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Abstract. Heterogeneous data may arise in many real-life applica-
tions under different scenarios. In this paper, we formulate a general
framework to address the problem of modeling heterogeneous data.
Our main contribution is a novel embedding method, called multi-
ple kernel preserving embedding (MKPE), which projects hetero-
geneous data into a unified embedding space by preserving cross-
domain interactions and within-domain similarities simultaneously.
These interactions and similarities between data points are approx-
imated with Gaussian kernels to transfer local neighborhood infor-
mation to the projected subspace. We also extend our method for
out-of-sample embedding using a parametric formulation in the pro-
jection step. The performance of MKPE is illustrated on two tasks:
(i) modeling biological interaction networks and (ii) cross-domain
information retrieval. Empirical results of these two tasks validate
the predictive performance of our algorithm.

1 INTRODUCTION

In many real-life applications, data come from heterogeneous
sources. These applications can be divided into two basic categories:
(i) Heterogeneity may be coming from different representations (i.e.,
modalities or views) of the same domain, which is studied under the
names of multiview learning, transfer learning, and domain adapta-
tion. (ii) The task at hand may consider data from different domains,
leading to heterogeneity, which is frequently used for recommender
systems and modeling interaction networks because these work on
objects from two domains by definition.

When we have multiple representations from the same domain,
the most common strategy is to use canonical correlation analysis
(CCA) [11], which finds a common subspace by maximizing corre-
lation. CCA type of models are especially useful for cross-domain
information retrieval tasks, where we have multiple representations
of documents such as image and text. However, such models re-
quire having matching samples from these representations. When
there is no one-to-one correspondence between samples, we need
to use some additional information from the original data such as
class membership to find correspondence between samples of differ-
ent representations when learning the common subspace. Similarly,
when we have samples from different domains, we again need to
capture cross-domain interactions.

The most studied heterogeneous data problem is cross-domain in-
formation retrieval, where target documents are represented in differ-
ent forms such as image and text. [19] addresses this task with a two-
step learning algorithm: (i) They represent image documents using
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histograms obtained from k-means clustering on their SIFT features
and text documents using topic probabilities obtained from latent
Dirichlet allocation. (ii) They find a common subspace for these two
extracted representations using CCA. [18] gives a multiview metric
learning algorithm, which projects data points from different views
into a shared subspace by trying to capture cross- and within-view
similarities in this space. [27] proposes to define a similarity measure
between cross-domain objects by looking at the class labels of their
neighbors, which can be used to train standard learning algorithms.

Another popular solution strategy for cross-domain information
retrieval tasks is to use hashing-based algorithms. These methods
map documents from different domains into a common Hamming
space (i.e., representing documents with binary vectors) instead of
an Euclidean space and using a binary representation allows us to
find relevant documents very fast for a new document and to re-
duce storage requirement drastically. [28] gives a hashing algorithm
working on multiple views available for all samples, which limits
the applicability to data sets with fully matching samples across do-
mains. [1] formulates cross-domain hashing as a binary classification
problem and use a boosting-based algorithm to find binary repre-
sentations. [16] also proposes a cross-domain hashing algorithm that
tries to map similar objects to similar codes across the views. [29]
gives a probabilistic model to learn hash functions on different do-
mains simultaneously using cross- and within-domain similarities.

Modeling heterogeneous data is also needed in transfer learning or
domain adaptation settings, where we want to make use of available
additional data (i.e., source domain) to improve the generalization
performance on the task with limited data (i.e., target domain). [20]
propose a domain adaptation method for images recorded under dif-
ferent conditions. [23] formulate a transfer learning algorithm using
spectral embedding to find a unified subspace for both domains.

Heterogeneous data arise naturally in bioinformatics domain espe-
cially for biological interaction networks. Two well-known examples
are drug–protein interaction networks [7, 25, 26] and host–pathogen
protein–protein interaction networks [4], which consider two dif-
ferent domains (e.g., drug compounds and proteins) by definition.
For drug–protein interaction, [25] and [26] find a common subspace
for drugs and proteins using cross-domain interactions and within-
domain similarities, and perform distance-based predictions using
in this common subspace. [7] gives a Bayesian matrix factorization
method that tries to reconstruct the cross-domain interaction network
from the within-domain similarities. In a different application, [13]
proposes a method to learn protein–protein interaction networks of
multiple species using cross- and within-species similarities.

There are many embedding algorithms for single-domain applica-
tions in the literature and they mainly differ in the criteria they try to
preserve while learning the embedding coordinates. We can choose
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to preserve distances, dissimilarities, neighborhoods, or similarities.
The most standard algorithm for preserving distances or dissimilari-
ties is multidimensional scaling (MDS) method [3], which basically
approximates the provided distances or dissimilarities in the original
domain with Euclidean distances in the embedding space. There is
also a non-metric version of MDS that tries to preserve the rank or-
ders of given distances or dissimilarities [15]. [9] gives a formulation
that approximates the input kernel calculated using the original rep-
resentation with a standard kernel calculated in the embedding space.
However, these methods are not applicable to heterogeneous data.

[6] gives an embedding method for objects from different domains
using their cross- and within-domain co-occurrence statistics. They
model the joint distributions as exponentials of Euclidean distances
in the embedding space. [2] formulates a non-metric MDS variant
that tries to place reference correspondence pairs, which share the
same semantic meaning across different domains, close to each other.
Their algorithm tries both to preserve within-domain relationships
and to maximize alignment between domains using correspondences.
Following these lines of research, we basically propose to preserve
cross-domain interactions and within-domain similarities by approx-
imating them with kernels.

In this paper, we address the problem of modeling heterogeneous
data by formulating a general framework. The main idea behind our
formulation is to model heterogeneous data by projecting them into
a unified embedding space. This embedding step with its novel opti-
mization formulation tries to preserve cross-domain interactions and
within-domain similarities simultaneously by approximating them
with multiple kernels. The proposed framework can be applied to dif-
ferent tasks after casting them into our formulation by defining score
functions for cross-domain interactions and within-domain similari-
ties. Note that our formulation is very different than combining mul-
tiple kernel functions to get a better one, which is known as multiple
kernel learning [8].

Section 2 introduces the proposed embedding algorithm, called
multiple kernel preserving embedding (MKPE), and gives detailed
derivations of our optimization procedure. In Section 3, we extend
our method towards out-of-sample embedding. Section 4 evaluates
MKPE on two tasks: (i) modeling biological interaction networks
and (ii) cross-domain information retrieval.

2 MULTIPLE KERNEL PRESERVING
EMBEDDING

In order to model both cross-domain interactions and within-domain
similarities, we assume that these are provided as scoring functions
between objects and we want to approximate these values in the em-
bedding space with kernel function values calculated between low-
dimensional representations. Our algorithm is applicable to problems
with more than two domains, but we give its details with two do-
mains for simplicity. We first introduce the necessary notation for
our method and then describe its optimization strategy in detail.

Our heterogeneous data come from two different domains, namely,
X and Z , and we are given two sets of objects X = {xi ∈ X}Nx

i=1

and Z = {zi ∈ Z}Nz
i=1. In standard applications, these objects

have vectorial representations (i.e., X and Z are Euclidean spaces).
However, these two domains may also contain non-vectorial but
structured objects such as strings used for proteins and graphs used
for chemical compounds in bioinformatics applications. In order
to have a general formulation for both vectorial and non-vectorial
data, we assume that the cross-domain interactions and the within-
domain similarities are provided with three different scoring func-

tions: (i) sic,j : X ×Z → R gives the cross-domain interaction score
between xi and zj , (ii) six,j : X × X → R gives the within-domain
similarity score between xi and xj , and (iii) siz,j : Z × Z → R

gives the within-domain similarity score between zi and zj . We also
introduce three index sets, namely, Ic = {(i, j) : sic,j is known},
Ix = {(i, j) : six,j is known}, and Iz = {(i, j) : siz,j is known}, to
represent available information coming from these scoring functions.

We map heterogeneous objects from two different domains into
a unified embedding space. The objects in X and Z are converted
into R-dimensional vectors of an Euclidean space, namely, Ex =
{ex,i ∈ R

R}Nx
i=1 and Ez = {ez,i ∈ R

R}Nz
i=1. We try to approxi-

mate the scoring functions sic,j , six,j , and siz,j by three kernel func-
tions, namely, ki

c,j : R
R × R

R → R, ki
x,j : R

R × R
R → R, and

ki
z,j : R

R × R
R → R. These three kernel functions in the embed-

ding space have to be differentiable with respect to the embedding
coordinates to be able to calculate the gradients required for the sub-
sequent optimization step. We propose to use the Gaussian kernel
(also known as radial basis function kernel or squared exponential
kernel) in the embedding space to capture the local neighborhood
information coming from the cross-domain interactions and within-
domain similarities. The kernel functions in the embedding space can
be written as

ki
c,j = exp

(
−‖ex,i − ez,j‖22

σ2
e

)
= exp(Qi

c,j) ∀(i, j)

ki
x,j = exp

(
−‖ex,i − ex,j‖22

σ2
e

)
= exp(Qi

x,j) ∀(i, j)

ki
z,j = exp

(
−‖ez,i − ez,j‖22

σ2
e

)
= exp(Qi

z,j) ∀(i, j),

where σe ∈ R++ is the kernel width and the auxiliary variables,
namely,Qi

c,j ,Qi
x,j , andQi

z,j , are just for simplicity.
We propose to preserve the interaction and similarity scores simul-

taneously using a composite loss function:

L =
λc
|Ic|

∑
Ic

(ki
c,j − sic,j)

2 +
λx
|Ix|

∑
Ix

(ki
x,j − six,j)

2

+
λz
|Iz|

∑
Iz

(ki
z,j − siz,j)

2,

where | · | gives the cardinality of the input set. We have separate
mean squared error terms as loss functions and separate regulariza-
tion parameters, namely, λc ∈ R+, λx ∈ R+, and λz ∈ R+, to tune
their weights.

The corresponding optimization problem is formulated as

minimize L
with respect to Ex ∈ R

R×Nx , Ez ∈ R
R×Nz , σe ∈ R++

subject to ExE
�
x = IR, EzE

�
z = IR,

where we assume orthonormality of the embedding dimensions in
each domain separately. This assumption enables us to avoid the scal-
ing ambiguity and to capture useful information in each dimension
of the embedding space. The objective function of our optimiza-
tion problem is non-convex due to non-linearity introduced by the
Gaussian kernels and global optimization is not possible. Instead,
we formulate a gradient-based optimization strategy to find a local
optimum. In our optimization procedure, we need to satisfy the or-
thonormality constraints on the embedding coordinates in addition to
the non-negativity constraint on the kernel width.
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We can find the gradients of L with respect to the embedding co-
ordinates as

∂L
∂ex,l

= 2
λc
|Ic|

∑
Ic

ki
c,j(k

i
c,j − sic,j)

∂Qi
c,j

∂ex,l

+ 2
λx
|Ix|

∑
Ix

ki
x,j(k

i
x,j − six,j)

∂Qi
x,j

∂ex,l
∀l

∂L
∂ez,l

= 2
λc
|Ic|

∑
Ic

ki
c,j(k

i
c,j − sic,j)

∂Qi
c,j

∂ez,l

+ 2
λz
|Iz|

∑
Iz

ki
z,j(k

i
z,j − siz,j)

∂Qi
z,j

∂ez,l
∀l.

The gradients of the auxiliary variables can be found as

∂Qi
c,j

∂ex,l
= −2δli(ex,i − ez,j)

σ2
e

∀l

∂Qi
x,j

∂ex,l
= −2(δli − δlj)(ex,i − ex,j)

σ2
e

∀l

∂Qi
c,j

∂ez,l
= −2δlj(ez,j − ex,i)

σ2
e

∀l

∂Qi
z,j

∂ez,l
= −2(δli − δlj)(ez,i − ez,j)

σ2
e

∀l,

where δli is 1 if i = l and 0 otherwise. Due to the orthonormality con-
straints, the embedding coordinates of each domain are defined on a
Stiefel manifold (i.e., S(R,N) = {E ∈ R

R×N : EE� = IR}). In
order to satisfy these constraints, we need to use the modified gra-
dient defined for Stiefel manifolds to update the embedding coordi-
nates and to project the updated values back to the manifold using a
QR decomposition [17].

When learning the kernel width, we need to operate on the loga-
rithmic scale to satisfy the non-negativity constraint. We introduce a
new variable for the logarithm of the kernel width (i.e., ηe = log σe)
and perform gradient-based optimization on this variable. The gradi-
ent of L with respect to ηe are

∂L
∂ηe

= 2
λc
|Ic|

∑
Ic

ki
c,j(k

i
c,j − sic,j)

∂Qi
c,j

∂ηe

+ 2
λx
|Ix|

∑
Ix

ki
x,j(k

i
x,j − six,j)

∂Qi
x,j

∂ηe

+ 2
λz
|Iz|

∑
Iz

ki
z,j(k

i
z,j − siz,j)

∂Qi
z,j

∂ηe
,

where the gradients of the auxiliary variables are found as

∂Qi
c,j

∂ηe
=

2‖ex,i − ez,j‖22
σ2
e

∂Qi
x,j

∂ηe
=

2‖ex,i − ex,j‖22
σ2
e

∂Qi
z,j

∂ηe
=

2‖ez,i − ez,j‖22
σ2
e

.

Our complete algorithm is an alternating optimization scheme
consisting of three main steps: (i) update Ex given Ez and σe, (ii) up-
date Ez given Ex and σe, and (iii) update σe given Ex and Ez. The
optimization procedure sequentially updates the decision variables

until convergence, which can be checked by monitoring the objec-
tive function value. The key issue for faster convergence is to se-
lect the step sizes of the update equations carefully. We use Armijo’s
rule, which is a line search method whose search procedure allows
backtracking and does not use any curve fitting method, to speed up
the convergence. Our algorithm is guaranteed to converge to one of
the local optima in a finite number of iterations because there is no
chance of increasing the objective value due to the line search.

The main motivation of approximating cross-domain interactions
and within-domain similarities with Gaussian kernels in the embed-
ding space is to capture local neighborhood information with the help
of nonlinearity of the kernel. It is not easy to capture such informa-
tion with distance-based strategies (e.g., using Euclidean distance).
Some MDS variants integrate weight terms in their objective func-
tions to ignore very large distances or dissimilarities in their learning
phase [3], which is implicitly performed in the Gaussian kernel.

3 EXTENSION FOR OUT-OF-SAMPLE
EMBEDDING

Our algorithm outlined in the previous section is not able to embed
unseen objects, which are not used during training. We also formulate
a variant of our algorithm to be able to do out-of-sample embedding.
Instead of modeling the embedding coordinates as decision variables
in our optimization problem, we can assume linear projections from
the input domains to the embedding domain and optimize the projec-
tion matrices. The embedding coordinates are formulated as

ex,i = Q�
x xi ∀i

ez,i = Q�
z zi ∀i,

where we assume that the objects from the two domains have vec-
torial representations (i.e., X ∈ R

Dx and Z ∈ R
Dz ). The modified

optimization problem is

minimize L
with respect to Qx ∈ R

Dx×R, Qz ∈ R
Dz×R, σe ∈ R++

subject to Q�
x Qx = IR, Q

�
z Qz = IR,

where we assume orthonormality of the projection matrix columns
in each domain separately.

We can use the same optimization strategy, but this time we need
the gradients of L with respect to the projection matrices. These gra-
dients can be calculated as

∂L
∂qx,p

= 2
λc
|Ic|

∑
Ic

ki
c,j(k

i
c,j − sic,j)

∂Qi
c,j

∂qx,p

+ 2
λx
|Ix|

∑
Ix

ki
x,j(k

i
x,j − six,j)

∂Qi
x,j

∂qx,p
∀p

∂L
∂qz,p

= 2
λc
|Ic|

∑
Ic

ki
c,j(k

i
c,j − sic,j)

∂Qi
c,j

∂qz,p

+ 2
λz
|Iz|

∑
Iz

ki
z,j(k

i
z,j − siz,j)

∂Qi
z,j

∂qz,p
∀p,

where the gradients of the auxiliary variables are found as

∂Qi
c,j

∂qx,p
= −2xi(q

�
x,pxi − q�

z,pzj)

σ2
e

∀p
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∂Qi
x,j

∂qx,p
= −2(xi − xj)(q

�
x,pxi − q�

x,pxj)

σ2
e

∀p

∂Qi
c,j

∂qz,p
= −2zj(q

�
z,pzj − q�

x,pxi)

σ2
e

∀p

∂Qi
z,j

∂qz,p
= −2(zi − zj)(q

�
z,pzi − q�

z,pzj)

σ2
e

∀p.

The linear projection formulation is quite restrictive because it as-
sumes that we have vectorial representations for the objects of each
domain. Instead, we can use the within-domain similarity functions
to represent the objects in a vectorial form, which is known as em-
pirical kernel map [22]:

xi =
[
six,1 six,2 . . . six,Nx

]� ∀i
zi =

[
siz,1 siz,2 . . . siz,Nz

]� ∀i.

Even if we have vectorial representations for the objects, this strat-
egy allows us to introduce nonlinearity into the embedding part as in
kernel-based dimensionality reduction [21].

Most embedding algorithms can not handle unseen data points.
Using parametric projection rules enables us to project unseen data
points. In addition to out-of-sample embedding, this projection ma-
trices can also be used for extracting feature importances. For exam-
ple, if a particular row of Qx or Qz has values very close to zero, this
means that the corresponding feature/sample is not important for the
task at hand.

4 EXPERIMENTS

To show the performance of our algorithm MKPE, we test it on two
tasks: (i) modeling biological interaction networks and (ii) cross-
domain information retrieval. We implement our algorithms in
Matlab, which is publicly available at https://github.com/
mehmetgonen/mkpe/. We set the regularization parameters (λc,
λx, λz) to (1, 0.1, 0.1).

We use two different drug–protein interaction networks pro-
vided by [25], which are considering G-protein-coupled recep-
tors (GPCR) and nuclear receptors (NR) from humans and are
publicly available at http://web.kuicr.kyoto-u.ac.jp/
supp/yoshi/drugtarget/. Table 1 summarizes the data sets
in terms of numbers of drugs, proteins, and interactions, which con-
tain both the within-domain similarity scores and the experimentally
validated interactions.

Table 1. The drug–protein interaction data sets provided by [25].

Number of Number of Number of
Data Set Drugs Proteins Interactions

GPCR 223 95 635
NR 54 26 90

We cast the problem of modeling drug–protein interaction net-
works into our formulation as follows: The two domains X and Z
correspond to drugs and proteins, respectively. The cross-domain in-
teractions correspond to the given set of experimentally validated
drug–protein interactions, which are usually represented in the form
of a binary matrix (i.e., 1 for the interacting pairs and 0 for the non-
interacting pairs). We construct our cross-domain interaction score

from this binary interaction matrix with the following simple rule:

sic,j =

{
0.9 if xi and zj are interacting,
NA otherwise,

where we set the interaction score to 0.9 for the interacting pairs be-
cause setting the score to 1 implies that their ideal embedding coordi-
nates are equal, which is not a good idea for visualization. We leave
the interaction score empty for the noninteracting pairs because some
of them may be interacting in reality but not validated experimentally
yet and setting the score to a low value may hurt the visualization.

The within-domain similarity score between drugs is found by rep-
resenting them as graphs and calculating the Jaccard similarity coef-
ficient over the substructures of the two graphs [10]. Given two drugs
xi and xj , chemical similarity between them can be found as

six,j =
|xi ∩ xj |
|xi ∪ xj | .

The within-domain similarity score between proteins is found using
a normalized version of Smith-Waterman score [24]. Given two pro-
teins zi and zj , genomic similarity between them can be found as

siz,j =
SW(zi, zj)√

SW(zi, zi)SW(zj , zj)
,

where SW(·, ·) gives the canonical Smith-Waterman score between
two proteins. Note that our choice of approximating both within-
domain similarity scores using the Gaussian kernel is reasonable be-
cause they are guaranteed to take values between 0 and 1 similar to
the Gaussian kernel.

In the first set of experiments, we project drugs and proteins into
a unified two-dimensional (2-D) embedding space using our algo-
rithm MKPE and co-occurrence data embedding (CODE) algorithm
of [6]. For MKPE algorithm, we perform 100 iterations. CODE algo-
rithm uses the co-occurrence statistics of objects to embed them into
a unified embedding space. We provide the cross-domain interaction
scores and within-domain similarities as the co-occurrence statistics
and use the same values used as the regularization weights in MKPE
for the cross- and within-domain likelihood weights in CODE. We
use the Matlab implementation of CODE provided by [6] with its
default parameters.

Figures 1 and 2 show the 2-D embeddings obtained by CODE and
MKPE algorithms on the GPCR and NR data sets, respectively. We
can see that MKPE finds more visually appealing embeddings than
CODE on both data sets because MKPE has well-separated groups
of nodes and fewer edge crossings compared to CODE.

In addition to visual attractiveness, we also compare the algo-
rithms in terms of their performances on unknown interaction predic-
tion task. The drug–protein interactions we use are extracted by [25]
from an earlier version of KEGG DRUG database [12]. Its latest on-
line version or other databases may contain additional experimen-
tally validated drug–protein interactions. On the NR data set, we rank
the noninteracting pairs with respect to their Euclidean distances in
the embedding space and extract the pairs with the five smallest dis-
tances. We check these interactions from the latest online versions of
ChEMBL [5], DrugBank [14], and KEGG DRUG [12].

Table 2 lists the top five predicted interactions obtained by both
algorithms on the NR data set. We see that the first four predictions
of MKPE (marked with � in Table 2) are reported in at least one of
the databases, whereas none of the predictions obtained by CODE.
Note that these results are obtained using only two dimensions and
this is a strong evidence for the practical relevance of our method.
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(a) CODE (b) MKPE

Figure 1. The two-dimensional embeddings obtained on the GPCR data set.
Red and blue points denote drugs and proteins, respectively.

(a) CODE (b) MKPE

Figure 2. The two-dimensional embeddings obtained on the NR data set.
Red and blue points denote drugs and proteins, respectively.

Table 2. The top five predicted interactions obtained by CODE and MKPE
algorithms on the NR data set.

Rank Pair Rank Pair

C
O

D
E

1 D00506

M
K

PE

1� D01115
hsa:6095 hsa:2908

2 D00279 2� D00443
hsa:6095 hsa:367

3 D00565 3� D00443
hsa:6095 hsa:2908

4 D05341 4� D00075
hsa:2104 hsa:5241

5 D05341 5 D00961
hsa:2103 hsa:2101

In the second set of experiments, we illustrate the performance
of our variant for out-of-sample embedding in predicting interac-
tions for unseen drugs. For both data sets, we apply ten replications
of ten-fold cross-validation over drugs to obtain robust results. We
compare our algorithm with kernelized Bayesian matrix factoriza-
tion with twin kernels (KBMF2K) algorithm of [7], which is pro-
posed for modeling biological interaction networks and projects ob-
jects from different domains into a unified embedding space. We use
the Matlab implementation of KBMF2K provided by [7] with its de-
fault parameters. We obtain the results of both methods by training
them with changing subspace dimensionality parameters taken from
{5, 10, 15, 20, 25}.

Figure 3 gives the average AUC (area under the receiver operating
curve) values for KBMF2K and MKPE. When the subspace dimen-
sionality is larger than ten, we see that MKPE achieves comparable
average AUC values on the GPCR data set, whereas it significantly

5 10 15 20 25

0.80

0.82

0.84

0.86

R

A
U

C

 

 

KBMF2K on GPCR

KBMF2K on NR

MKPE on GPCR

MKPE on NR

Figure 3. The prediction performances of KBMF2K and MKPE with
changing subspace dimensionality on the GPCR and NR data sets in terms
of average AUC values.

improves the results on the NR data set. These results validate the
predictive performance of MKPE for out-of-sample embedding.

We perform cross-domain information retrieval experiments
on an image classification data set provided by [20], which is
publicly available at http://www1.icsi.berkeley.edu/

˜saenko/projects.html#DA. The classification task is to as-
sign images to one of the 31 categories (e.g., backpack, bicycle, hel-
met, chair, etc.). The data points come from two domains: (i) im-
ages taken with a high-resolution DSLR camera (dslr) and (ii) im-
ages taken with a low-resolution webcam (webcam). Each cate-
gory has images from five distinct objects (e.g., different backpacks).
The dslr and webcam domains have 423 and 795 images, respec-
tively. [20] use a codebook of size 800 to convert all images into his-
tograms over visual words. Note that no spatial or color information
is included in the image representation.

Following the experimental procedure of [20], we investigate do-
main transfer from the high-resolution DSLR images (i.e., source
domain) to the low-resolution webcam images (i.e., target domain).
Each category has eight training points in the source domain,
whereas we have only three for the target domain. Training images
are selected from the first three objects of each category and test im-
ages are selected from the remaining two.

We cast this cross-domain information retrieval task into our for-
mulation as follows: The two domains X and Z correspond to dslr
and webcam, respectively. We construct our cross-domain interac-
tion score from the training data as

sic,j =

⎧⎪⎨
⎪⎩
1 if xi and zj belong to the same object,
0.9 if xi and zj belong to the same class,
0 otherwise.

The within-domain similarity scores are calculated as cosine similar-
ities between image representations.

We train our variant for out-of-sample embedding by perform-
ing 100 iterations to classify unseen images from the target do-
main. We assign unseen images to the category of their near-
est neighbors in the embedding space found by MKPE. We
perform ten replications for each subspace dimensionality from
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. We compare our algorithm
with three baseline algorithms: (i) k-nearest neighbor (k-NN) classi-
fier using only target domain (i.e., k-NN on Z), (ii) k-NN classifier
using only source domain (i.e., k-NN on X ), and (iii) k-NN classi-
fier using both source and target domains (i.e., k-NN on X+Z). For
baseline methods, we also set k to 1.

Figure 4 gives the classification performances of baseline algo-
rithms and MKPE in terms of average test accuracy. We see that us-
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Figure 4. The classification performances of MKPE with changing sub-
space dimensionality and baseline methods in terms of average test accuracy.

ing only target domain (i.e., k-NN on Z) gets the worst results due
to small number of training samples per category. Using only source
domain (i.e., k-NN on X ) or both domains (i.e., k-NN on X+Z) im-
proves the classification performance. MKPE outperforms all base-
line methods when the subspace dimensionality is larger than five.
The performance of MKPE stabilizes after 20 dimensions and it is
better than k-NN on X+Z around seven per cent. These results show
that our method is also useful for domain adaptation (i.e., transfer
learning) tasks such as cross-domain information retrieval.

5 CONCLUSIONS

In this paper, we introduce a novel embedding algorithm, called
multiple kernel preserving embedding, for heterogeneous data. Our
method allows us to map objects from different domains into a uni-
fied embedding space by preserving both cross-domain interactions
and within-domain similarities, which are approximated with Gaus-
sian kernels. Using these nonlinear kernels in the embedding space
transfers local neighborhood information from the provided interac-
tions and similarities. We also extend our formulation for out-of-
sample embedding using parametric projection rules. Experimental
results on two unrelated tasks, namely, modeling biological interac-
tion networks and cross-domain information retrieval, show wide ap-
plicability of our model.
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