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Abstract. Multiview learning basically tries to exploit different fea-
ture representations to obtain better learners. For example, in video
and image recognition problems, there are many possible feature rep-
resentations such as color- and texture-based features. There are two
common ways of exploiting multiple views: forcing similarity (i) in
predictions and (ii) in latent subspace. In this paper, we introduce a
novel Bayesian multiview dimensionality reduction method coupled
with supervised learning to find predictive subspaces and its infer-
ence details. Experiments show that our proposed method obtains
very good results on image recognition tasks in terms of classifica-
tion and retrieval performances.

1 INTRODUCTION

Multiview learning considers problems that can describe data points
with different feature representations (i.e., views or modalities). The
main idea is to exploit these different views to obtain better learners
than the learners that can be found from each view separately. We can
also transfer information from a subset of views (i.e., source views) to
a particular view (i.e., target view) if we do not have enough training
instances in the latter to build a reliable learner, which is known as
transfer learning. There are two common approaches for multiview
learning: (i) training separate learners for each view in a coupled
manner by forcing them to have similar predictions on matching data
points, (ii) projecting the data points from each view into a unified
subspace and training a common learner in this subspace.

The first attempt to exploit multiple views is proposed for semi-
supervised learning with two views, which is known as co-training
[3]. In this approach, two distinct learners are trained separately us-
ing a small set of labeled instances from both views. Then, the un-
labeled examples that are classified most confidently by these two
learners are added to the set of labeled data points. Recently, the co-
training idea is reformulated with a Bayesian approach applicable to
a large set of problems [19]. One other strategy is minimizing the
regularization errors of all views by training distinct learners simul-
taneously and a regularization term that penalizes the disagreement
between views at the same time [4, 7, 8, 16, 20].

We can also exploit multiple views by finding a unified subspace
from them. Canonical correlation analysis (CCA) [12] and kernel
CCA (KCCA) [11], which extract a shared representation from two
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multivariate variables, are the first two methods that come to mind.
The main restriction of such methods is that they are required to
have matching samples from the views. [15] proposes a probabilis-
tic KCCA variant using Gaussian process regression to find a shared
representation from two views. [13] formulates an algorithm to find
shared and private representations for each view using structured
sparsity. [13, 15] obtain good performances for human pose estima-
tion from image features (i.e., inferring missing data of one view
using the other). [17, 18] extend spectral embedding and stochastic
neighborhood embedding for multiview learning, respectively, and
perform experiments on image and video retrieval tasks. However,
the generalization performances of these unsupervised methods may
not be good enough for prediction tasks due to their unsupervised
nature.

[5,6] propose a supervised algorithm, which is called max-margin
harmonium (MMH), for finding a predictive subspace from multiple
views using an undirected latent space Markov network with a large
margin approach. MMH obtains better results than its competitor al-
gorithms on video and image recognition data sets in terms of clas-
sification, annotation, and retrieval performances. [14] introduces a
multiview metric learning algorithm that tries to preserve cross-view
neighborhood by placing similarly labeled data points from different
views nearby in the projected subspace. The proposed method out-
performs CCA on an image retrieval task, where k-nearest neighbor
strategy is used for retrieval.

In this paper, we propose a novel Bayesian multiview dimension-
ality reduction (BMDR) method, where data points from different
views are projected into a unified subspace without the restriction
of having matching data samples from these views. We make the
following contributions: In §2, we give the graphical model of our
approach for multiclass classification. §3 introduces an efficient vari-
ational approximation approach in a detailed manner. We report our
experimental results in §4 and conclude in §5.

2 BAYESIAN MULTIVIEW DIMENSIONALITY
REDUCTION FOR LEARNING PREDICTIVE
SUBSPACES

We propose to combine linear dimensionality reduction and linear
supervised learning in a joint probabilistic model to obtain predic-
tive subspaces for multiview learning problems. The main idea is to
map the training instances of different views to a unified subspace
using linear projection matrices and to estimate the target outputs
in this projected subspace. Performing dimensionality reduction and
supervised learning separately (generally with two different objec-
tive functions) may not result in a predictive subspace and may have
low generalization performance. For multiview learning problems,
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Figure 1. Graphical model and distributional assumptions of Bayesian multiview dimensionality reduction for learning predictive subspaces.

we should consider the predictive performance of the unified pro-
jected subspace while learning the projection matrices. We give de-
tailed derivations for multiclass classification, but our derivations can
easily be extended to binary classification and regression.

Figure 1 illustrates the proposed probabilistic model with a graph-
ical model and its distributional assumptions. N (·;μ,Σ) denotes the
normal distribution with the mean vector μ and the covariance matrix
Σ. G(·;α, β) denotes the gamma distribution with the shape param-
eter α and the scale parameter β. δ(·) denotes the Kronecker delta
function that returns 1 if its argument is true and 0 otherwise. The
reason for choosing these specific distributions in our probabilistic
model becomes clear when we explain our inference procedure in the
following section. The notation we use throughout the manuscript is
summarized in Table 1. As short-hand notations, all prior variables
in the model are denoted by Ξ = {λ, {Φo}Vo=1,Ψ}, where the re-
maining variables by Θ = {b, {Qo}Vo=1, {To}Vo=1,W, {Z}Vo=1}
and the hyper-parameters by ω = {αλ, βλ, αφ, βφ, αψ, βψ}. De-
pendence on ω is omitted for clarity throughout the manuscript.

Table 1. List of notation.

V Number of views (i.e., feature representations)
No Number of training instances for view o
Do Dimensionality of input space for view o
K Number of classes
R Dimensionality of unified projected subspace
Xo Do ×No data matrix for view o
Qo Do ×R matrix of projection variables for view o
Φo Do ×R matrix of priors over projection variables for view o
Zo R×No matrix of projected variables for view o
W R×K matrix of weight parameters
Ψ R×K matrix of priors over weight parameters
b K × 1 vector of bias parameters
λ K × 1 vector of priors over bias parameters
To No ×K matrix of auxiliary variables for view o
yo No × 1 vector of class labels from {1, . . . ,K} for view o

The basic steps of our algorithm can be summarized as follows:

1. The data matrices {Xo}Vo=1 are used to project data points into
a low-dimensional unified subspace using the projection matrices
{Qo}Vo=1.

2. The low-dimensional representations of data points {Zo}Vo=1 and
the shared set of classification parameters {W, b} are used to cal-
culate the classification scores.

3. Finally, the given class label vectors {yo}Vo=1 are generated from
the score matrices {To}Vo=1.

The auxiliary variables between the class labels and the projected
instances are introduced to make the inference procedures efficient
[1]. Exact inference for this probabilistic model is intractable and
we instead formulate a deterministic variational approximation in the
following section.

3 INFERENCE USING VARIATIONAL
APPROXIMATION

Inference using a Gibbs sampling approach is computationally ex-
pensive [9]. We instead formulate a deterministic variational approx-
imation, which is more efficient in terms of computation time. The
variational methods use a lower bound on the marginal likelihood
using an ensemble of factored posteriors to find the joint parame-
ter distribution [2]. Note that there is not a strong coupling between
the parameters of our model, although the factorable ensemble im-
plies independence of the approximate posteriors. The factorable en-
semble approximation of the required posterior for our model can be
written as

p(Θ,Ξ|{Xo}Vo=1, {yo}
V
o=1) ≈ q(Θ,Ξ) =

q({Φo}Vo=1)q({Qo}Vo=1)q({Zo}Vo=1)

q(λ)q(Ψ)q(b,W)q({To}Vo=1).

Each factor in the ensemble is defined just like its full conditional
distribution:

q({Φo}Vo=1) =
V∏
o=1

Do∏
f=1

R∏
s=1

G(φfo,s;α(φfo,s), β(φfo,s))

q({Qo}Vo=1) =
V∏
o=1

R∏
s=1

N (qo,s;μ(qo,s),Σ(qo,s))

q({Zo}Vo=1) =
V∏
o=1

No∏
i=1

N (zo,i;μ(zo,i),Σ(zo,i))

q(λ) =

K∏
c=1

G(λc;α(λc), β(λc))

q(Ψ) =
R∏
s=1

K∏
c=1

G(ψsc ;α(ψsc), β(ψsc))

q(b,W) =
K∏
c=1

N
([

bc
wc

]
;μ(bc,wc),Σ(bc,wc)

)
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q({To}Vo=1) =
V∏
o=1

No∏
i=1

T N (to,i;μ(to,i),Σ(to,i), ρ(to,i)),

where α(·), β(·), μ(·), and Σ(·) denote the shape parameter, the scale
parameter, the mean vector, and the covariance matrix for their argu-
ments, respectively. T N (·;μ,Σ, ρ(·)) denotes the truncated normal
distribution with the mean vector μ, the covariance matrix Σ, and
the truncation rule ρ(·) such that T N (·;μ,Σ, ρ(·)) ∝ N (·;μ,Σ)
if ρ(·) is true and T N (·;μ,Σ, ρ(·)) = 0 otherwise.

We can bound the marginal likelihood using Jensen’s inequality:

log p({yo}
V
o=1|{Xo}Vo=1) ≥

Eq(Θ,Ξ)[log p({yo}
V
o=1,Θ,Ξ|{Xo}Vo=1)]−Eq(Θ,Ξ)[log q(Θ,Ξ)]

and optimize this bound by maximizing with respect to each factor
separately until convergence. The approximate posterior distribution
of a specific factor τ can be found as

q(τ ) ∝ exp
(
Eq({Θ,Ξ}\τ)[log p({yo}

V
o=1,Θ,Ξ|{Xo}Vo=1)]

)
.

Due to conjugate distributions in our probabilistic model, the re-
sulting approximate posterior distribution of each factor follows the
same distribution as the corresponding factor.

Dimensionality reduction part has two sets of parameters: the pro-
jection matrices that have normally distributed entries and the prior
matrices that determine the precisions for these projection matrices.
The approximate posterior distribution of the priors can be formu-
lated as a product of gamma distributions:

q({Φo}Vo=1) =

V∏
o=1

Do∏
f=1

R∏
s=1

G

⎛⎝φfo,s;αφ +
1

2
,

⎛⎝ 1

βφ
+

˜(qfo,s)2

2

⎞⎠−1⎞⎠,

where the tilde notation gives the posterior expectations as usual, i.e.,
f̃(τ ) = Eq(τ)[f(τ )]. The approximate posterior distribution of the
projection matrices is a product of multivariate normal distributions:

q({Qo}Vo=1) =

V∏
o=1

R∏
s=1

N (qo,s; Σ(qo,s)Xoz̃so, (diag(φ̃o,s) +XoX
�
o )
−1).

The approximate posterior distribution of the projected instances can
be found as a product of multivariate normal distributions:

q({Zo}Vo=1) =

V∏
o=1

No∏
i=1

N (zo,i; Σ(zo,i)(Q̃�o xo,i+W̃t̃o,i−W̃b), (I+ ˜WW�)−1).

Supervised learning part has two sets of parameters: the bias vec-
tor and the weight matrix that have normally distributed entries, and
the corresponding priors are from gamma distribution. The approx-
imate posterior distributions of the priors on the bias vector and the
weight matrix can be formulated as products of gamma distributions:

q(λ) =
K∏
c=1

G
(
λc;αλ +

1

2
,

(
1

βλ
+

b̃2c
2

)−1)

q(Ψ) =
R∏
s=1

K∏
c=1

G

⎛⎝ψsc ;αψ +
1

2
,

(
1

βψ
+

˜(wsc)2

2

)−1
⎞⎠.

The approximate posterior distribution of the supervised learning pa-
rameters is a product of multivariate normal distributions:

q(b,W) =

K∏
c=1

N

⎛⎜⎜⎝[
bc
wc

]
; Σ(bc,wc)

⎡⎢⎢⎣
V∑
o=1

1�t̃co
V∑
o=1

Z̃ot̃co

⎤⎥⎥⎦,
⎡⎢⎢⎣λ̃c +

V∑
o=1

No

V∑
o=1

1�Z̃�o
V∑
o=1

Z̃o1 diag(ψ̃c) +
V∑
o=1

˜ZoZ�o

⎤⎥⎥⎦
−1⎞⎟⎟⎠,

where we couple different views using the same bias vector and
weight matrix for classification. The projection matrix for each view
tries to embed corresponding data points accordingly.

The auxiliary variables of each point follow a truncated multivari-
ate normal distribution whose mean vector depends on the weight
matrix, the bias vector, and the corresponding projected instance.
The approximate posterior distribution of the auxiliary variables is
a product of truncated multivariate normal distributions:

q({To}Vo=1) =

V∏
o=1

No∏
i=1

T N

⎛⎝to,i;W̃�z̃o,i + b̃, I,
∏

c�=yo,i
δ(t

yo,i
o,i > tco,i)

⎞⎠.

However, we need to find the posterior expectations of the auxiliary
variables to update the approximate posterior distributions of the pro-
jected instances and the supervised learning parameters. We can ap-
proximate these expectations using a naive sampling approach [10].

Updating the projection matrices {Qo}Vo=1 is the most time-
consuming step, which requires inverting Do × Do matrices for
the covariance calculations and dominates the overall running time.
When we have high-dimensional views, we can use an unsupervised
dimensionality reduction method (e.g., principal component analy-
sis) before running the algorithm to reduce the computational com-
plexity of our algorithm.

After convergence, we have a separate projection matrix for each
view and a unified set of classification parameters for the pro-
jected subspace. For a test data point, we can perform dimension-
ality reduction and classification using only the available views.
p(Qo|{Xo}Vo=1, {yo}Vo=1) can be replaced with its approximate
posterior distribution q(Qo) for the prediction step. We obtain the
predictive distribution of the projected instance zo,� for a new data
point xo,� from a particular view as

p(zo,�|xo,�, {Xo}Vo=1, {yo}
V
o=1) =

R∏
s=1

N (zso,�;μ(qo,s)
�xo,�, 1 + x�o,�Σ(qo,s)xo,�).

The predictive distribution of the auxiliary variables to,� can also
be found by replacing p(b,W|{Xo}Vo=1, {yo}Vo=1) with its approx-
imate posterior distribution q(b,W):

p(to,�|{Xo}Vo=1, {yo}
V
o=1, zo,�) =

K∏
c=1

N
(
tco,�;μ(bc,wc)

�
[

1
zo,�

]
, 1 +

[
1 zo,�

]
Σ(bc,wc)

[
1

zo,�

])
and the predictive distribution of the class label yo,� can be formu-
lated using these auxiliary variables:
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p(yo,� = c|xo,�, {Xo}Vo=1, {yo}
V
o=1) =

Ep(u)

⎡⎣∏
j �=c

Φ
(
Σ(tjo,�)

−1(uΣ(tco,�) + μ(tco,�)− μ(tjo,�))
)⎤⎦,

where the random variable u is standardized normal and Φ(·) is the
standardized normal cumulative distribution function. The expecta-
tion can be found using a naive sampling approach. If we have more
than one view for testing, we can find the predictive distribution for
each view separately and calculate the average probability to estimate
the class label.

4 EXPERIMENTS

We test our algorithm BMDR by performing classification and
retrieval experiments on FLICKR image data set from [5, 6],
which contains 3411 images from 13 animal categories, namely,
squirrel, cow, cat, zebra, tiger, lion, elephant,
whales, rabbit, snake, antlers, wolf, and hawk. Each
animal image is represented using 500-dimensional SIFT features
and 634-dimensional low-level image features (e.g., color histogram,
edge direction histogram, etc.). We use 2054 images for train-
ing and the rest for testing as provided. We implement our algo-
rithm in Matlab, which is publicly available at https://github.
com/mehmetgonen/bmdr. The default hyper-parameter values
for BMDR are selected as (αλ, βλ) = (αφ, βφ) = (αψ, βψ) =
(1, 1). We run our algorithm for 500 iterations.

In classification experiments, we use both views for training and
only image features for testing (i.e., 634-dimensional low-level im-
age features). We evaluate the classification results using the test ac-
curacy. Table 2 shows the classification results on FLICKR data set.
We compare our results with only the results of [5,6] because MMH
outperforms several algorithms significantly in terms of classifica-
tion accuracy using 30 latent topics. BMDR obtains higher test accu-
racies than MMH using 10 or 15 dimensions. Figure 2 displays eight
training images, which corresponds the images with four smallest
and four largest coordinate values, for each dimension obtained by
BMDR with R = 10. We can easily see that most of the dimen-
sions have clear meanings. For example, the dimensions #1, #4, #8,
and #10 aim to separate zebra, whales, tiger, and lion cate-
gories, respectively, from other categories.

Table 2. Classification results on FLICKR data set.

Algorithm Test Accuracy

MMH (30 topics) 51.70
BMDR (R = 5) 48.34
BMDR (R = 10) 54.02
BMDR (R = 15) 54.68

In retrieval experiments, each test image is considered as a sepa-
rate query and training images are ranked based on their cosine sim-
ilarities with the given test image. The cosine similarity is calculated
using the subspace projections obtained using only image features. A
training image is taken as relevant if it belongs to the category of the
test image. We evaluate the retrieval results using the mean average
precision score. Table 3 shows the retrieval results on FLICKR data
set. We again compare our results with only the results of [5, 6] be-
cause MMH outperforms several algorithms significantly in terms of
average precision using 60 latent topics. BMDR obtains significantly
higher average precisions than MMH independent of the subspace
dimensionality. Figure 3 displays one test image from each category

and the first seven training images in the ranked result list for that test
image. We see that the initial images in the result list are very mean-
ingful for most of the categories even though there are some mistakes
for confusing category groups such as {cat, tiger, lion, wolf}.

Table 3. Retrieval results on FLICKR data set.

Algorithm Average Precision

MMH (60 topics) 0.163
BMDR (R = 5) 0.341
BMDR (R = 10) 0.383
BMDR (R = 15) 0.395

Our method also decreases the computational complexity of re-
trieval tasks due to low-dimensional representation used for images
as in indexing and hashing schemes. When we need to retrieve im-
ages similar to a query image, we can calculate the similarities be-
tween the query image and other images very fast.

5 CONCLUSIONS

We introduce a Bayesian multiview dimensionality reduction method
coupled with supervised learning to find predictive subspaces. We
learn a unified subspace from multiple views (i.e., feature representa-
tions) by exploiting the correlation information between them. This
approach can also be interpreted as transfer learning between dif-
ferent views. We give detailed derivations for multiclass classifica-
tion using a variational approximation scheme and extensions to bi-
nary classification and regression are straightforward. Experimental
results on FLICKR image data set show that the proposed method
obtains a unified predictive subspace for classification and retrieval
task using different views.
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Figure 3. Sample queries and result images obtained by BMDR with R = 10 on FLICKR data set.
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