∼p]; and (ii) >Cf

soc is such that ∀r ∈ RY [p],∀s ∈ RX [∼p]
if Cf(Y,X ) then r >Cf

soc s.
• V = {Cv(BEL,OBL),Cv(BEL, INT)} is a set of convert relations.
• F = {Cf(BEL,OBL),Cf(BEL, INT),Cf(OBL, INT)} is a set of con-

flict relations.

A proof is now a finite sequence of tagged literals of the type
+ΔX q, −ΔX q, +∂X q and −∂X q.

The following definition states the special status of belief rules, and
that the introduction of a modal operator corresponds to being able to
derive the associated literal using the rules for the modal operator.

Definition 4. Given # ∈ {Δ, ∂} and a proof P in Dsoc, q is #-provable
(resp. #-rejected) in D at n (or simply #-provable, resp., #-rejected) if
there is a line P(m) of P such that m ≤ n and either

1. q is a literal and P(m) = +#BELq (resp. P(m) = −#BELq), or
2. q is a modal literal X p and P(m) = +#X p (resp. P(m) = −#X p),

or
3. q is a modal literal ¬X p and P(m) = −#X p (resp. P(m) = +#X p).

We are now ready to report the proof conditions for +ΔX .

+ΔX : If P(n + 1) = +ΔX q then
(1) q ∈ F if X = BEL or Xq ∈ F or
(2) ∃r ∈ RX

s [q] s.t. ∀a ∈ A(r). a is Δ-provable or
(3) ∃r ∈ RY

s [q] s.t. Cv(Y,X ) ∈ V and
∀a ∈ A(r). Xa is Δ-provable.

The sole difference with respect to +Δ is that now we may use rule
of a different mode (Y ) to derive conclusions of mode X through
conversion. In this framework, only belief rules may convert to other
modes. Namely the case where every antecedent of the belief rule r
in clause (3) must be (definitely) proven with modality X .

We reformulate Definition 2 to take into account Cv and Cf rela-
tions.

Definition 5. Given a proof P, # ∈ {Δ, ∂} and X,Y, Z ∈ MOD

• A rule r is applicable for X (at P(n + 1)) iff

1. r ∈ RX and ∀a ∈ A(r), a is #-provable, or

2. r ∈ RY , Cv(Y,X ) ∈ V , and ∀a ∈ A(r), Xa is #-provable.

• A rule r is discarded for X (at P(n + 1)) iff

3. r ∈ RX and ∃a ∈ A(r) such that a is #-rejected; or

4. r ∈ RY , Cv(Y,X ) ∈ V and ∃a ∈ A(r) such that Xa is #-
rejected, or

5. r ∈ RZ and either Cv(Z,X ) � V or Cf(Z,X ) � F .

The proof conditions for +∂X are the following.

+∂X : If P(n + 1) = +∂X q then
(1)Xq is Δ-provable or
(2) (2.1) X∼q is Δ-rejected and

(2.2) ∃r ∈ Rsd [q] s.t. r is applicable, and
(2.3) ∀s ∈ R[∼q] either s is discarded, or

(2.3.1) ∃t ∈ R[q] s.t. t is applicable and t > s, and
either t, s ∈ RZ , or Cv(Y,X ) ∈ V and t ∈ RY .

Again, the only difference with respect to +∂ is that we have rules
for different modes, and thus we have to ensure the appropriate re-
lationships among the rules. Hence, clause (2.3.1) prescribes that
either attack rule s and counterattack rule t have the same mode (i.e.,
s, t ∈ RZ ), or that t can be used to produce a conclusion of the mode X
(i.e., t ∈ RY and Cv(Y,X ) ∈ V). Notice that this last case is reported
for the sake of completeness since it plays a role only within theories
with more than three modes.

We define the extension of a defeasible theory as the set of all
positive and negative conclusions. [9, 7] proved that the computing
the extension of a theory in both argumentation and agent logic is
linear in the size of the theory.

The following notions are needed to formulate the Restoring So-
ciality Problem [7].

• Given an DAgT Dsoc, a literal l is supported in Dsoc iff there
exists a rule r ∈ R[l] such that r is applicable, otherwise l is not
supported. For X ∈ MOD we use +ΣX l and −ΣX l to indicate that
l is supported / not supported by rules for X .

• Primitive intentions of an agent are those intentions given as facts.
• Primary intentions and obligations may not be derived using rule

conversion.
• A social agent is an agent for which obligation rules are stronger

than any conflicting intention rules but weaker than any conflicting
belief rules.
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3.3 Restoring Sociality Problem

Instance: Let I be a finite set of primitive intentions, OBLp a primary
obligation, and Dsoc a DAgT modelling a deviant agent, i.e. such
that I ⊆ F, Dsoc � −∂OBLp, Dsoc � −ΣOBL∼p, Dsoc � +∂INT∼p,
Dsoc � +ΣOBLp and Dsoc � −ΣBEL∼p.
Question: Is there a DAgT D′soc equal to Dsoc but for I ′ which is
a proper subset of I, such that ∀q if Dsoc � +∂OBLq then D′soc �
+∂OBLq and D′soc � +∂OBLp?

Let us the consider the DAgT Dsoc consisting of

F = {INTp, INTs}
R = {r1 : p, s ⇒BEL q r2 : ⇒OBL ∼q r3 : ⇒BEL s}
> = {r1 > r2}

Rule r1 is a belief rule, which is stronger than the obligation rule r2
by conflict. In addition, we have that the r1 is not applicable (i.e.,
−ΣBELq) since Dsoc � −∂BELp. There are no obligation rules for
q, so Dsoc � −∂OBLq. Rule r1 behaves as an intention rule since
Dsoc � +∂INTp and Dsoc � +∂INTs. Since r1 is stronger than r2, the
derivation of +∂OBL∼q is prevented against the sociality of the agent.

The related decision problem is whether it is possible to avoid the
“deviant” behaviour by giving up some primitive intentions, retain-
ing all the (primary) obligations, and maintaining a set of primitive
intentions as close as possible to the original set.

Theorem 6 ([7]). The Restoring Sociality Problem is NP-complete.

4 Dialogue Games

The form of a dialogue game involves a sequence of interactions
between two players, the Proponent Pr and the Opponent Op. The
content of the dispute being that Pr attempts to assess the validity of
a particular thesis (called critical literal), whereas Op attacks Pr’s
claims in order to refute such thesis. We point out that in our setting
Op has the burden of proof on the opposite thesis, and not just the
duty to refute Pr’s thesis.

The challenge between the parties is formalised by means of argu-
ment exchange. In the majority of concrete instances of argumentation
frameworks, arguments are defined as chains of reasoning based on
facts and rules captured in some formal language (in our case, a de-
feasible derivation P). Each party adheres to a particular set of game
rules as defined below. The players partially share knowledge of a
defeasible theory. Each participant has a private knowledge regarding
some rules of the theory. Other rules are known by both parties, but
this set may be empty. These rules along with all the facts of the
theory and the superiority relation represent the common knowledge
of both participants. By putting forward a private argument during a
step of the game, the agent increases the common knowledge by the
rules used within the argument just played.

Define the DArT to be Darg = (F,R,>) such that (i) R = RPr ∪
ROp ∪ RCom, (ii) RPr (ROp) is the private knowledge of Pr (Op),
and (iii) RCom is the (possibly empty) set of rules known by both
participants. We use the superscript notation Di

arg, Ri
Pr, Ri

Op, and

Ri
Com to denote such sets at turn i. Darg is assumed coherent and

consistent, i.e., there is no literal p such that: (i) Darg � +∂p and
Darg � −∂p, and (ii) Darg � +∂p and Darg � +∂∼p.

We now formalise the game rules which establish how the common
theory Di

arg is modified based on the move played at turn i.
The parties start the game by choosing the critical literal l to dis-

cuss about: Pr has the burden to prove +∂l by using the current

common knowledge along with a subset of RPr, whereas Op’s final
goal is to prove +∂∼l using ROp instead of RPr. The players may not
present arguments in parallel: they take turn in making their move.
The repertoire of moves at each turn just includes 1) putting forward
an argument, and 2) passing.

When putting forward an argument at turn i, Pr (Op) may bring a
demonstration P whose terminal literal differs from l (∼l). When a
player passes, she declares her defeat and the game ends. This happens
when there is no combination of the remaining private rules which
proves her thesis.

Hence, the initial state of the game is D0
arg = (F,R0

Com,>) with
R0

Com = RCom, and R0
Pr = RPr, R0

Op = ROp. If D0
arg � +∂l, Op starts

the game. Otherwise, the Pr does so.
At turn i, if Pr plays Ri

arg, then

• Di−1
arg � +∂∼l (Di−1

arg � −∂l if i = 1);
• Ri

arg ⊆ Ri−1
Pr ;

• Di
arg = (F,Ri

Com,>);
• Ri

Pr = Ri−1
Pr \ Ri

arg, Ri
Op = Ri−1

Op , and Ri
Com = Ri−1

Com ∪ Ri
arg;

• Di
arg � +∂l.

At turn i, if Op plays Ri
arg, then

• Di−1
arg � +∂l;

• Ri
arg ⊆ Ri−1

Op ;

• Di
arg = (F,Ri

Com,>);
• Ri

Pr = Ri−1
Pr , Ri

Op = Ri−1
Op \ Ri

arg, and Ri
Com = Ri−1

Com ∪ Ri
arg;

• Di
arg � +∂∼l.

4.1 Strategic Argumentation Problem

Pr’s instance for turn i: Let l be the critical literal, Ri−1
Pr be the set

of the private rules of Pr, and Di−1
arg be such that either Di−1

arg � −∂l if
i = 1, or Di−1

arg � +∂∼l otherwise.
Question: Is there a subset Ri

arg of Ri−1
Pr such that Di

arg � +∂l?

Op’s instance for turn i: Let l be the critical literal, Ri−1
Op be the set

of the private rules of Op, and Di−1
arg be such that Di−1

arg � +∂l.
Question: Is there a subset Ri

arg of Ri−1
Op such that Di

arg � +∂∼l?

5 Reduction

We now prove that the Strategic Argumentation Problem is NP-
complete. We start by presenting how to transform a DAgT into
a DArT, which requires reframing both literals and rules: whereas the
DAgT deals with three different modes of rules and modal literals, the
DArT has rules without modes and literals: Definitions 7 and 8 are
based on the following ideas:

• To flatten all modal literals with respect to internal negations modal-
ities. For instance, ∼p is flattened into the literal not_p, while OBLq
is obl_q.

• To remove modes from rules for BEL, OBL and INT. Thus, a rule
with mode X and consequent p is transformed into a standard,
non-modal rule with conclusion X p. An exception is when we deal
with belief rules, given that they do not produce modal literals.
Therefore, rule r : a ⇒OBL p is translated in rfl : a ⇒ obl_p,
while rule s : b⇒BEL q becomes sfl : b⇒ q.
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Function pflat flattens the propositional part of a literal and syntac-
tically represents negations; function flat flattens modalities.

Definition 7. Let Dsoc be a DAgT. The transformations pflat :
Litsoc → PROParg and flat : ModLitsoc ∪ Litsoc → Litarg are

pflat(p) =
{

p ∈ PROParg if p ∈ PROPsoc
not_q ∈ PROParg if p = ¬q, q ∈ PROPsoc

flat(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

pflat(q) if p = q,
obl_pflat(q) if p = OBLq
¬obl_pflat(q) if p = ¬OBLq
int_pflat(q) if p = INTq
¬int_pflat(q) if p = ¬INTq.

Given that in the agent logic a belief modal literal is not BELp but
simply p, we have that flat(p) = pflat(p) whenever the considered
mode is BEL, while flat(X p) = x_pflat(p) if X = {OBL, INT} (and
consequently x is obl if X = OBL, int otherwise).

We need to redefine the concept of complement to map modal
literals into an argumentation logic with literals obtained through
flat. Thus, if q ∈ PROParg is a literal p then ∼q is not_p; and if q
is not_p, then ∼q is p. Moreover, if q ∈ Litarg is x_pflat(p) then
∼q = x_pflat(∼p); and q is ¬x_pflat(p) then ∼q = x_pflat(p).

We now propose a detailed description of facts and rules introduced
by Definition 8. In the Restoring Sociality Problem we have to select
a subset of factual intentions, while in the Strategic Argumentation
Problem we choose a subset of rules to play to defeat the opponent’s
argument. Therefore, factual intentions in Dsoc are modelled in Darg
as strict rules with empty antecedent (rp), while factual beliefs and
obligations are facts of Darg.

We recall that, while proving ±#X q, a rule in Dsoc may fire if either
is of mode X , through convert, or through conflict. Hence, a rule r in
Dsoc has many counterparts in Darg. Specifically, rfl is built from r
by removing the mode and flattening all antecedents, as well as the
consequent p which now embeds the mode introduced by r .

Moreover, if r ∈ RBEL[p] then it may be used through conversion
to derive X p. To capture this feature, we introduce a rule rCvx with
conclusion x_pflat(p) and where for each antecedent a ∈ A(r) the
corresponding in A(rCvx) is x_pflat(a) according either to clause (3)
of +ΔX or to condition 2. of Definition 5.

In Dsoc, it is easy to determine which rule may fire against one
another, being that consequents of rules are non-modal literals. Even
when the rules have different modes and the conflict mechanism is
used, their conclusions are two complementary literals. Given the
definition of complementary literals obtained through flat we have
introduced after Definition 7, this is not the case for the literals in
Darg. The situation is depicted in the following theory:

r : a ⇒OBL p rfl : a ⇒ obl_p
s : b⇒INT ¬p sfl : b⇒ int_not_p
t : c ⇒BEL p tfl : c ⇒ p.

Here, r may fire against s through Cf(OBL, INT) while rfl cannot,
given that obl_p is not the complement of int_not_p. In the same
fashion, if we derive +∂BELc then t may fire against s because of
Cf(BEL, INT), while if we have either +∂OBLc or +∂INTc then the con-
flict between beliefs and intentions is activated by the use of r through
either Cv(BEL,OBL) or Cv(BEL, INT), respectively. Nonetheless, in
both cases there is no counterpart of t in Darg able to fire against
int_not_p.

To obviate this issue, we introduce a defeater rCfOI where (i) we
flatten the antecedents of r , and (ii) the conclusion is the intention of

the conclusion of r, namely int_pflat(C(r)). This means that when-
ever r fires, so does rCfOI attacking sfl. Notice that being rCfOI a
defeater, such a rule cannot derive directly +∂int_pflat(p) but just
prevents the opposite conclusion. The same idea is adopted for rules
rCfbelx and rCvyCfx: defeaters rCfbelx are needed to model conflict
between beliefs and intentions (as rule t in the previous example),
whereas defeaters rCvyCfx take care of situations where r ∈ RZ may
be used to convert Z into Y and Z prevails over X by Cf.

Thus in the previous example, we would have: (i) rCfOI : a �

int_p, (ii-iii) tCfbelx : c � x_p, (iv-v) tCvxCfint : x_c � int_p, with
x ∈ {obl, int}.

Antecedents in Dsoc may be the negation of modal literals; in that
framework, a theory proves ¬X p if such theory rejects X p (as stated
by condition 3. of Definition 4). In Darg we have to prove ¬x_pflat(p)
This is mapped in Darg through conditions 8–10 of Definition 8 and
the last condition of >.

Definition 8. Let Dsoc = (Fsoc,RBEL,ROBL,RINT,>soc,V ,F ) be a
DAgT. Define Darg = (F,R,>) (the argumentation counterpart of
Dsoc) to be a DArT such that

F = {flat(p) |p ∈ Fsoc, p ∈ Lit or p = OBLq } (1)
R = {rp : → int_pflat(p) |INTp ∈ Fsoc } (2)

∪ {rfl :
⋃

a∈A(r )

flat(a) ↪→ flat(p) |r ∈ RX [q], X = BEL and p = q,
or p = Xq ∈ ModLit}

(3)

∪ {rCvx :
⋃

a∈A(r )

x_pflat(a) ↪→ x_pflat(p) | (4)

r ∈ RBEL
sd [p], A(r ) � ∅, A(r ) ⊆ Lit, x ∈ {obl, int } }

∪ {rCvyCfx :
⋃

y_pflat(a)∈A(rCvy )

y_pflat(a) � x_pflat(p) | (5)

rCvy ∈ R[y_pflat(p)], x, y ∈ {obl, int }, x � y }
∪ {rCfbelx :

⋃
a∈A(r )

flat(a) � x_pflat(p) |r ∈ RBEL[p], x ∈ {obl, int } }

(6)

∪ {rCfOI :
⋃

a∈A(r )

flat(a) � int_pflat(p) |r ∈ ROBL[p]} (7)

∪ {r−xp : x_pflat(p) ⇒ xp |r ∈ RY .¬Xp ∈ A(r ) } (8)
∪ {r−negxp : ⇒ ∼xp |r−xp ∈ R } (9)
∪ {rn−xp : ∼xp ⇒ ¬x_pflat(p) |r−negxp ∈ R } (10)

> = {(rα, sβ ) |(r, s) ∈>soc, α, β ∈ {fl, Cvx,CvxC f y, Cfbelx, CfOI } }
∪ {(rfl, sn−xp) |rfl ∈ R[x_pflat(p)]} (11)
∪ {(r−xp, s−negxp) |r−xp, sdum−negxp ∈ R }.

We prove the correctness of the transformation of Definition 8
by showing that such a transformation preserves both positive and
negative provability for any given literal.

Theorem 9. Let Dsoc = (Fsoc,RBEL,ROBL,RINT,>soc,V ,F ) be a
DAgT and Darg be the argumentation counterpart of Dsoc. Given
p ∈ Lit ∪ModLit and # = {Δ, ∂}:
1. Dsoc � ±#BELp iff Darg � ±#flat(p);
2. Dsoc � ±#X p iff Darg � ±#flat(X p), X ∈ {OBL, INT}.
Proof. For space reasons, see [6] for the full proof. �

To show that the Strategic Argumentation Problem is NP-complete,
we have prove that the proposed transformation is polynomial.

Theorem 10. There is a linear transformation from any DAgT Dsoc
to its argumentation counterpart Darg.
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Proof. The transformations of Definition 8 are applied once to each
rule and each tuple of the superiority relation. Transformation (1)
maps one fact in Dsoc into one fact in Darg. Transformation (2) maps
one primitive intention Dsoc into one strict rule in Darg. Transforma-
tions (3) and (7) again copy one rule into one rule. (4)–(6) generate
two rules in Darg for every belief rule in Dsoc. (8)–(10) generate a
total of three rules in Darg for each negative modal literal in Dsoc.
(11) generates thirty-two tuples in Darg for each tuple in >soc and two
tuples for each negative modal literal in Dsoc.

The above reasoning shows that the transformations perform a
number of steps that is, in the worst case, smaller than thirty-two
times the size of Dsoc. This proves the claim. �

Theorem 11. The Strategic Argumentation Problem is NP-complete.

Proof. First, the Strategic Argumentation Problem is polynomially
solvable on non-deterministic machines since, given a DArT Darg, we
guess a set of rules Ri

arg and we can check the extension in polynomial
time [9]. Second, the Strategic Argumentation Problem is NP-hard. In
fact, we map the Restoring Sociality Problem [7] into the Strategic Ar-
gumentation Problem. Given a (deviant) DAgT Dsoc, Dsoc is mapped
into its argumentation counterpart Darg (Definition 8). The transfor-
mation is polynomial (Theorem 10) and correct (Theorem 9). �

6 Conclusion

Almost all research in AI on argumentation assumes that strategic
dialogues are games of complete information, that is where the struc-
ture of the game is common knowledge among the players. Following
[11, 17], we argued that argument games work under incomplete in-
formation: not knowing the other player’s knowledge, each player
cannot predict which arguments will be attacked and which counterar-
guments will be employed for attacking her arguments. We proved
that the problem of deciding what set of rules to play at a given move
is NP-complete even if the problem of deciding whether a given the-
ory (defeasibly) entails a literal can be computed in polynomial time.
To this end, we mapped our problem to the NP-complete Restoring
Sociality Problem proposed in [7]. Our research effort is preliminary
to a game-theoretic analysis of strategic dialogues, since it studies the
computational cost for logically characterising the problem that any
argumentation game with incomplete information potentially rises.

In this paper we focused on games with an asymmetry with the
information shared by the players, but with a symmetry on what the
two parties have to prove: whereas Pr has to prove l (i.e., +∂l), Op
has to prove ∼l (i.e., +∂∼l); however, it is possible to have games
where the two parties have a different burden on proof, namely, the
proponent Pr has to prove l while the opponent Op has to disprove it.
In DL this can be achieved either by proving that the opposite holds,
namely +∂∼l or simply by showing that l is not provable, i.e., −∂l.
In this case we have two different types of strategic argumentation
problems: one for Pr (which is the same as the current one), and one
for Op. For Op, the related decision problem is if there exists a subset
of her private rules which, once added to the current set of public
rules, allows the resulting theory to prove −∂l. It is easy to understand
that such an “attack” is either against l, or against one premise in the
derivation. Both share one condition, that is, a rule must change “its
status”: from being discarded such a rule must become applicable.
This is the case only when, given a theory D, its revision D′ and
an antecedent a, we have that D proves −∂a, while D′ proves +∂a.
That being said, we argue that the argumentation game to disprove
l reduces to the one presented in this paper where the opponent has

the burden to prove a. It seems reasonable that even this problem is
NP-complete. An investigation of the topic is left for future work.

The NP-completeness result of the paper is proved for the ambiguity
blocking, team defeat variant of DL. However, the proof of the result
does not depend on the specific features of this particular variant of
the logic, and the result extends to the other variants of the logic
(see [3] for the definition of the various variants). The version of
the argumentation logic presented in this paper does not correspond
to the grounded semantics for Dung’s style abstract argumentation
framework (though it is possible to give such a semantics for it, see
[4]). However, the ambiguity blocking variant corresponds to Dung’s
grounded semantics [4]. Accordingly, strategic argumentation seems
to be a computationally infeasible problem in general.

In our game the superiority relation is known a priori by both
players. If not so, the problem reduces to revising the corresponding
Agent Logic by changing a combination of rules and superiority
relation. [5] proved that the problem of revising a defeasible theory
by only modifying the superiority relation is NP-complete.
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