
Extending Acyclicity Notions for Existential Rules

Jean-François Baget1 and Fabien Garreau2 and Marie-Laure Mugnier3 and Swan Rocher3

Abstract. Existential rules have been proposed for representing on-
tological knowledge, specifically in the context of Ontology-Based
Query Answering. Entailment with existential rules is undecidable.
We focus in this paper on conditions that ensure the termination
of a breadth-first forward chaining algorithm known as the chase.
First, we propose a new tool that allows to extend existing acyclicity
conditions ensuring chase termination, while keeping good complex-
ity properties. Second, we consider the extension to existential rules
with nonmonotonic negation under stable model semantics and fur-
ther extend acyclicity results obtained in the positive case.

1 INTRODUCTION

Ontology-Based Query Answering is a new paradigm in data man-
agement, which aims to exploit ontological knowledge when access-
ing data. Existential rules have been proposed for representing on-
tological knowledge, specifically in this context [8, 3]. These rules
allow to assert the existence of unknown individuals, an essential
feature in an open-domain perspective. They generalize lightweight
description logics, such as DL-Lite and EL [10, 1] and overcome
some of their limitations by allowing any predicate arity as well as
cyclic structures.

In this paper, we focus on a breadth-first forward chaining algo-
rithm, known as the chase in the database literature [24]. The chase
was originally used in the context of very general database con-
straints, called tuple-generating dependencies, which have the same
logical form as existential rules [6].

Given a knowledge base composed of data and existential rules,
the chase triggers the rules and materializes performed inferences
in the data. The “saturated” data can then be queried like a classi-
cal database. This allows to benefit from optimizations implemented
in current data management systems. However, the chase is not en-
sured to terminate— which applies to any sound and complete mech-
anism, since entailment with existential rules is undecidable ([5, 11]
on tuple-generating dependencies). Various acyclicity notions ensur-
ing chase termination have been proposed in knowledge representa-
tion and database theory.

Paper contributions. We generalize known acyclicity conditions,
first, for plain existential rules, second, for their extension to non-
monotonic negation with stable semantics.

1. Plain existential rules. Acyclicity conditions found in the liter-
ature can be classified into two main families: the first one constrains
the way existential variables are propagated during the chase, e.g.,
[15, 25, 18], and the second one constrains dependencies between
rules, i.e., the fact that a rule may lead to trigger another rule, e.g.,

1 INRIA, France
2 University of Angers, France
3 University of Montpellier, France

[2, 14, 4, 12]. These conditions are based on different graphs, but all
of them can be seen as forbidding “dangerous” cycles in the consid-
ered graph. We define a new family of graphs that allows to unify
and strictly generalize these acyclicity notions, without increasing
worst-case complexity.

2. Extension to nonmonotonic negation. Nonmonotonic negation
is a useful feature in ontology modeling. Nonmontonic extensions to
existential rules were recently considered in [8] with stratified nega-
tion, [17] with well-founded semantics and [23] with stable model
semantics. The latter paper focuses on cases where a unique finite
model exists; we consider the same rule framework, however with-
out enforcing a unique model. We further extend acyclicity results
obtained on positive rules by exploiting negative information as well.

The paper is organized according to these two issues.

2 PRELIMINARIES

An atom is of the form p(t1, . . . , tk) where p is a predicate of arity k
and the ti are terms, i.e., variables or constants. An atomset is a finite
set of atoms. If F is an atom or an atomset, we denote by terms(F)
(resp. vars(F)) the set of terms (resp. variables) that occur in F . In
the examples illustrating the paper, all the terms are variables (de-
noted by x, y, z, etc.), unless otherwise specified. Given atomsets
A1 and A2, a homomorphism h from A1 to A2 is a substitution of
vars(A1) by terms(A2) such that h(A1) ⊆ A2.

An existential rule (and simply a rule hereafter) is of the form R =
∀�x∀�y(B → ∃�zH), where B and H are conjunctions of atoms, with
vars(B) = �x ∪ �y, and vars(H) = �x ∪ �z. B and H are respectively
called the body and the head of the rule. Variables �x, which appear
in both B and H , are called frontier variables. Variables �z, which
appear only in H , are called existential variables. Hereafter, we omit
quantifiers in rules as there is no ambiguity. E.g., p(x, y) → p(y, z)
stands for ∀x∀y(p(x, y) → ∃z(p(y, z))).

An existential rule with an empty body is called a fact. A fact
is thus an existentially closed conjunction of atoms. A Boolean
conjunctive query (BCQ) has the same form. A knowledge base
K = (F,R) is composed of a finite set of facts (which is seen as
a single fact) F and a finite set of existential rules R. The fundamen-
tal problem associated with query answering, called BCQ ENTAIL-
MENT, is the following: given a knowledge base (F,R) and a BCQ
Q, is it true that F,R |= Q, where |= denotes the standard logical
consequence? This problem is undecidable (which follows from the
undecidability of the implication problem on tuple-generating depen-
dencies [5, 11]).

In the following, we see conjunctions of atoms as atomsets. A rule
R : B → H is applicable to an atomset F if there is a homomor-
phism π from B to F . The application of R to F w.r.t. π produces an
atomset α(F,R, π) = F ∪ π(safe(H)), where safe(H) is obtained
from H by replacing existential variables with fresh variables (see

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-39

39

Example 1).
The chase procedure starts from the initial set of facts F and

performs rule applications in a breadth-first manner. Several chase
variants can be found in the literature, mainly oblivious (or naive),
e.g., [7], skolem [25], restricted (or standard) [15], and core chase
[14]. The oblivious chase performs all possible rule applications. The
skolem chase relies on a skolemisation of the rules (notation sk): for
each rule R, sk(R) is obtained from R by replacing each occurrence
of an existential variable y with a functional term fR

y (�x), where �x is
the set of frontier variables in R. Then, the oblivious chase is run on
skolemized rules.

Example 1 (Oblivious / Skolem chase) Let R = p(x, y) →
p(x, z) and F = {p(a, b)}, where a and b are constants. The
oblivious chase does not halt: it applies R according to h0 =
{(x, a), (y, b)}, hence adds p(a, z0); then, it applies R again ac-
cording to h1 = {(x, a), (y, z0)}, and adds p(a, z1), and so on.
The skolem chase considers the rule p(x, y) → p(x, fR

z (x)); it adds
p(a, fR

y (a)) then halts.

Due to space restrictions, we do not detail on the other chase vari-
ants. Given a chase variant C, we call C-finite the class of set of
rules R, such that the C-chase halts on (F,R) for any atomset F .
It is well-known that oblivious-finite ⊂ skolem-finite ⊂ restricted-
finite ⊂ core-finite (see, e.g., [26]). When R belongs to a C-finite
class, BCQ ENTAILMENT can be solved, for any F and Q, by run-
ning the C-chase on (F,R), which produces a saturated set of facts
F ∗, then checking if F ∗ |= Q.

3 KNOWN ACYCLICITY NOTIONS

Acyclicity notions can be divided into two main families, each of
them relying on a different graph. The first family relies on a graph
encoding variable sharing between positions in predicates, while the
second one relies on a graph encoding dependencies between rules,
i.e., the fact that a rule may lead to trigger another rule (or itself).

3.1 Position-based approach

In the position-based approach, dangerous cycles are those passing
through positions that may contain existential variables; intuitively,
such a cycle means that the creation of an existential variable in a
given position may lead to creating another existential variable in
the same position, hence an infinite number of existential variables.
Acyclicity is then defined by the absence of dangerous cycles. The
simplest acyclicity notion in this family is that of weak-acyclicity
(wa) [15], which has been widely used in databases. It relies on a di-
rected graph whose nodes are the positions in predicates (we denote
by (p, i) position i in predicate p). Then, for each rule R : B → H
and each frontier variable x in B occurring in position (p, i), edges
with origin (p, i) are built as follows: there is an edge from (p, i) to
each position of x in H; furthermore, for each existential variable y
in H occurring in position (q, j), there is a special edge from (p, i)
to (q, j). A set of rules is weakly-acyclic if its associated graph has
no cycle passing through a special edge (see Example 2).

Example 2 (Weak-acyclicity) Let R1 = h(x) → p(x, y) and
R2 = p(u, v), q(v) → h(v). The position graph of {R1, R2} con-
tains a special edge from (h, 1) to (p, 2) due to R1 and an edge from
(p, 2) to (h, 1) due to R2. Thus {R1, R2} is not wa.

Weak-acyclicity has been generalized, mainly by shifting the fo-
cus from positions to existential variables (joint-acyclicity (ja)[18])
or to positions in atoms instead of predicates (super-weak-acyclicity
(swa) [25]). Other related notions can be imported from logic pro-
gramming, e.g., finite domain (fd) [9] and argument-restricted (ar)
[22]. See the first column in Figure 1, which shows the inclusions
between the corresponding classes of rules; all these inclusions are
known to be strict.

3.2 Rule dependency-based approach

In the second approach, the aim is to avoid cyclic triggering of rules
[2, 14, 3, 4, 12]. We say that a rule R2 depends on a rule R1 if an
application of R1 may lead to a new application of R2: there exists
an atomset F such that R1 is applicable to F with homomorphism π
and R2 is applicable to F ′ = α(F,R1, π) with homomorphism π′,
which is new (π′ is not a homomorphism to F) and useful (π′ can-
not be extended to a homomorphism from H2 to F ′). This abstract
dependency relation can be computed with a unification operation
known as piece-unifier [3]. Piece-unification takes existential vari-
ables into account, hence is more complex than the usual unification
between atoms. A piece-unifier of a rule body B2 with a rule head
H1 is a substitution μ of vars(B′

2) ∪ vars(H ′
1), where B′

2 ⊆ B2

and H ′
1 ⊆ H1, such that: (1) μ(B′

2) = μ(H ′
1), and (2) existential

variables in H ′
1 are not unified with separating variables of B′

2, i.e.,
variables that occur both in B′

2 and in (B2 \B′
2); in other words, if a

variable x occuring in B′
2 is unified with an existential variable y in

H ′
1, then all atoms in which x occur also belong to B′

2. It holds that
R2 depends on R1 iff there is a piece-unifier of B2 with H1, satisfy-
ing some easily checked additional conditions (atom erasing [4] and
usefulness [19, 12]). Following Example 3 illustrates the difference
between piece-unification and classical unification.

Example 3 (Rule dependency) Let R1 and R2 from Example 2. Al-
though the atoms p(u, v) ∈ B2 and p(x, y) ∈ H1 are unifiable,
there is no piece-unifier of B2 with H1. Indeed, the most general
unifier μ = {(u, x), (v, y)} (or, equivalently, {(x, u), (y, v)}), with
B′

2 = {p(u, v)} and H ′
1 = H1, is not a piece-unifier because v is

unified with an existential variable, whereas it is a separating vari-
able of B′

2 (thus, q(v) should be included in B′
2). It follows that R2

does not depend on R1.

The graph of rule dependencies of a set of rules R, denoted
by GRD(R), is a directed graph with set of nodes R and an edge
(Ri, Rj) if Rj depends on Ri. E.g., with the rules in Example 3, the
only edge is (R2, R1). When the GRD is acyclic (aGRD, [2]), any
derivation sequence is finite.

3.3 Combining both approches

Both approaches are incomparable: there may be a dangerous cycle
on positions but no cycle w.r.t. rule dependencies (Example 2 and 3),
and there may be a cycle w.r.t. rule dependencies whereas rules have
no existential variables (e.g., p(x, y) → p(y, x)). So far, attempts to
combine both notions only succeded to combine them in a “modular
way”, by considering the strongly connected components (s.c.c.) of
the GRD [2, 14]; briefly, if a chase variant stops on each subset of
rules associated with a s.c.c., then it stops on the whole set of rules.
In this paper, we propose an “integrated” way of combining both
approaches, which relies on a single graph. This allows to unify pre-
ceding results and to generalize them without increasing complexity.

J.-F. Baget et al. / Extending Acyclicity Notions for Existential Rules40

The new acyclicity notions are those with a gray background in Fig-
ure 1.

Finally, let us mention model-faithful acyclicity (mfa) [12], which
cannot be captured by our approach. Briefly, checking mfa involves
running the skolem chase until termination or a cyclic functional term
is found. The price to pay is high complexity: checking if a set of
rules is model-faithful acyclic for any set of facts is 2EXPTIME-
complete. Checking model-summarizing acyclicity (msa) [12], which
approximates mfa, remains EXPTIME-complete. In contrast, check-
ing position-based properties is in PTIME and checking aGRD is
co-NP-complete.

wa aGRD

waD

waU

waU+

fd

ar

ja

swa

msa

fdD

arD

jaD

swaD

msaD

fdU

arU

jaU

swaU

msaU

fdU+

arU+

jaU+

swaU+

msaU+

mfa

P coNP

Exp

2-Exp

Figure 1. Relations between recognizable acyclicity properties. All
inclusions are strict and complete (i.e., if there is no path between two

properties then they are incomparable).

It remains to specify for which chase variants the above acyclicity
notions ensure termination. Since mfa generalizes all properties in
Figure 1, and sets of rules satisfying mfa are skolem-finite, all these
properties ensure C-finiteness, for any chase variant C at least as
strong as the skolem chase. We point out that the oblivious chase may
not stop on wa rules. Actually, the only acyclicity notion in Figure 1
that ensures the termination of the oblivious chase is aGRD, since all
other notions generalize wa.

4 EXTENDING ACYCLICITY NOTIONS

In this section, we combine rule dependency and propagation of exis-
tential variables into a single graph. W.l.o.g. we assume that distinct
rules do not share any variable. Given an atom a = p(t1, . . . , tk),
the ith position in a is denoted by [a, i], with pred([a, i]) = p and
term([a, i]) = ti. If A is an atomset such that a ∈ A, we say that
[a, i] is in A. If term([a, i]) is an existential (resp. frontier) variable,
[a, i] is called an existential (resp. frontier) position. In the following,

we use “position graph” as a generic name to denote a graph whose
nodes are positions in atoms. We define several position graphs of in-
creasing expressivity, i.e., allowing to check termination for increas-
ingly larger classes of rules.

Definition 1 ((Basic) Position Graph (PG)) The position graph of
a rule R : B → H is the directed graph PG(R) defined as follows:

• there is a node for each [a, i] in B or in H;
• for all frontier positions [b, i]∈ B and all [h, j]∈ H , there is an

edge from [b, i] to [h, j] if term([b, i]) = term([h, j]) or if [h, j]
is existential.

Given a set of rules R, the basic position graph of R, denoted by
PG(R), is the disjoint union of PG(Ri), for all Ri ∈ R.

An existential position [a, i] is said to be infinite if there is an
atomset F such that running the chase on F produces an unbounded
number of instantiations of term([a, i]). To detect infinite positions,
we encode how variables may be “propagated” among rules by
adding edges to PG(R), called transition edges, which go from po-
sitions in rule heads to positions in rule bodies. The set of transition
edges has to be correct: if an existential position [a, i] is infinite,
there must be a cycle going through [a, i] in the graph.

Definition 2 (PGX) Let R be a set of rules. The three following
position graphs are obtained from PG(R) by adding a (transition)
edge from each position ph in a rule head Hi to each position pb in a
rule body Bj , with the same predicate, provided that some condition
is satisfied :

• full PG, denoted by PGF (R): no additional condition,
• dependency PG (PGD(R)) : if Rj depends on Ri,
• PG with unifiers (PGU (R)) : if there is a piece-unifier μ of Bj

with Hi such that μ(term(ph)) = μ(term(pb)).

All three position graphs are correct. Intuitively, PGF (R) cor-
responds to the case where all rules are supposed to depend on all
rules; its set of cycles is in bijection with the set of cycles in the
predicate position graph defining weak-acyclicity. PGD(R) encodes
actual rule dependencies. Finally, PGU (R) adds information about
the piece-unifiers themselves. This provides an accurate encoding of
variable propagation from an atom position to another.

Proposition 1 (Inclusions between PGX) Let R be a set of rules.
PGU (R) ⊆ PGD(R) ⊆ PGF (R). Furthermore, PGD(R) =
PGF (R) if GRD(R) is a complete graph.

Example 4 (PGF and PGD) Let R = {R1, R2} from Example 2.
Figure 2 pictures PGF (R) and PGD(R). The dashed edges belong
to PGF (R) but not to PGD(R). Indeed, R2 does not depend on R1.
PGF (R) has a cycle while PGD(R) has not.

Example 5 (PGD and PGU) Let R = {R1, R2}, with R1 =
t(x, y) → p(z, y), q(y) and R2 = p(u, v), q(u) → t(v, w). In
Figure 3, the dashed edges belong to PGD(R) but not to PGU (R).
Indeed, the only piece-unifier of B2 with H1 unifies u and y. Hence,
the cycle in PGD(R) disappears in PGU (R).

We now study how acyclicity properties can be expressed on po-
sition graphs. The idea is to associate, with an acyclicity property, a
function that assigns to each position a subset of positions reachable

J.-F. Baget et al. / Extending Acyclicity Notions for Existential Rules 41

h(x)

p(x, y)

p(x,y)

p(u, v)

p(u,v)

q(v)

h(v)

Figure 2. PGF (R) and PGD(R) from Example 4. Position [a, i] is
represented by underlining the i-th term in a. Dashed edges do not belong to

PGD(R).

from this position, according to some propagation constraints; then,
the property is fulfilled if no existential position can be reached from
itself. More precisely, a marking function Y assigns to each node
[a, i] in a position graph PGX , a subset of its (direct or indirect)
successors, called its marking. A marked cycle for [a, i] (w.r.t. X and
Y) is a cycle C in PGX such that [a, i]∈ C and for all [a′, i′]∈ C,
[a′, i′] belongs to the marking of [a, i]. Obviously, the less situations
there are in which the marking may “propagate” in a position graph,
the stronger the acyclicity property is.

Definition 3 (Acyclicity property) Let Y be a marking function
and PGX be a position graph. The acyclicity property associated
with Y in PGX , denoted by Y X , is satisfied if there is no marked
cycle for an existential position in PGX . If Y X is satisfied, we also
say that PGX(R) satisfies Y .

For instance, the marking function associated with weak-
acyclicity assigns to each node the set of its successors in PGF (R),
without any additional constraint. The next proposition states that
such marking functions can be defined for each class of rules be-
tween wa and swa (first column in Figure 1), in such a way that the
associated acyclicity property in PGF characterizes this class.

Proposition 2 A set of rules R is wa (resp. fd, ar, ja, swa) iff
PGF (R) satisfies the acyclicity property associated with wa- (resp.
fd-, ar-, ja-, swa-) marking.

As already mentioned, all these classes can be safely extended by
combining them with the GRD. To formalize this, we recall the no-
tion Y < from [12]: given an acyclicity property Y , a set of rules R is
said to satisfy Y < if each s.c.c. of GRD(R) satisfies Y , except for
those composed of a single rule with no loop.4 Whether R satisfies
Y < can be checked on PGD(R):

Proposition 3 Let R be a set of rules, and Y be an acyclicity prop-
erty. R satisfies Y < iff PGD(R) satisfies Y , i.e., Y < = Y D .

4 This particular case is to cover aGRD, in which each s.c.c. is an isolated
node.

t(x, y)

t(x,y)

p(z, y)

p(z,y)

q(y)

p(u, v)

p(u,v)

q(u)

t(v, w)

t(v,w)

Figure 3. PGD(R) and PGU (R) from Example 5. Dashed edges do not
belong to PGU (R).

For the sake of brevity, if Y1 and Y2 are two acyclicity properties,
we write Y1 ⊆ Y2 if any set of rules satisfying Y1 also satisfies Y2.
The following results are straightforward.

Proposition 4 Let Y1, Y2 be two acyclicity properties. If Y1 ⊆ Y2,
then Y D

1 ⊆ Y D
2 .

Proposition 5 Let Y be an acyclicity property. If aGRD � Y then
Y ⊂ Y D .

Hence, any class of rules satisfying a property Y D strictly includes
both aGRD and the class characterized by Y ; (e.g., Figure 1, from
Column 1 to Column 2). More generally, strict inclusion in the first
column leads to strict inclusion in the second one:

Proposition 6 Let Y1, Y2 be two acyclicity properties such that
Y1 ⊂ Y2, wa ⊆ Y1 and Y2 � Y D

1 . Then Y D
1 ⊂ Y D

2 .

The next theorem states that PGU is strictly more powerful than
PGD; moreover, the “jump” from Y D to Y U is at least as large as
from Y to Y D .

Theorem 1 Let Y be an acyclicity property. If Y ⊂ Y D then Y D ⊂
Y U . Furthermore, there is an injective mapping from the sets of rules
satisfying Y D but not Y , to the sets of rules satisfying Y U but not
Y D .

Proof: Assume Y ⊂ Y D and R satisfies Y D but not Y . R can be
rewritten into R′ by applying the following steps. First, for each rule
Ri = Bi[�x, �y] → Hi[�y, �z] ∈ R, let Ri,1 = Bi[�x, �y] → pi(�x, �y)
where pi is a fresh predicate; and Ri,2 = pi(�x, �y) → Hi[�y, �z]. Then,
for each rule Ri,1, let R′

i,1 be the rule (B′
i,1 → Hi,1) with B′

i,1 =
Bi,1 ∪ {p′j,i(xj,i) : ∀Rj ∈ R}, where p′j,i are fresh predicates and
xj,i fresh variables. Now, for each rule Ri,2, let R′

i,2 be the rule
(Bi,2 → H ′

i,2) with H ′
i,2 = Hi,2 ∪ {p′i,j(zi,j) : ∀Rj ∈ R}, where

zi,j are fresh existential variables. Let R′ =
⋃

Ri∈R
{R′

i,1, R
′
i,2}. This

construction ensures that each R′
i,2 depends on R′

i,1, and each R′
i,1

depends on each R′
j,2, thus, there is a transition edge from each R′

i,1

to R′
i,2 and from each R′

j,2 to each R′
i,1. Hence, PGD(R′) con-

tains exactly one cycle for each cycle in PGF (R). Furthermore,
PGD(R′) contains at least one marked cycle w.r.t. Y , and then R′

does not satisfy Y D . Now, each cycle in PGU (R′) is also a cycle
in PGD(R), and, since PGD(R) satisfies Y , PGU (R′) also does.
Hence, R′ does not belong to Y D but to Y U . �

We also check that strict inclusions in the second column in Fig-
ure 1 lead to strict inclusions in the third column.

Theorem 2 Let Y1 and Y2 be two acyclicity properties. If Y D
1 ⊂

Y D
2 then Y U

1 ⊂ Y U
2 .

Proof: Let R be a set of rules such that R satisfies Y D
2 but does not

satisfy Y D
1 . We rewrite R into R′ by applying the following steps.

For each pair of rules Ri, Rj ∈ R such that Rj depends on Ri, for
each variable x in the frontier of Rj and each variable y in the head
of Ri, if x and y occur both in a given predicate position, we add
to the body of Rj a new atom pi,j,x,y(x) and to the head of Ri a
new atom pi,j,x,y(y), where pi,j,x,y denotes a fresh predicate. This
construction allows each term from the head of Ri to propagate to
each term from the body of Rj , if they share some predicate position
in R. Thus, any cycle in PGD(R) is also in PGU (R′), without
any change in the behavior w.r.t. the acyclicity properties. Hence R′

satisfies Y U
2 but does not satisfy Y U

1 . �
The next result states that Y U is a sufficient condition for chase

termination:

J.-F. Baget et al. / Extending Acyclicity Notions for Existential Rules42

Theorem 3 Let Y be an acyclicity property ensuring the halting of
some chase variant C. Then, the C-chase halts for any set of rules
R that satisfies Y U (hence Y D).

Example 6 Consider again the set of rules R from Example 5.
Figure 3 pictures the associated position graphs PGD(R) and
PGU (R). R is not aGRD, nor wa, nor waD since PGD(R)
contains a (marked) cycle that goes through the existential posi-
tion [t(v, w), 2]. However, R is obviously waU since PGU (R) is
acyclic. Hence, the skolem chase and stronger chase variants halt
for R and any set of facts.

Finally, we remind that classes from wa to swa can be recog-
nized in PTIME, and checking aGRD is co-NP-complete. Hence,
as stated by the next result, the expressiveness gain is without in-
creasing worst-case complexity.

Theorem 4 (Complexity) Let Y be an acyclicity property, and R
be a set of rules. If checking that R satisfies Y is in co-NP, then
checking that R satisfies Y D or Y U is co-NP-complete.

5 FURTHER REFINEMENTS

In this section, we show how to further extend Y U into Y U+

by
a finer analysis of marked cycles and unifiers. This extension can be
performed without increasing complexity. We define the notion of in-
compatible sequence of unifiers, which ensures that a given sequence
of rule applications is impossible. Briefly, a marked cycle for which
all sequences of unifiers are incompatible can be ignored. Beside the
gain for positive rules, this refinement will allow one to take better
advantage of negation.

We first point out that the notion of piece-unifier is not appropriate
to our purpose. We have to relax it, as illustrated by the next example.
We call unifier, of a rule body B2 with a rule head H1, a substitution
μ of vars(B′

2)∪ vars(H ′
1), where B′

2 ⊆ B2 and H ′
1 ⊆ H1, such that

μ(B′
2) = μ(H ′

1) (thus, it satisfies Condition (1) of a piece-unifier).

Example 7 Let R = {R1, R2, R3, R4} with:
R1 : p(x1, y1) → q(y1, z1)
R2 : q(x2, y2) → r(x2, y2)
R3 : r(x3, y3) ∧ s(x3, y3) → p(x3, y3)
R4 : q(x4, y4) → s(x4, y4)
There is a dependency cycle (R1, R2, R3, R1) and a corresponding
cycle in PGU . We want to know if such a sequence of rule applica-
tions is possible. We build the following new rule, which is a compo-
sition of R1 and R2 (formally defined later): R1
μR2 : p(x1, y1) →
q(y1, z1) ∧ r(y1, z1)
There is no piece-unifier of R3 with R1
μ R2, since y3 would be a
separating variable mapped to the existential variable z1. This actu-
ally means that R3 is not applicable right after R1
μ R2. However,
the atom needed to apply s(x3, y3) can be brought by a sequence of
rule applications (R1, R4). We thus relax the notion of piece-unifier
to take into account arbitrarily long sequences of rule applications.

Definition 4 (Compatible unifier) Let R1 and R2 be rules. A uni-
fier μ of B2 with H1 is compatible if, for each position [a, i] in
B′

2, such that μ(term([a, i])) is an existential variable z in H ′
1,

PGU (R) contains a path, from a position in which z occurs, to
[a, i], that does not go through another existential position. Other-
wise, μ is incompatible.

Note that a piece-unifier is necessarily compatible.

Proposition 7 Let R1 and R2 be rules, and let μ be a unifier of B2

with H1. If μ is incompatible, then no application of R2 can use an
atom in μ(H1).

We define the rule corresponding to the composition of R1 and
R2 according to a compatible unifier, then use this notion to define a
compatible sequence of unifiers.

Definition 5 (Unified rule, Compatible sequence of unifiers)

• Let R1 and R2 be rules such that there is a compatible unifier μ of
B2 with H1. The associated unified rule Rμ = R1
μ R2 is defined
by Hμ = μ(H1) ∪ μ(H2), and Bμ = μ(B1) ∪ (μ(B2) \ μ(H1)).
• Let (R1, . . . , Rk+1) be a sequence of rules. A sequence s =
(R1 μ1 R2 . . . μk Rk+1), where, for 1 ≤ i ≤ k, μi is a unifier
of Bi+1 with Hi, is a compatible sequence of unifiers if: (1) μ1 is
a compatible unifier of B2 with H1, and (2) if k > 0, the sequence
obtained from s by replacing (R1 μ1 R2) with R1
μ1 R2 is a com-
patible sequence of unifiers.

E.g., in Example 7, the sequence (R1 μ1 R2 μ2 R3 μ3 R1), with
the obvious μi, is compatible. We can now improve all previous
acyclicity properties (see the fourth column in Figure 1).

Definition 6 (Compatible cycles) Let Y be an acyclicity property,
and PGU be a position graph with unifiers. The compatible cycles
for [a, i] in PGU are all marked cycles C for [a, i] w.r.t. Y , such
that there is a compatible sequence of unifiers induced by C. Prop-
erty Y U+is satisfied if, for each existential position [a, i], there is no
compatible cycle for [a, i] in PGU .

Results similar to Theorem 1 and Theorem 2 are obtained for Y U+

w.r.t. Y U , namely:

• For any acyclicity property Y , Y U ⊂ Y U+.
• For any acyclicity properties Y1 and Y2, if Y U

1 ⊂ Y U
2 , then

Y U+
1 ⊂ Y U+

2 .

Moreover, Theorem 3 can be extended to Y U+

: let Y be an
acyclicity property ensuring the halting of some chase variant C; then
the C-chase halts for any set of rules R that satisfies Y U+

(hence
Y U). Finally, the complexity result from Theorem 4 still holds for
this improvement.

6 EXTENSION TO NONMONOTONIC
NEGATION

We now add nonmonotonic negation, which we denote by not. A
nonmonotonic existential (NME) rule R is of the form ∀�x∀�y(B+ ∧
notB−

1 ∧ . . . ∧ notB−
k → ∃�zH), where B+, B− = {B−

1 . . . B−
k }

and H are atomsets, respectively called the positive body, the nega-
tive body and the head of R; furthermore, vars(B−) ⊆ vars(B+).
R is applicable to F if there is a homomorphism h from B+ to F
such that h(B−) ∩ F = ∅. In this section, we rely on a skolemiza-
tion of the knowledge base. Then, the application of R to F w.r.t. h
produces h(sk(H)). R is self-blocking if B− ∩ (B+ ∪H) �= ∅, i.e.,
R is never applicable.

Since skolemized NME rules can be seen as normal logic pro-
grams, we can rely on the standard definition of stable models [16],
which we omit here since it is not needed to understand the sequel.
Indeed, our acyclicity criteria essentially ensure that there is a finite
number of skolemized rule applications. Although the usual defini-
tion of stable models relies on grounding (i.e., instantiating) skolem-
ized rules, stable models of (F,R) can be computed by a skolem

J.-F. Baget et al. / Extending Acyclicity Notions for Existential Rules 43

chase-like procedure, as performed by Answer Set Programming
solvers that instantiate rules on the fly [21, 13].

We check that, when the skolem chase halts on the positive part
of NME rules (i.e., obtained by ignoring the negative body), the sta-
ble computation based on the skolem chase halts. We can thus rely
on preceding acyclicity conditions, which already generalize known
acyclicity conditions applicable to skolemized NME rules (for in-
stance finite-domain and argument-restricted, which were defined for
normal logic programs). We can also extend them by exploiting nega-
tion.

First, we consider the natural extensions of a unified rule (Def. 5)
and of rule dependency: to define Rμ = R1
μ R2, we add that
B−

μ = μ(B−
1) ∪ μ(B−

2); besides, R2 depends on R1 if there is a
piece-unifier μ of H2 with B1 such that R1
μR2 is not self-blocking;
if R1
μ R2 is self-blocking, we say that μ is self-blocking. Note
that this extended dependency is equivalent to the positive reliance
from [23]. In this latter paper, positive reliance is used to define an
acyclicity condition: a set of NME rules is said to be R-acyclic if no
cycle of positive reliance involves a rule with an existential variable.
Consider now PGD with extended dependency: then, R-acyclicity is
stronger than aGRD (since cycles are allowed on rules without exis-
tential variables) but weaker than waD (since all s.c.c. are necessarily
wa).

By considering extended dependency, we can extend the results
obtained with PGD and PGU (note that for PGU we only encode
non-self-blocking unifiers). We can further extend Y U+ classes by
considering self-blocking compatible sequences of unifiers. Let C be
a compatible cycle for [a, i] in PGU , and Cμ be the set of all compat-
ible sequences of unifiers induced by C. A sequence μ1 . . . μk ∈ Cμ

is said to be self-blocking if the rule R1
μ1 R2 . . . Rk
μk R1 is
self-blocking. When all sequences in Cμ are self-blocking, C is said
to be self-blocking.

Example 8 Let R1 = q(x1),notp(x1) → r(x1, y1), R2 =
r(x2, y2) → s(x2, y2), R3 = s(x3, y3) → p(x3), q(y3).
PGU+({R1, R2, R3}) has a unique cycle, with a unique in-
duced compatible unifier sequence. The rule R1
 R2
 R3 =
q(x1),notp(x1) → r(x1, y1), s(x1, y1), p(x1), q(y1) is self-
blocking, hence R1
 R2
 R3
 R1 also is. Thus, there is no “dan-
gerous” cycle.

Proposition 8 If, for each existential position [a, i], all compatible
cycles for [a, i] in PGU are self-blocking, then the stable computa-
tion based on the skolem chase halts.

Finally, we point out that these improvements do not increase
worst-case complexity of the acyclicity test.

7 CONCLUSION

We have proposed a tool that allows to unify and generalize most
existing acyclicity conditions for existential rules, without increasing
worst-case complexity. This tool can be further refined to deal with
nonmonotonic (skolemized) existential rules, which, to the best of
our knowledge, extends all known acyclicity conditions for this kind
of rules.

Further work includes the implementation of the tool5 and exper-
iments on real-world ontologies, as well as the study of chase vari-
ants that would allow to process existential rules with stable negation
without skolemization.
5 It will be developed as an extension of KIABORA, an analyzer of existential

rule bases [20].

Acknowledgements. This work was partially supported by
French Agence Nationale de la Recherche (ANR), under project
grants ASPIQ (ANR-12-BS02-0003), Pagoda (ANR-12-JS02-0007)
and Qualinca (ANR-12-CORD-0012).

REFERENCES

[1] F. Baader, S. Brandt, and C. Lutz, ‘Pushing the EL envelope’, in IJ-
CAI’05, pp. 364–369, (2005).

[2] J.-F. Baget, ‘Improving the forward chaining algorithm for conceptual
graphs rules’, in KR’04, pp. 407–414. AAAI Press, (2004).

[3] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat, ‘Extending de-
cidable cases for rules with existential variables’, in IJCAI’09, pp. 677–
682, (2009).

[4] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat, ‘On rules with
existential variables: Walking the decidability line’, Artificial Intelli-
gence, 175(9-10), 1620–1654, (2011).

[5] C. Beeri and M. Vardi, ‘The implication problem for data dependen-
cies’, in ICALP’81, volume 115 of LNCS, pp. 73–85, (1981).

[6] C. Beeri and M.Y. Vardi, ‘A proof procedure for data dependencies’,
Journal of the ACM, 31(4), 718–741, (1984).

[7] A. Calı̀, G. Gottlob, and M. Kifer, ‘Taming the infinite chase: Query
answering under expressive relational constraints’, in KR’08, pp. 70–
80, (2008).

[8] A. Calı̀, G. Gottlob, and T. Lukasiewicz, ‘A general datalog-based
framework for tractable query answering over ontologies’, in PODS’09,
pp. 77–86, (2009).

[9] F. Calimeri, S. Cozza, G. Ianni, and N. Leone, ‘Computable functions
in asp: Theory and implementation’, in Logic Programming, 407–424,
(2008).

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
‘Tractable reasoning and efficient query answering in description log-
ics: The DL-Lite family’, J. Autom. Reasoning, 39(3), 385–429, (2007).

[11] A. K. Chandra, H. R. Lewis, and J. A. Makowsky, ‘Embedded impli-
cational dependencies and their inference problem’, in STOC’81, pp.
342–354. ACM, (1981).

[12] B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka,
B. Motik, and Z. Wang, ‘Acyclicity notions for existential rules and
their application to query answering in ontologies’, J. Art. Intell. Res.,
47, 741–808, (2013).

[13] M. Dao-Tran, T. Eiter, M. Fink, G. Weidinger, and A. Weinzierl,
‘Omiga: an open minded grounding on-the-fly answer set solver’, in
Logics in Artificial Intelligence, 480–483, (2012).

[14] A. Deutsch, A. Nash, and J.B. Remmel, ‘The chase revisited’, in
PODS’08, pp. 149–158, (2008).

[15] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, ‘Data exchange:
semantics and query answering’, Theor. Comput. Sci., 336(1), 89–124,
(2005).

[16] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic
programming’, in ICLP/SLP, pp. 1070–1080, (1988).

[17] A. Hernich, C. Kupke, T. Lukasiewicz, and G. Gottlob, ‘Well-founded
semantics for extended datalog and ontological reasoning’, in PODS,
pp. 225–236, (2013).

[18] M. Krötzsch and S. Rudolph, ‘Extending decidable existential rules by
joining acyclicity and guardedness’, in IJCAI’11, pp. 963–968, (2011).

[19] B. Lamare, ‘Optimisation de la notion de dépendance’, Internship re-
port, ENS Cachan and LIRMM/ INRIA, (Sept. 2012).

[20] M. Leclère, M.-L. Mugnier, and S. Rocher, ‘Kiabora: An analyzer of
existential rule bases’, in RR, pp. 241–246, (2013).

[21] C. Lefèvre and P. Nicolas, ‘A first order forward chaining approach for
answer set computing’, in LPNMR, 196–208, (2009).

[22] Y. Lierler and V. Lifschitz, ‘One more decidable class of finitely ground
programs’, in Logic Programming, 489–493, (2009).

[23] D. Magka, M. Krötzsch, and I. Horrocks, ‘Computing stable models for
nonmonotonic existential rules’, in IJCAI, (2013).

[24] D. Maier, A. O. Mendelzon, and Y. Sagiv, ‘Testing implications of data
dependencies’, ACM Trans. Database Syst., 4(4), 455–469, (1979).

[25] B. Marnette, ‘Generalized schema-mappings: from termination to
tractability’, in PODS, pp. 13–22, (2009).

[26] A. Onet, ‘The chase procedure and its applications in data exchange’,
in Data Exchange, Information, and Streams, pp. 1–37, (2013).

J.-F. Baget et al. / Extending Acyclicity Notions for Existential Rules44

