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Abstract. This article deals with the fair allocation of indivisible
goods and its generalization to matroids. The notions of fairness un-
der consideration are equitability, proportionality and envy-freeness.
It is long known that some instances fail to admit a fair allocation.
However, an almost fair solution may exist if an appropriate relax-
ation of the fairness condition is adopted. This article deals with a
matroid problem which comprises the allocation of indivisible goods
as a special case. It is to find a base of a matroid and to allocate it
to a pool of agents. We first adapt the aforementioned fairness con-
cepts to matroids. Next we propose a relaxed notion of fairness said
to be near to fairness. Near fairness respects the fairness up to one
element. We show that a nearly fair solution always exists and it can
be constructed in polynomial time in the general context of matroids.

1 Introduction

The problem of allocating indivisible goods has been widely stud-
ied in computer science [8, 3, 16, 11, 2]. It is defined on a set S of
m indivisible goods and n agents. Each agent i ∈ {1, ..., n} has a
non-negative utility ui(e) ≥ 0 for each good e ∈ S. For the pur-
poses of notation, ui(S

′) designates the utility of a subset of goods
S′ ⊆ S and [n] means {1, ..., n}. The utilities are additive, i.e.
ui(S

′) =
∑

i∈S′ ui(e) for all S′ ⊆ S and ui(∅) = 0 for all i ∈ [n].
We suppose that all the instances are normalized to 1, i.e. ui(S) = 1
for all i ∈ [n], this means that ideally each agent wants to possess
all the goods. The objective is to find an allocation or a partition of
S into {S1, S2, ..., Sn} so that Si is the share of agent i ∈ [n]. For
the sake of fairness, we consider three notions, namely equitability,
proportionality and envy-freeness. An allocation {S1, ..., Sn} is eq-
uitable (as defined in [6, 3]) if ui(Si) = uj(Sj) for all i �= j, it
is proportional if ui(Si) ≥ 1

n
for all i ∈ [n], and it is envy-free if

ui(Si) ≥ ui(Sj) for all i �= j.
In [12, 13], Gourvès et al. introduce a problem that generalizes

the allocation of indivisible goods. This problem is defined on a ma-
troidM = (X,F) where X is a set of elements and F a family of
subsets of X. A feasible solution, called a base in what follows, is
a member of F of maximal size. More details on matroids are given
in Section 2. Given n ≥ 2 agents with non-negative and additive
utilities ui(e) ≥ 0 for all e ∈ X and for all i ∈ [n], the objective
is to find a base B partitioned into n parts {B1, ..., Bn} so that Bi

is the part of agent i ∈ [n]. This problem has two main difficulties,
first to find a base B and secondly to partition it into n parts. For the
sake of fairness, it would be interesting to use the fairness notions
defined for resource allocation problems. However, these definitions
are not directly applicable on matroids, an appropriate definition is
needed. In this paper, we aim to adapt the definitions of equitability,
proportionality and envy-freeness to the general matroid problem.
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Matroid theory is a well established field with nice intersections
with combinatorial optimization [20]. Beyond the allocation of in-
divisible goods, the matroid problem may models several situations,
some of which are quoted in [15, 12, 13]. As an example, we mention
the following application.

Example 1 A national museum is going to open new branches in
several provincial towns. Some items from the stock of the main mu-
seum will be transferred to the branches. The stock is partitioned
in categories (statue, painting, pottery, etc.) and for each category
there is an upper bound on the number of pieces that the curator of
the main museum agrees to lend. How should we allocate the items?
From the point of view of the citizens whose town accommodates a
branch, the allocation should be fair. Indeed, nobody wants to see his
branch less attractive than another. This problem can be modeled by
the partition matroid as explained in Section 2.

It is known that an allocation of indivisible goods which is eq-
uitable or proportional or envy-free may not always exist (when
all goods must be allocated). Indeed consider an instance with two
agents and only one good. Allocating this good to one of the two
agents will generate envy and no equitability to the other one, more-
over proportionality can not be reached since the good is indivisible.
Over and above, the existence of equitable, proportional or envy-
free allocations can not be decided in polynomial time. Demko and
Hill [8] show that deciding the existence of a proportional alloca-
tion of indivisible goods is NP-complete. Markakis and Psomas [17]
strengthen this result by proving that it is NP-complete to decide if
there is an allocation where every person receives a bundle of value
at least 1

cn
for any constant c ≥ 1. Lipton et al. [16] prove the NP-

completeness of deciding the existence of envy-free allocations. In
the same way, one can show that deciding the existence of an equi-
table allocation is also NP-complete.
Due to these negative situations, one can think of relaxing these

notions of fairness. To this end, we propose a relaxed notion said
to be near of fairness. Near fairness respects the fairness up to one
element. The idea of reaching fairness up to one bundle appears in
[5] where Budish introduces envy bounded by a single good. He says
that an allocation satisfies envy bounded by a single good if for any
pair of agents i �= j, either i does not envy j or there exists a good in
the share of agent j such that by removing it, i becomes not envious
of j. Likewise, Parkes et al. [19] study a multi-resource allocation
problem with demands. They say a mechanism is envy-free up to
one bundle if for every vector of bundles b, it outputs an allocation
such that for all i, j ∈ [n], ui(Si) ≥ ui(Sj − bi). In the same way,
we propose some definitions to reach equitability, proportionality and
envy-freeness up to one element. These definitions allow on the one
hand the assurance of the existence of solutions which will satisfy
these fairness notions, and on the other hand, finding them in poly-
nomial time. Our definitions are adapted to the general problem on
matroids.
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The contribution of this paper is first a redefinition of the no-
tions of equitability, proportionality and envy-freeness in the general
context of matroids, we will also introduce the notion of jealousy-
freeness which is close to equitability. Then we will propose relaxed
definitions of these notions up to one element called near jealousy-
freeness, near proportionality and near envy-freeness and we will
highlight some relations between these concepts. We propose poly-
nomial time algorithms for solving near jealousy-freeness and near
proportionality on matroids. We also present a decentralized polyno-
mial time algorithm for solving near envy-freeness when there are
two agents. The proposed solutions are deterministic.
The paper is organized as follows: Section 1.1 makes an overview

of related works. Section 2 presents the setting. Equitability and
jealousy-freeness are the subject of Section 3, proportionality is con-
sidered in Section 4 and envy-freeness in Section 5. Future works
are discussed in Section 6. Due to space limitations, some proofs are
omitted.

1.1 Related work

The present paper is related to the problem of allocating indivisible
goods with additive utilities [8, 16, 1, 2, 17] and its generalization
to matroids [12, 13]. We consider the notions of equitability, propor-
tionality and envy-freeness as defined in [6, 3].
There are several papers that deal with envy-freeness in the allo-

cation of indivisible goods [16, 7, 2, 18]. Instead of finding envy-free
allocations, the problem of minimizing envy has received much at-
tention [16, 18]. Lipton et al. [16] prove that solving and approximat-
ing the problem of finding an allocation so that envy is minimized are
NP-hard. They also investigate allocations with bounded envy and
they present a polynomial time algorithm that constructs allocations
in which the envy is bounded by a marginal utility.
Since proportional allocations do not always exist, one can think

of relaxing proportionality and reaching a value smaller than 1
n

[8, 17, 12, 13]. Demko and Hill [8] show the existence of an allo-
cation in which the utility of each agent i for his share is at least
Vn(α) ∈ [0, 1

n
] where Vn is a nonincreasing function of α defined as

the largest utility of an agent for a single good. Markakis and Psomas
[17] strengthen this result by presenting a polynomial time algorithm
that constructs an allocation where the utility of each agent for his
share is at least Vn(αi) ≥ Vn(α) where αi is the largest utility of
agent i for a single good. Gourvès et al. [12] extend the centralized
algorithm of Markakis and Psomas [17] to the general problem on
matroids. They prove that the utility of each agent for his part is at
leastWn(αi) ≥ Vn(αi) whereWn is a new function of αi, defined
as the largest utility of agent i for a single element of the matroid.
In [13], they present a decentralized algorithm returning a base of a
matroid where each agent i has at least Vn(αi) when n ≤ 8 agents.
This paper deals with relaxed notions of fairness which allow the

notions to be satisfied up to one element. This idea is not new. Bud-
ish [5] introduces envy bounded by a single good in the context of
allocating indivisible goods without envy. Parkes et al. [19] study
an allocation problem where each elementary endowment is not a
single good but a bundle of heterogeneous resources. They propose
solutions which satisfy several notions of fairness simultaneously, in-
cluding envy-freeness up to one bundle. The work of Demko and Hill
[8] for allocating indivisible goods also evokes the fairness up to one
element. For two agents, they show how to allocate all but one goods
in a deterministic manner and arrange a lottery for the remaining
good to ensure an expected utility of 1

2
for both agents.

2 The setting

A matroid M = (X, F) consists of a finite set X of m elements
and a collection F of subsets of X such that:

(i) ∅ ∈ F ;
(ii) if F2 ⊆ F1 and F1 ∈ F then F2 ∈ F ;
(iii) for every couple F1, F2 ∈ F such that |F1| < |F2|, there exists

x ∈ F2\F1 such that F1 ∪ {x} ∈ F .

The elements of F are called independent sets. Deciding whether
a subset of elements is independent is done with a routine called
independence oracle. In what follows we delibarately neglect its time
complexity when the time complexity of an algorithm is given.
Inclusion-wise maximal independent sets are called bases. All the

bases of a matroid M have the same cardinality r(M), defined as
the rank of M. Without loss of generality, we suppose that for all
x ∈ X, {x} ∈ F , so each x ∈ X belongs to at least one base (from
axiom (iii) of matroids).
Matroids are known to model several structures in combinatorial

optimization. For instance, the graphic matroid is defined on the set
of edges of a graph G, and the independent sets are the forests of G
(subsets of edges without cycles). A base of the graphic matroid is a
spanning tree if the graph G is connected.
The partition matroid is defined on a set X partitioned into k

disjoint sets X1, . . . , Xk for k ≥ 1. Given k integers bi ≥ 0
(i = 1, ..., k), the independent sets are all the sets F ⊆ X satisfying
|F ∩ Xi| ≤ bi for all i = 1, ..., k. Example 1 can be modeled with
a partition matroid. X is the stock of the national museum which is
partitioned in k categories. Each bi is the maximum number of items
of Xi that the curator agrees to transfer.
The free matroid is defined on a set X, each subset F ⊆ X is

independent and the unique base is X. The problem of allocating
indivisible goods can be seen as the free matroid such that X is the
set of goods. An allocation of the goods on n agents is a partition
of X into X1, ..., Xn so that Xi is the share of agent i. Another
modelization with the partition matroid is given in [12, 13].
We often use + instead of ∪, and − instead of \. We also use the

shorthand notations F + e for F ∪ {e} and F − e for F \ {e}.
The bases of a matroid satisfy the following properties.

Theorem 1 [4] Let M be a matroid. Let A and B be bases of M
and let x ∈ A − B. Then there exists y ∈ B − A such that both
A− x+ y and B − y + x are bases of M.

Theorem 2 [14] Let A and B be bases of a matroid M, and
let {A1, . . . , An} be a partition of A. There exists a partition
{B1, . . . , Bn} of B such that A−Ai+Bi, 1≤ i≤n are all bases.

Consider the additive utility function u : X → IR+. A classical
optimization problem is to find a base B that maximizes u(B) =∑

e∈B
u(e). This problem is solved by the well-known polynomial

time GREEDY algorithm [9] which takes as input M and u and it
outputs a base ofM of maximum utility u. The maximum utility of
a base is denoted by OPTu(M).
We are given a matroidM = (X,F), an independent set F ∈ F

and an additive utility function u. The completion of F , denoted by
C(M, F ), consists of all sets E ⊆ X such that F ∪ E is a base
ofM. The maximal completion of F with respect to u, denoted by
C
max(M, F, u), consists of all setsE ⊆ X such that F ∪E is a base
ofM and u(E) is maximum. We suppose C(M, B) is never empty.
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In particular, C(M,B) = {∅} for any base B ofM. An element of
C
max can be found with GREEDY [9].
Given a matroidM = (X, F) and an independent set X ′ ∈ F ,

the contraction of M by X ′, denoted by M/X ′, is the structure
(X \ X ′, F ′) where F ′ = {F ⊆ X \ X ′ : F ∪ X ′ ∈ F}. It is
well-known thatM/X ′ is also a matroid.
Lemma 1 refers to Lemma 1 in [12].

Lemma 1 [12] Let M = (X, F) be a matroid, u : X → IR+

an additive utility function, B∗ a maximum base according to u and
F ∈ F such that |F | > 0. If F ′ ⊆ B∗ denotes the r(M)− |F | ele-
ments with minimum utility u of B∗, then OPTu(M/F ) ≥ u(F ′).

2.1 The model

We are given a matroidM = (X,F)whereX = {x1, ..., xm}, a set
N of n agents and a utility ui(x) ∈ IR+ for every (i, x) ∈ N ×X.
Any agent i’s utility for a subset F of X is denoted by ui(F ) and
defined as

∑
x∈F

ui(x). As a convention ui(∅) = 0.
A solution to our problem is called a base allocation. A base allo-

cation is a base B ofM partitioned into n subsets {B1, ..., Bn}. Bi

is called the part (or the share) of agent i. Our work deals with the
existence and the computation of nearly fair base allocations where
fairness ∈ {equitability, proportionality, envy-freeness}.
The maximum utility of an agent i ∈ N for a base ofM is denoted

by OPTi(M). We assume that for every agent i, there exists a base
Gi∈F such that ui(G

i)=OPTi(M)=1 and ui(F )≤1,∀F ∈F .
This property can be satisfied after a simple normalization of the
instance.
In Example 1, the curator of each branch of the national museum

assigns a utility to every item of the stock. One seeks a fair allocation
of the items. Using the partition matroid model, one can satisfy the
bounds on the maximum number of items transferred per category.

3 Equitability and Jealousy

Definition 1 (Equitability) A base allocation is equitable if
ui(Bi) = uj(Bj) for each pair (i, j) of agents.

There is not always an equitable base allocation even in the spe-
cial case of allocating indivisible goods. Moreover, deciding if there
exists an equitable base allocation is NP-complete. This is done by a
reduction of PARTITION (problem [SP12] in [10])
In order to relax equitability, let us introduce the notion of jealousy.

Definition 2 (Jealousy-Freeness)
• Agent i is jealousy-free when ui(Bi) ≥ uj(Bj) for all j ∈ N ;
• A base allocation is jealousy-free when everybody is jealousy-free.

A jealousy-free base allocation is equivalent to an equitable base
allocation. Let us introduce a relaxation of jealousy-freeness up to
one element.

Definition 3 (Near Jealousy-Freeness)
• Agent i is nearly jealousy-free when ui(Bi) ≥ uj(Bj −x) for all

x ∈ Bj and for all j ∈ N ;
• A base allocation is nearly jealousy-free when every agent is

nearly jealousy-free.

Proposition 1 Agent i is nearly jealousy-free if and only if
ui(Bi) ≥ uj(Bj)− min

x∈Bj

uj(x) for all j ∈ N .

Theorem 3 A nearly jealousy-free base allocation always exists and
it can be computed within O(nm lnm) time.

Proof Let us prove that the solution returned by Algorithm 1 is
nearly jealousy-free. In Algorithm 1, ties are broken by choosing the
agent (Step 3) or the element (Step 4) with minimum index.

Algorithm 1: Near Jealousy-Freeness
Data: A matroidM = (X,F), n = |N | agents and a profile of

utilities (ui)i∈N

Result: A nearly jealousy-free base allocation B
B ← ∅ and Bi ← ∅ for every i ∈ N1

while B is not a base ofM do2

find i ∈ N such that ui(Bi) = minj∈N uj(Bj)3

find x ∈ X \B such thatB+x ∈ F and ui(x) is maximum4

B ← B + x and Bi ← Bi + x5

return B = {B1, . . . , Bn}6

Obviously, the algorithm finds a base ofM and its time complex-
ity is dominated by the n sortings of the elements of X which are
done within O(m lnm) time (Step 4).
Let i, j ∈ N be two agents and without loss of generality, as-

sume ui(Bi) ≥ uj(Bj). Consider the last element x ∈ X added
to Bi. This element corresponds to an iteration where the parts of
agents i and j were B′

i = Bi − x and B′
j ⊆ Bj , respectively.

By construction, agent i has been selected to receive a new element
x thus we have ui(B

′
i) ≤ uj(B

′
j). Every newly inserted element

(Step 4) is the largest within the set of elements which can be added
and satisfy the independence property (i.e. B′

i + x ∈ F). Thus
ui(x) = miny∈Bi

ui(y). Therefore ui(Bi) − miny∈Bi
ui(y) =

ui(B
′
i) ≤ uj(B

′
j) ≤ uj(Bj), which means that agents i and j are

both nearly jealousy-free. �

Example 2 Consider the partition matroid M = (X,F) defined by
X =

⋃3
i=1 Xi with X1 = {e1}, X2 = {e2}, X3 = {e3, e4, e5}

and F = {F ⊆ X : |F ∩X1| ≤ 1, |F ∩X2| ≤ 1, |F ∩X3| ≤ 2}.
There are 3 agents, their utilities are given in the following table.

i ui(e1) ui(e2) ui(e3) ui(e4) ui(e5)

1 0.4 0.25 0.2 0.15 0.15

2 0.3 0.2 0.2 0.2 0.3

3 0.25 0.25 0.25 0.25 0.25

There is no jealousy-free base allocation. However Algorithm 1 gives
the base allocation B1 = {e1}, B2 = {e5} and B3 = {e2, e3}
which is nearly jealousy-free.

4 Proportionality

Definition 4 (Proportionality)

• A base allocation is proportional for agent i when ui(Bi) ≥
1
n

;
• A base allocation is proportional when it is proportional for every

agent.

A proportional base allocation does not always exist. In addition
deciding the existence of a proportional base allocation of a given
matroid is NP-complete since it generalizes the existence of a pro-
portional allocation of indivisible goods which is NP-complete [8].
We propose a relaxation of proportionality up to one element.
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Definition 5 (Near Proportionality)
• A base allocation is nearly proportional for agent i if there exists

f ∈ B and e ∈ X such that (B − f) + e is a base and
ui((Bi − f) + e) ≥ 1

n
;

• A base allocation is nearly proportional when it is nearly propor-
tional for every agent.

A base allocation is nearly proportional for agent i if it is either
proportional or there is some element f ∈ B such that by removing
it, agent i can add a new element e in his part and the base allocation
becomes proportional. The element f is not necessarily inBi (in this
case, (Bi − f) + e = Bi + e).
A nearly proportional base allocation always exists and it can

be found with Algorithm 2 which uses Algorithm 3. One can use
GREEDY (see Section 2) for Step 6 of Algorithm 2. The way the ele-
ments of F2 are allocated in Step 7 of Algorithm 2 has no incidence
on the analysis of the resulting base allocation.

Algorithm 2: Near Proportionality
Data: A matroidM = (X,F), n = |N | agents and a profile of

utilities (ui)i∈N

Result: A nearly proportional base allocation B
N1 ← {i ∈ N : maxx∈X ui(x) ≤ 1

n
} and N2 ← N −N11

F1 ← ∅ and F2 ← ∅2

if N1 �= ∅ then3

F1 ← Algorithm 3 (M, n,N1, (ui)i∈N1
)4

if N2 �= ∅ then5

let F2 be any base ofM/F16

allocate randomly the elements of F2 to the agents of N27

return B = F1 ∪ F28

Algorithm 3:

Data: A matroid M̂, an integer n̂, a set of agents N̂ and a
profile of utilities (ui)i∈N̂

for all i ∈ N̂ do1

let Gi be the result of GREEDY(M̂, ui) where2

Gi = {ei1, . . . , e
i

r(M̂)
} and ui(e

i
1) ≥ . . . ≥ ui(e

i

r(M̂)
)

OPTi(M̂) ← ui(G
i)3

let ki be the largest index such that4

ui({e
i
1, . . . , e

i
ki
}) ≤ OPTi(M̂)

n̂

pick any � ∈ N̂ such that k� ≤ ki, for all i ∈ N̂5

B� ← {e�1, . . . , e
�
k�
}6

if |N̂ | = 1 then7

return B�8

else9

return B� ∪ Algorithm 3
(
M̂/B�, n̂−1,N̂ − �,(uj)j∈N̂−�

)
10

Theorem 4 A nearly proportional base allocation always exists and
it can be computed within O(n2m lnm) time.

Proof Let us analyze B, the solution returned by Algorithm 2. As a
notation n = |N | and ni = |Ni| for i = 1, 2. Hence n = n1 + n2.
By construction, there exists an element valued at least 1/n for

every agent in N2. If N2 �= ∅ then take any agent j ∈ N2, Bj

denotes its part. Let e ∈ X such that uj(e) ≥ 1/n and let B′ be

a base that contains e (every element belongs to a base). If e ∈ B,
then (B − e) + e is a base and uj((Bj − e) + e) ≥ uj(e) ≥ 1/n.
Otherwise e ∈ B′ − B and by Theorem 1, there exists f ∈ B such
that (B−f)+e is base. Moreover uj((Bj−f)+e) ≥ uj(e) ≥ 1/n.
As a consequence, B is nearly proportional for every agent j ∈ N2.
Now we focus on the agents ofN1 and we suppose n1 ≥ 1. Their

parts are built with Algorithm 3 which is recursive. Algorithm 3 is
executed |N1| times and each time, exactly one agent of N1 receives
his part (see Step 6).
In order to show that B is nearly proportional for every member

of N1, we follow the order by which the agents are allocated their
respective parts. For the sake of simplicity, and without loss of gen-
erality, let us name these agents 1, . . . , n1. That is, agent i ∈ N1 is
allocated Bi during the i-th recursive call of Algorithm 3.
We first show that for all i, i′ ∈ N1 satisfying i ≤ i′, it holds that

OPTi′(M/(
⋃
j<i

Bj)) ≥
n− i+ 1

n
(1)

The proof is by induction on i. When i = 1 then one has to show
that OPTi′(M) ≥ 1 for all i′ ∈ N1, which is true by the normal-
ization assumption. Suppose (1) holds for i = 1..p. Consider the
p-th recursive call of Algorithm 3 in which agent p is eventually al-
located Bp. In this case M̂ = M/(

⋃
j<p

Bj), n̂ = n − p + 1

and N̂ = {p, . . . , n1}. Because of Step 5, one has ki′ ≥ kp for all
i′ > p; ui′(G

i′) = OPTi′(M̂) by Step 3; ui′({e
i′

1 , . . . , e
i′

ki′
}) ≤

OPTi′ (M̂)

n̂
by Step 4. It follows that

ui′(G
i′)− ui′({e

i′

1 , . . . , e
i′

k
i′
}) ≥

n̂− 1

n̂
OPTi′(M̂) (2)

Use Lemma 1 with B∗ = Gi′ , F = Bp, F ′ = Gi′ \

{ei
′

1 , . . . , e
i′

k
i′
} and u = ui′ . We get that OPTi′(M̂/Bp) ≥

ui′(G
i′ \ {ei

′

1 , . . . , e
i′

ki′
}). By the additivity of ui′ , and the fact

that Gi′ ⊇ {ei
′

1 , . . . , e
i′

ki′
}, we deduce that OPTi′(M̂/Bp) ≥

ui′(G
i′) − ui′({e

i′

1 , . . . , e
i′

ki′
}). Use (2) and n̂ = n −

p + 1 to get that OPTi′(M̂/Bp) ≥ n̂−1
n̂

OPTi′(M̂) =
n−p

n−p+1
OPTi′(M̂). By the induction hypothesis, we know that

OPTi′(M̂) = OPTi′(M/
⋃

j<p
Bj) ≥ n−p+1

n
. It follows that

OPTi′(M/
⋃

j<p+1 Bj) = OPTi′(M̂/Bp) ≥ n−p

n−p+1
n−p+1

n
=

n−p

n
. The property holds for i = p+ 1 and Inequality (1) is proved.

Now, it remains to show thatB is nearly proportional for any agent
i ∈ N1. During the i-th call of Algorithm 3, agent i eventually re-
ceives Bi. At this moment M̂ = M/(

⋃
j<i

Bj), n̂ = n− i+1 and
N̂ = {i, . . . , n1}. At Step 2 of Algorithm 3, Gi is an optimal base
for M̂ according to ui and then ui(G

i) = OPTi(M̂). By Inequal-
ity (1) we get that ui(G

i) ≥ n−i+1
n

. By construction Bi consists of
the ki largest elements ofGi according to ui, that is {ei1, . . . , eiki

}. If
ki = |Gi| then ui(Bi) = ui(G

i) ≥ n−i+1
n

≥ 1
n
(the last inequality

is due to i ≤ n); B is nearly proportional for agent i. Now suppose
ki < |Gi|. We have ui({e

i
1, . . . , e

i
ki
}) ≤ OPTi(M̂)

n̂
by Step 4 and

there exists eiki+1 such that ui({e
i
1, . . . , e

i
ki+1}) > OPTi(M̂)/n̂.

Since OPTi(M̂) = ui(G
i) ≥ n−i+1

n
and n̂ = n − i + 1, we get

that ui({e
i
1, . . . , e

i
ki+1}) > 1/n.

If eiki+1 ∈ B, then (B − eiki+1) + eiki+1 is a base of M and
ui((Bi−eiki+1)+eiki+1) ≥ ui({e

i
1, . . . , e

i
ki+1}) ≥ 1/n. Otherwise

eiki+1 /∈ B and by Theorem 1, there exists f ∈ B such that (B −
f) + eiki+1 is a base of M. Moreover ui((Bi − f) + eiki+1) ≥

L. Gourvès et al. / Near Fairness in Matroids396



ui({e
i
1, . . . , e

i
ki+1}) ≥ 1/n, so B is nearly proportional for agent i.

To conclude, the time complexity of Algorithm 2 is due to the
O(n2) calls of GREEDY whose time complexity is O(m lnm). �

Example 3 The instance of Example 2 does not have a proportional
base allocation. However a nearly proportional base allocation can
be found with Algorithm 2. At Step 1, N1 = {2, 3} and N2 = {1}.
Then we apply Algorithm 3 on M, n = 3, N1 and (ui)i∈N1

.

In the first iteration of Algorithm 3, G2 = {e1, e5, e2, e3} and
G3 = {e1, e2, e3, e4}, so k2 = k3 = 1, � = 2 and B2 = {e1}.

The second iteration of Algorithm 3 is on M̂ = M/{e1} = (X−
e1,F

′) with F ′ = {F ⊆ X − e1 : |F ∩ X2| ≤ 1, |F ∩X3| ≤ 2},
n̂ = 2, N̂1 = {3} and u3. We get that G3 = {e2, e3, e4}, k3 = 1,

� = 3 and B3 = {e2} such that u3(B3) = 0.25 < OPT3(M̂)
n̂

=
u3(G

3)
2

= 0.75
2

. Finally, F1 = B2 ∪ B3.

For example, the set F2 = {e3, e4} is a base of M/F1 that can
be obtained with GREEDY. It remains to allocate the elements of F2

to the unique agent of N2 which is agent 1, so B1 = F2. Finally, the
resulting base is B = F1 ∪F2 = {B1, B2, B3} and it is not difficult
to see that B is nearly proportional.

5 Envy-Freeness

Definition 6 (Envy-Freeness)
• Agent i is envy-free when ui(Bi) ≥ ui(B

′
i) for all B′

i ∈
C(M, B −Bj) and for all j ∈ N ;

• A base allocation is envy-free when every agent is envy-free.

If agent i is given the opportunity to complete B−Bj into a base,
like agent j does with his partBj , then any such subsetB′

i would not
be better than Bi, from agent i’s point of view. For the special case
of allocating indivisible goods, Bj is the unique way of completing
B −Bj . Therefore Definition 6 in this context establishes that agent
i would not be better off with the part of agent j, which is consis-
tent with the standard notion of envy-freeness. Indeed we could have
defined envy-freeness as ui(Bi) ≥ ui(Bj) for each pair (i, j) of
agents however Definition 6 is stronger.
Note that if the base allocation B = {B1, . . . , Bn} is envy-free then

ui(Bi) = OPTi(M/(B −Bi)) for all i ∈ N (3)

One can prove that envy-freeness implies proportionality and the
equivalence for two agents also holds for the matroid problem as it is
done for the allocation of divisible / indivisible goods.
An envy-free base allocation does not always exist and deciding

the existence of an envy-free base allocation is NP-complete even in
the special case of allocating indivisible goods [16]. Let us present a
relaxation of envy-freeness up to one element.

Definition 7 (Near Envy-Freeness)
• Agent i is nearly envy-free with respect to agent j when ui(Bi) ≥

ui(B
′
i) for all B′

i ∈ C(M, (B−Bj)+e) where e ∈ X\(B−Bj)
and (B −Bj) + e ∈ F;

• Agent i is nearly envy-free when for all j ∈ N , either he does not
envy agent j or he is nearly envy-free with respect to agent j;

• A base allocation is nearly envy-free when every agent is either
envy-free or nearly envy-free.

Proposition 2 Agent i is nearly envy-free with respect to agent j if
and only if ui(Bi) ≥ ui(D)−min

x∈D
ui(x) for all D ∈ C(M, B−Bj).

Proof Assume that B = {B1, . . . , Bn} satisfies Definition 7 and
letD ∈ C(M, B −Bj). Suppose e = argminx∈D ui(x). We have
(B − Bj) + e ∈ F and D − e ∈ C(M, (B − Bj) + e). Hence by
Definition 7, ui(Bi) ≥ ui(D − e) = ui(D) − ui(e) = ui(D) −
minx∈D ui(x).
Conversely, let e ∈ X \ (B − Bj) with (B − Bj) + e ∈ F and let
B′

i ∈ C(M, (B − Bj) + e). Set D = B′
i + e; we have ui(e) ≥

minx∈D ui(x). Hence, ui(Bi) ≥ ui(D) − minx∈D ui(x) ≥
ui(D) − ui(e) = ui(B

′
i). �

Definition 7 is stronger than envy bounded by a single good [5]
in the context of allocating indivisible goods. Indeed if agent i is
envious of agent j then near envy-freeness means that by removing
any good from the part of j, agent i becomes not envious of j. Envy
bounded by a single good means there exists some good in the share
of j such that by removing it, agent i eliminates his envy for j.
Given a nearly envy-free base allocation, one can construct in

polynomial time a nearly envy-free base allocation satisfying Equal-
ities (3).

Lemma 2 A nearly envy-free base allocation satisfying Equalities
(3) is also nearly proportional.

Note that there exist examples showing that near-envy freeness
without Equalities (3) does not imply near proportionality.
Near proportionality does not imply near envy-freeness even for

two agents as shown in the following example.

Example 4 Let the free matroid M = (X,F) defined by X =
{e1, e2, e3} and F = {F ⊆ X}. The utilities are: u1(e1) = 0.4,
u1(e2) = u1(e3) = 0.3 and u2(ei) = 1

3
for all i ∈ {1, 2, 3}.

Consider the base allocation B = {B1, B2} with B1 = {e3} and
B2 = {e1, e2}. B is nearly proportional since u1((B1−e2)+e2) =
0.6 > 1

2
and u2(B2) =

2
3
> 1

2
but it is not nearly envy-free because

u1(B1) = 0.3 < u1(B2)−mine∈B2
u1(e) = 0.4.

5.1 Near Balance

We introduce the concept of near balance with respect to utility u,
inspired of the local optimality in the work of [1] in the context of
allocating indivisible goods.

Definition 8 (Near Balance) Given a matroid M = (X,F), a util-
ity function u : X → IR+ and an integer n ≥ 2, a base allocation
B = {B1, . . . , Bn} with u(B1) ≥ · · · ≥ u(Bn) is nearly balanced
with respect to utility function u when

i < j ⇒ u(Bj) ≥ u(Bi)− min
y∈Bi

u(y) ∀i, j ∈ [1..n] (4)

Corollary 1 A nearly balanced base allocation always exists and it
can be computed in polynomial time.

Proof Near balance corresponds to near jealousy-freeness in the
special case where the agents have the same utility function. The
result follows from Theorem 3 and Algorithm 1. �

5.2 Near Envy-Freeness for two agents

Algorithm 4 presents a decentralized algorithm that constructs a
nearly envy-free base allocation for two agents. Algorithm 4 draws
on the protocol Divide and Choose in [13] for finding a base alloca-
tion for two agents with guarantees on agents’ utilities.
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Algorithm 4: Near Envy-Freeness for two agents
Data: A matroidM = (X,F), agents 1 and 2, u1, u2

Result: A nearly envy-free base allocation
Agent 1 computes a base G1 maximum for u1 (with GREEDY)1

and he partitions it into G1
1 and B1

2 in such a way as to be near
balanced.
Agent 2 computes V i ∈ C

max(M, G1
i , u2) for i = 1, 2 (with2

GREEDY) then agent 2 chooses V k = arg max
i=1,2

u2(V
i) and

agent 1 takes G1
k for k ∈ {1, 2}.

Theorem 5 When there are two agents, a nearly envy-free base al-
location always exists and it can be computed in polynomial time.

Proof Let N = {1, 2}. Let G1 and G2 be two bases that maximize
u1 and u2, respectively. Suppose G1 is partitioned in G1

1 ∪ G1
2 in

such a way that G1
1 and G1

2 are nearly balanced with respect to u1.
Let V 1 ∈ C

max(M, G1
1, u2) and V 2 ∈ C

max(M, G1
2, u2). We

have thatG1
1∪V 1 andG1

2∪V 2 are two bases ofM. In addition, V 1

and V 2 are bases ofM/G1
1 andM/G1

2, respectively. Note that V 1∪
V 2 is not necessarily an independent set. Let us suppose without loss
of generality that u2(V

1) ≥ u2(V
2). By construction, u2(V

1) ≥
u2(D) for every D ∈ C(M, G1

1). From now on we analyze the
solution B = {G1

1, V
1}.

The agents clearly satisfy Equalities 3, so we only need to prove
that agent i ∈ {1, 2} is nearly envy-free with respect to agent 3− i.
Let us prove that agent 2 is envy-free with respect to agent 1. In

other words, u2(V
1) ≥ u2(D) for every D ∈ C(M, B \ G1

1) =
C(M, V 1). LetD ∈ C(M, V 1); hence D ∪ V 1 is a base.
Let G2 be a maximum base with respect to u2. Using Theo-

rem 2 with G1 = G1
1 ∪ G1

2 and G2, we get that G2 admits a
bi-partition G2

1 ∪ G2
2 such that G2

1 ∪ G1
1 and G2

2 ∪ G1
2 are two

bases ofM. Thus G2
1 and G2

2 belong to C(M, G1
1) and C(M, G1

2),
respectively. Since V 1 and V 2 belong to C

max(M, G1
1, u2) and

C
max(M, G1

2, u2), respectively, we get that u2(V
1) ≥ u2(G

2
1)

and u2(V
2) ≥ u2(G

2
2). Summing up these two inequalities gives

u2(V
1)+u2(V

2) ≥ u2(G
2
1)+u2(G

2
2) = u2(G

2) ≥ u2(D∪V 1).
Hence u2(V

2) ≥ u2(D). Now, since u2(V
1) ≥ u2(V

2) by hypoth-
esis, the result follows.
Let us prove that agent 1 is nearly envy-free with respect to agent

2. G1 is partitioned in G1
1 ∪ G1

2 such that G1
1 and G1

2 are nearly
balanced with respect to u1. We are going to prove that agent 1 is
nearly envy-free using Proposition 2. Let D ∈ C(M, G1

1). We have
G1

1 ∪ D is a base and then we deduce that u1(G
1
1) + u1(G

1
2) ≥

u1(G
1
1 ∪D). Hence,

u1(G
1
2) ≥ u1(D) (5)

We distinguish two cases: either u1(G
1
1) ≥ u1(G

1
2) or u1(G

1
1) <

u1(G
1
2). Obviously, if u1(G

1
1) ≥ u1(G

1
2), then agent 1 is envy-free

because by Inequality (5) we get that u1(G
1
1) ≥ u1(G

1
2) ≥ u1(D).

Now we study the second case, i.e. u1(G
1
2) > u1(G

1
1). Since

{G1
1, G

1
2} is a nearly balanced base by construction, we have

u1(G
1
1) ≥ u1(G

1
2) −minx∈G1

2

u1(x). Let us prove that u1(G
1
2) −

minx∈G1

2

u1(x) ≥ u1(D)−minx∈D u1(x)which will conclude the
proof.
Let e = argminx∈G1

2

u1(x) and f = argminx∈D u1(x) and by
contradiction, suppose u1(D− f) > u1(G

1
2 − e). Using axiom (iii)

of a matroid, there is y ∈ G1 − ((D +G1
1)− f) = G1

2 − (D − f)

such thatB′ = (D−f)+G1
1+y is a base. It must be u1(y) ≥ u1(e)

because y ∈ G1
2 and e is by definition minimum with respect to u1

inG1
2. Hence u1(B

′) = u1(D− f)+ u1(G
1
1) + u1(y) > u1(G

1
2 −

e)+u1(G
1
1)+u1(y) = u1(G

1)−u1(e)+u1(y) ≥ u1(G
1) which

is a contradiction with G1 is a maximum base for u1. �

6 Discussion and future work

Though a fair solution may not exist, a deterministic solution sat-
isfying fairness up to one element is guaranteed to exist and it can
be computed in polynomial time. For equitability and proportional-
ity, the result is achieved with centralized algorithms which work for
any number of agents. Is it possible to obtain the same result with
a decentralized algorithm? Concerning envy-freeness, the result is
obtained for two agents, with a decentralized algorithm. It remains
to be seen whether a nearly envy-free base allocation can be found
in polynomial time when there are n ≥ 3 agents, and to investi-
gate decentralized algorithms for near equitability / proportionality.
We conjecture that a nearly envy-free base allocation always exists.
Another perspective is to combine near fairness with other standard
criteria like Pareto Optimality.
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