
LTL Verification of Online Executions with Sensing in
Bounded Situation Calculus

Giuseppe De Giacomo1 and Yves Lespérance2 and Fabio Patrizi3 and Stavros Vassos4

Abstract. We look at agents reasoning about actions from a first-
person perspective. The agent has a representation of world as situa-
tion calculus action theory. It can perform sensing actions to acquire
information. The agent acts “online”, i.e., it performs an action only
if it is certain that the action can be executed, and collects sensing
results from the actual world. When the agent reasons about its fu-
ture actions, it indeed considers that it is acting online; however only
possible sensing values are available. The kind of reasoning about
actions we consider for the agent is verifying a first-order (FO) vari-
ant (without quantification across situations) of linear time temporal
logic (LTL) . We mainly focus on bounded action theories, where the
number of facts that are true in any situation is bounded. The main
results of this paper are: (i) possible sensing values can be based on
consistency if the initial situation description is FO; (ii) for bounded
action theories, progression over histories that include sensing re-
sults is always FO; (iii) for bounded theories, verifying our FO LTL
against online executions with sensing is decidable.

1 Introduction

In this paper, we look at agents reasoning about actions from a first-
person perspective. In particular, the agent has a computationally
grounded model of the world [26] as a situation calculus action the-
ory [16]. This includes a first-order (FO) description of the initial
situation and of actions’ preconditions and effects (as successor state
axioms). Moreover, we have sensing actions that do not affect the
world state but update the logical theory with sensing results. The
agent acts online [7, 19], i.e., it performs an action only if it is cer-
tain that the action can be executed, and collects sensing results from
the actual world. The kind of reasoning about actions we consider
for the agent is verifying a FO variant (without quantification across
situations) of linear time temporal logic (LTL) [15, 24]. (Notice that
FO LTL, though typically over a finite horizon, has been considered
often in situation calculus e.g., in [9].)

We focus on bounded action theories [5] for which it is certain
that the number of tuples that are in the extension of any fluent in
any situation is bounded. For bounded action theories, verification
of FO mu-calculus properties over offline executions without sensing
is decidable. In [6], decidability was shown also for verifying such
properties over online executions without sensing. Here, we consider
a linear time setting [24] and show that verification of FO LTL prop-
erties against online executions with sensing is decidable as well.

The extension to sensing is nontrivial. Indeed, when the agent rea-
sons about its future actions it considers that it acts online, but obvi-
1 DIAG - Sapienza Univ. Rome, Italy, email: degiacomo@dis.uniroma1.it
2 EECS - York Univ., Toronto, ON, Canada, email: lesperan@cse.yorku.ca
3 DIAG - Sapienza Univ. Rome, Italy, email: patrizi@dis.uniroma1.it
4 DIAG - Sapienza Univ. Rome, Italy, email: vassos@dis.uniroma1.it

ously it cannot know ahead of time the actual results that will come
from sensing, so it has to consider possible sensing results. Specif-
ically, the agent must consider each possible world it could be in,
i.e., each possible model of its action theory, and look at the sensing
results that that world would produce. But in general doing this is
impractical. A simpler approach is for the agent to assume possible
every sensing result that is consistent with the action theory and what
has been sensed so far. However, as shown in [17, 18], this simpli-
fication produces incorrect results in general, as it does not ensure
that all information available to the agent is fully taken into account.
For example, suppose the agent knows that if it keeps chopping at a
tree, it will eventually come down. After any number of chops, it is
still consistent that sensing will say that the tree is up. So the agent
ends up considering possible a run where it keeps chopping and the
tree never falls. The first contribution of the paper is to show that the
simplification is in fact correct along (infinite) runs, if we start from
an initial situation description in first-order logic (FOL), because of
compactness of FOL. This result enables the effective verification of
FO LTL formulas. Notice that our result is based on runs and hence
does not apply to branching-time logics, including mu-calculus.

Then we define progression [12] over histories that include sens-
ing results. We show that for bounded action theories such progres-
sion over histories is always FO representable. So the belief state
of the agent after a sequence of actions with sensing can be repre-
sented as a FO theory. Finally, with these two results at hand, we can
show that for bounded action theories with sensing, we can faithfully
abstract the infinite set of possible runs of the agent into a finite tran-
sition system, which gives us an effective way of verifying FO LTL
properties, based on automata techniques on infinite objects [23, 24].
Thus for bounded theories, verifying our FO LTL against online ex-
ecutions with sensing is decidable.

Our account is related, but quite different from that in [4], which
takes a third-person point of view based on a version of the situation
calculus with a knowledge modality and focusses on offline execu-
tions. There a more restrictive notion of bounded epistemic action
theory is adopted, where the number of tuples that the agent thinks
may belong to any given fluent is bounded. Here, we only require
that it be entailed that the number of distinct tuples in any fluent is
bounded, and the agent need not know anything about which.

2 Situation Calculus

The situation calculus [13, 16] is a sorted predicate logic language
for representing and reasoning about dynamically changing worlds.
All changes to the world are the result of actions, which are terms
in the language. We denote action variables and terms by lower case
letters a, action types by capital letters A, possibly with subscripts.
A possible world history is represented by a term called a situation.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-369

369



The constant S0 is used to denote the initial situation where no ac-
tions have yet been performed. Sequences of actions are built using
the function symbol do, where do(a, s) denotes the successor situa-
tion resulting from performing action a in situation s. Besides actions
and situations, there is also the sort of objects for all other entities.
Predicates and functions whose value varies from situation to situa-
tion are called fluents, and are denoted by symbols taking a situation
term as their last argument (e.g., Holding(x, s)). For simplicity, and
w.l.o.g., we assume that there are no functions other than constants
and no non-fluent predicates. We denote fluents by F and the finite
set of fluents by F . The arguments of fluents (apart the last argument
which is of sort situation) are assumed to be of sort object.

Within the language, one can formulate action theories that de-
scribe how the world changes as the result of the available actions.
Here, we concentrate on basic action theories (BATs) as proposed in
[14, 16]. We also assume that there is a finite number of action types
A. Moreover, we assume that the terms of object sort are in fact a
countably infinite setN of names for which we have the unique name
assumption (which is expressible in FOL).5 As a result a basic action
theoryD is the union of the following disjoint sets: the foundational,
domain independent, (second-order, or SO) axioms of the situation
calculus (Σ); (FO) precondition axioms stating when actions can be
legally performed (Dposs); (FO) successor state axioms describing
how fluents change between situations (Dssa); (FO) unique name
axioms for actions and (FO) domain closure on action types (Dca);
(FO) unique name axioms for object constants (Duo); and (FO) ax-
ioms describing the initial configuration of the world (D0). A special
predicate Poss(a, s) is used to state that action a is executable in sit-
uation s; precondition axioms in Dposs characterize this predicate.
The abbreviation Executable(s)means that every action performed
in reaching situation s was possible in the situation in which it oc-
cured. In turn, successor state axioms encode the causal laws of the
world being modeled; they take the place of the so-called effect ax-
ioms and provide a solution to the frame problem. Obviously,Dmust
be consistent for being of interest.

Bounded Action Theories. Let b be some natural number. We can
use the notation ∣{x⃗ ∣ φ(x⃗)}∣ ≥ b to stand for the FO formula:

∃x⃗1, . . . , x⃗b.φ(x⃗1) ∧⋯ ∧ φ(x⃗b) ∧ ⋀
i,j∈{1,...,b},i≠j

x⃗i ≠ x⃗j .

We can also define (∣{x⃗ ∣ φ(x⃗)}∣ < b) ≐ ¬(∣{x⃗ ∣ φ(x⃗)}∣ ≥ b).
Using this, [5] defines the notion of a fluent F (x⃗, s) in situa-
tion s being bounded by a natural number b as BoundedF,b(s) ≐
∣{x⃗ ∣ F (x⃗, s)}∣ < b and the notion of situation s being bounded by
b: Boundedb(s) ≐ ⋀F ∈F BoundedF,b(s). An action theoryD then
is bounded by b if D ⊧ ∀s.Executable(s) ⊃ Boundedb(s). [5]
shows that for bounded theories, verification of sophisticated tem-
poral properties is decidable. It also identifies interesting classes of
such theories. Also, [6] shows that if a theory’s initial state descrip-
tion is bounded, then checking whether the action theory is bounded
(in all executable situations) is decidable.

We close by stressing that in this view, boundedness is a property
of the world not of what the agent knows about the world. See [4] for
a different view of boundedness related agent’s knowledge.

3 Sensing and Online Execution

Sensing Actions. Assume now that some actions may be used
to sense aspects of the agents’ environment. These are called sens-
5 Such names are akin to standard names [11], but we do not enforce domain

closure which requires second-order logic.

ing actions and can be assumed to return a boolean result. Fol-
lowing [10], we assume that the information provided by such
sensing actions is specified using a special predicate SF(a, s),
which holds if action a returns the binary sensing result 1 in
situation s. Using this, we can write sense fluent axioms of the
form SF(senseOpen(door), s) ≡ Open(door, s), i.e. the action
senseOpen(door) returns the result 1 in situation s iff door is open
in s. (Non-binary sensing actions can be handled as shown in [21]).
From now on, let us assume that our action theories include a set
Dsf of such (FO) sense fluent axioms of the form SF(A(x⃗), s) ≡
φA(x⃗, s), one for each action type A, which characterize SF (for
any ordinary action type A that does not involve sensing, we use
SF(A(x⃗), s) ≡ true). For simplicity, as in [21] we assume that
sensing actions only affect what the agent knows, and do not do
change the state of the world; any “world changing sensing action”
can be modeled as a sensing action followed by an ordinary action.

Histories. To describe a run that includes both actions and their
sensing results, we use the notion of history. By a history we mean a
sequence of pairs (a, v)where a is a ground action term and v is 1 or
0, a sensing result. Intuitively, the history (a1, v1)⋅. . .⋅(an, vn) is one
where actions a1, . . . , an happen starting in some initial situation,
and each action ai returns sensing value vi. The assumption is that if
ai is an ordinary action with no sensing, then vi = 1. Notice that the
empty sequence ε is a history.

Histories are not terms of the situation calculus. It is convenient,
however, to use end[h] as an abbreviation for the situation term
called the end situation of history h on the initial situation S0,
and defined inductively by: end[ε] = S0 and end[h ⋅ (a, x)] =
do(a, end[h]). We also use Sensed[h] as an abbreviation for a
formula of the situation calculus, the sensing results of a history,
defined inductively by: Sensed[ε] = true, Sensed[h ⋅ (a,1)] =
Sensed[h] ∧ SF(a, end[h]), and Sensed[h ⋅ (a,0)] = Sensed[h] ∧
¬SF(a, end[h]). This formula uses SF to tell us what must be true
for the sensing to come out as specified by h starting in the initial sit-
uation S0. Note that if no sensing action is performed along a history
h, then Sensed[h] becomes equivalent to true.

We will model what the agent knows after the actions and obser-
vations in h have occured using D ∪ {Sensed[h]}. Note that we are
modeling knowledge meta-theoretically and are taking a first-person
view of the action theory augmented by sensing results, as represent-
ing what the agent knows about the world (see [21] for an alternative
third-person view where knowledge is modeled in the language).

Online Execution and Sensing. An on-line execution of an agent
is a sequence of (ground) actions that are known to be executable.
If an action is not executable its effects are unpredictable, and we
assume the agent is only interested in performing actions that are
known to be executable and have predictable effects. First, observe
that sensing actions are just like ordinary actions except for the new
information they provide, which is specified by the axioms involving
SF . However, whether the agent knows that an action is executable
may now depend on the values sensed so far. That is, if h is the
history of actions and sensing values obtained so far starting from
S0, then action a can be legally executed in end[h]) whenever

D ∪ {Sensed[h]} ⊧ Poss(a, end[h]).

In other words, now we are looking for actions whose preconditions
are logically implied by D together with the values sensed so far.

However, one problem is where the new sensing results v in h
come from. In the real execution they come from the agent’s envi-
ronment. But when the agent reason about what to do next, it will

G. De Giacomo et al. / LTL Verification of Online Executions with Sensing in Bounded Situation Calculus370



want to check dynamic or temporal properties over its possible on-
line executions, since these are the only executions that the agent
could actually perform. So the question is where the sensing values
come from in such possible on-line executions. To capture this we
introduce two notions of possible executable histories, one that uses
a structure/model of the action theory to represent the agent’s en-
vironment, and one that uses consistency with the action theory to
determine possible sensing results.

First, we look at executable histories wrt a modelM of an action
theory D . We define the set ExecM of executable histories h wrt
M, inductively as follows:

● ε ∈ ExecM;
● if h ∈ ExecM and D ∪ {Sensed(h)} ⊧ Poss(a, end[h]) and
M⊧D ∪ {Sensed(h ⋅ (a, v))}, then h ⋅ (a, v) ∈ ExecM.

Notice that ExecM contains all the histories built by ensuring that at
every step it is known that the agent is able to execute action a, i.e.,
D ∪ {Sensed(h)} ⊧ Poss(a, end[h]), and where sensing results
are obtained from the actual modelM corresponding to the real en-
vironment, i.e., M ⊧ D ∪ {Sensed(h ⋅ (a, v))}, which amounts
to having h ⋅ (a,1) ∈ ExecM only if M ⊧ SF (a, end[h]) and
h ⋅ (a,0) ∈ ExecM only ifM⊧ ¬SF (a, end[h]).

Now the agent does not really know which model corresponds to
the real environment. It only knows what is specified by the action
theory itself and the values sensed so far (D ∪ {Sensed(h)}). So
the only thing it can do is to consider all possible executable histories
h ∈ ExecM for some modelM of D.

Next, we look at the set ExecD of executable histories wrt an
action theory D, where we use consistency to determine possible
sensing results. We define the set ExecD inductively as follows:

● ε ∈ ExecD;
● if h ∈ ExecD and D ∪ {Sensed(h)} ⊧ Poss(a, end[h]) and
D ∪ {Sensed(h ⋅ (a, v))} is consistent, then h ⋅ (a, v) ∈ ExecD .

Notice that ExecD contains all the histories built by ensuring that
at every step it is known that the agent is able to execute action a
(D ∪ Sensed(h) ⊧ Poss(a, end[h])) and that the sensing results
are consistent with what has been sensed along the history, i.e., D ∪
Sensed(h○(a, v)) is consistent, which amounts to having h⋅(a,1) ∈
ExecD only ifD∪{Sensed(h)∧SF (a, end[h])} is consistent and
h ⋅ (a,0) ∈ ExecD only if D ∪ {Sensed(h) ∧ ¬SF (a, end[h])} is
consistent.

It can be shown that for every history the two notions coincide.

Theorem 1 Let D be an action theory. Then for every history h:

h ∈ ExecD iff h ∈ ExecM for some modelM of D

Proof (sketch). Notice that in ExecD , for every prefix h′ of h we
require only consistency ofD∪Sensed(h′), that is the existence of a
modelM′

h′ such thatMh′ ⊧ D∪Sensed(h
′). So for the if direction

it is sufficient to observe thatM can serve as the modelMh′ for all
prefixes h′ of h. For the only-if direction, while it is true that for
all prefixes h′ the model Mh′ such that M′ ⊧ D ∪ Sensed(h′)
changes, we must have a modelMh for the history h itself such that
Mh ⊧ D ∪ Sensed(h), hence h ∈ ExecMh .

Now we extend this to “infinite histories” or runs. A run � is an
infinite set of histories (each of which is finite) defined inductively as
follows:

● ε ∈ �;
● if h ∈ �, then there exists exactly one ground action and one sens-

ing result v such that h ⋅ (a, v) ∈ �.

We use the usual notation: (a0, v1) ⋅ (a1, v1) ⋅ ⋯ to denote runs. We
say that a run � is executable wrt a model M, written � ∈ ExecM,
iff for all h ∈ � we have h ∈ ExecM. Similarly, we say that a run �
is executable wrt an action theory D, written � ∈ ExecD , iff for all
h ∈ � we have h ∈ ExecD .

The crucial question is if the above theorem applies to runs as well.
The answer is that in general this is not the case [17], as shown by
the well-known tree chopping example below.

Example 1 Consider an agent that wants to cut down a tree. As-
sume that the agent has an action chop to chop at the tree, and also
assume that it can always find out whether the tree is down by doing
the (binary) sensing action look. If the sensing result is 1, then the
tree is down; otherwise the tree remains up. There is also a fluent
RemainingChops(n, s), where we assume that n ranges over the
natural numbers N and whose value is unknown to the agent, and
which is meant to represent how many chop actions are still required
in s to bring the tree down. The action theory D is characterized by
the following initial situation description, precondition, sensing and
successor state axioms: the union of:

∃n.RemainingChops(n,S0)

RemainingChops(n, do(a, s)) ≡
(a = chop ∧ n ≠ 0 ∧RemainingChops(n + 1, s)) ∨
(a = chop ∧ n = 0 ∧ ∃m.m ≤ 1 ∧RemainingChops(m,s)) ∨
(a ≠ chop ∧RemainingChops(n, s));

JustChopped(do(a, s)) ≡ a = chop;

Poss(chop, s) ≡ True; Poss(look, s) ≡ True;

SF (chop, s) ≡ True;
SF (look, s) ≡ (RemainingChops(0, s)).

Notice that the sentence ∃n.RemainingChop(n,S0), says that
there exists some n ∈ N, though unknown and unbounded, such that
the tree will fall after n chops. However, the theory does not entail
the sentence RemainingChop(k,S0) for any constant k ∈ N.

For this reason for every model M and every run � ∈ ExecM
such that chop is repeated infinitely often, we have that along the run
sooner or later the tree will be down (i.e., RemainingChops(0, s)
holds for some s along the run). Using LTL introduced later (where
we use situation suppressed sentences) we have that :

(◻◇holds(JustChopped)) ⊃ ◇◻holds(RemainingChops(0))

On the other hand, if we consider runs � ∈ ExecD , this property
does not hold. This is because at each point in the run we can find a
possibly different model in which the tree is not down yet.

Interestingly, the above example shows that expressing the remain-
ing chops using natural numbers plays a crucial role, and a formal
characterization requires second-order logic. We prove now an im-
portant result stating that if the initial situation description D0 is ex-
pressed in FOL then theorem 1 holds also on (infinite) runs. The
result comes as a consequence of the compactness of FOL, which
guarantees that: if all finite subsets of an infinite set of FOL formulas
are consistent then the entire set is consistent (see, e.g.,[8]).

Theorem 2 Let D be an action theory with initial situation descrip-
tion D0 expressed in FOL. Then for every run �:

� ∈ ExecD iff � ∈ ExecM for some modelM of D

Proof (sketch). For the if direction, as before we can use the M
to witness of satisfiability of D ∪ {Sensed(h)} for all histories

G. De Giacomo et al. / LTL Verification of Online Executions with Sensing in Bounded Situation Calculus 371



h in the run, by observing that h ∈ ExecM implies that M ⊧
D ∪ {Sensed(h)}. Hence we have that for all h ∈ �, h ∈ ExecD .
For the only if direction we need to exploit compactness of FOL.
Specifically we observe that every Sensed(h) can be regressed into
a FOL formulaR[Sensed(h)] over the initial situation (observe that
Sensed(h) is conjunction of formulas of the form SF(a, end[h′])
or ¬SF(a, end[h′]) for some prefix h′ of h). We also denote by
Duo(h) the axioms inDuo that enforce the unique name assumption
for all constants mentioned in D0∪{R[Sensed(h)]}, notice that such
set of axioms is finite. Checking consistency of D ∪ {Sensed(h)}
is equivalent to checking consistency of the FOL theory Dh ∪
{R[Sensed(h)]} where Dh = D0 ∪ Duo(h) ∪ Dca. Now if � ∈
ExecD then for all h ∈ �, Dh ∪ {R[Sensed(h)]} is consistent, but
then, by compactness, the entire run � is “consistent”, or more pre-
cisely the set {Dh ∪ {R[sensed(h)]} ∣ h ∈ �} is consistent. Hence,
there exists a model M such that M ⊧ Dh ∪ {R[sensed(h)]} for
every h ∈ �, which means thatM ⊧ D ∪ {Sensed(h)} for all h ∈ �,
and hence � ∈ ExecM.

4 Progression over Histories

The progression of an action theory is the problem of updating the
initial description of the world in D0 so that it reflects the current
state of the world after some actions have been performed. When
there is no sensing, a one-step progression ofD wrt a physical ground
action a is obtained by replacing the initial knowledge base D0 in D
by a suitable set Da of sentences so that the original theory D and
the theory (D − D0) ∪ Da are equivalent wrt how they describe the
situation do(a,S0) and the situations in the future of do(a,S0).

The seminal paper [12] gives a model-theoretic definition for the
progression Da of D0 wrt a physical action a and D, which we will
slightly extend to account for sensing. First we review the M ∼SaM

′

relation. Let Sa be the situation term do(a,S0) and M and M ′ be
structures with the same domains for sorts action and object. We
write M ∼Sa M

′ if: (i) M and M ′ have the same interpretation of
all situation-independent predicate and function symbols; and (ii) M
and M ′ agree on all fluents at Sa, that is, for every fluent F , and every
variable assignment μ, M,μ ⊧ F (x⃗, Sa) iff M ′, μ ⊧ F (x⃗, Sa).

Now let a be a ground action term of the form A(c⃗) and v a sens-
ing result. Then, for Da a set of (possibly second-order) sentences
uniform in Sa, we say that Da is a progression of D0 wrt (a, v) if
for any structure M , M is a model of Da iff there is a model M ′ of
D ∪ {ϕ} such that M ∼Sa M

′, where ϕ is the positive or negative
literal of atom SF(a, do(a,S0)) depending on the value v. This def-
inition essentially requires for the two theoriesD and (D−D0)∪Da

that any model of one is indistinguishable from some model of the
other wrt how they interpret the (atomic) history (a, v) and future
histories with this prefix. The only difference with [12] is the use of
the literal ϕ of the sensing-result atom SF . Observe that in the case
that there are no sensing actions then the two definitions coincide.

Lin and Reiter [12] showed that in general there are cases where
a FO progression does not always exist. Nonetheless, recent work
in [6] shows that when D is bounded this can be guaranteed for the
case without sensing. Here we show that this is also true when we
consider sensing actions. Observe that this is not trivial as the pro-
gressed knowledge base needs to incorporate in a FO representation
also the effect of sensing expressed by means of an arbitrary uniform
FO formula in the right-hand side of the corresponding sensed fluent
axiom inDsf. On the other hand progression with respect to a sensing
action does not affect the extension of fluents in each model in any
way; it may only “remove” or “filter out” some of the models of D

so that only those that comply with the sensing result remain.
We make use of the properties of bounded theories and results in

[5, 6] which allows characterizing the models of the initial situation
description of any bounded action theory by means of a finite num-
ber of characteristic sentences each of which qualifies as a relatively
complete initial knowledge base with bounded unknowns [25].

Theorem 3 All bounded action theories with sensing are iteratively
first-order progressable over histories.
Proof. Let us consider an action theory D with sensing and the
case of the atomic action history (a, v). If a is a physical action,
then a FO progression Da (that is again bounded) can be computed
as the disjunction of the progression of each characteristic sentence
φi separately as a relatively complete KB [6]. For the case that a
is a sensing action of the form A(c⃗), note that SSAs do not af-
fect the extension of fluents and consider Da as the disjunction
⋁i φi(S0/Sa) ∧ ϕ,6 where φi are the characteristic sentences as be-
fore and ϕ is the right-hand side of the corresponding ground sensing
axiom SF(A(c⃗), Sa) ≡ φA(c⃗, Sa) or its negation depending on the
sensing result v. We can show that Da qualifies as a progression of
D0 wrt (a, v). (⇒): Let M be a model such that M ⊧ Da. Then
M ⊧ φi(S0/Sa) ∧ ϕ for some i. Construct M ′ identical to M ex-
cept that the extension of fluents in S0 is copied from their extension
in Sa, and for the rest of the situations the extensions are specified
by the rest of the axioms in D. Then M ′ ⊧ D0 since φi is a char-
acteristic sentence for D0, M ∼SaM

′ and M ′ ⊧ D by construction
of M ′, and also M ′ ⊧ ϕ since M ⊧ ϕ and M ∼Sa M

′. (⇐): As-
sume that there exists a model M ′ of D ∪ {ϕ} such that M ∼SaM

′

with M otherwise arbitrary. Then M ′ ⊧ φi for some i and since
a is a sensing action also M ′ ⊧ φi(S0/Sa). By the hypothesis it
follows then that M ′ ⊧ φi(S0/Sa) ∧ ϕ. Since M ∼Sa M ′ it fol-
lows that M ⊧ φi(S0/Sa) ∧ ϕ and by construction of Da it follows
that M ⊧ Da. Finally, note that as the theory is bounded over all
situations, Da can always be rewritten as a disjunction of character-
istic sentences (for both physical and sensing actions), thus we can
progress iteratively to deal with arbitrary histories.

5 Verification of Online Executions with Sensing

Linear Time Logic. Dynamic properties over online executions
can be expressed using a First-Order variant of Linear Time Logic
(FO LTL) [15], whose syntax is as follows:

ϕ ∶∶= holds(φ) ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ○ϕ ∣ ϕ1 U ϕ2

where φ is an arbitrary closed uniform situation-suppressed (i.e.,
with all situation arguments in fluents suppressed) situation calculus
FO formula, whose constants must appear in D. The logic is closed
under the boolean connectives and includes the usual unary temporal
operator○ (next-time) and the binary temporal operator U (until). In-
tuitively,○ϕ says that ϕ holds at the next instant, ϕ1 U ϕ2 says that at
some future instant ϕ2 will hold and until that point ϕ1 holds. Also,
common abbreviations are introduced: (i) standard boolean abbrevia-
tions, ∨ (or) and ⊃ (implies); (ii)◇ϕ which stands for trueU ϕ, and
says that ϕ will eventually hold; (iii) ◻ϕ, which stands for ¬◇¬ϕ,
and says that from the current instant on ϕ will always hold.

The semantics of FO LTL is given in terms of infinite traces in the
standard way [15]. A trace is an infinite sequence π = Π0 ⋅ Π1 ⋅ ⋯,
where, in our case, each Πi is a possibly infinite set of formulas of the
form holds(φ). Given a trace π, we inductively define when a FO
LTL formula ϕ is true at position i (i ∈ N) in π, in symbols π, i ⊧ ϕ:
6 φ(σ/σ′) denotes the result of replacing every occurrence of σ in φ by σ′.

G. De Giacomo et al. / LTL Verification of Online Executions with Sensing in Bounded Situation Calculus372



● π, i ⊧ holds(φ) iff holds(φ) ∈ Πi.
● π, i ⊧ ¬ϕ iff π, i /⊧ ϕ.
● π, i ⊧ ϕ1 ∧ϕ2 iff π, i ⊧ ϕ1 and π, i ⊧ ϕ2.
● π, i ⊧ ○ϕ iff π, i + 1 ⊧ ϕ.
● π, i ⊧ ϕ1 U ϕ2 iff for some j such that i ≤ j, we have that

π, j ⊧ ϕ2 and for all i ≤ k < j, we have that π, k ⊧ ϕ1.

We say that a trace π satisfies a FO LTL formula ϕ, written π ⊧ ϕ, iff
π,0 ⊧ ϕ. We denote by L(ϕ) the set of traces π such that π ⊧ ϕ. The
languageL(ϕ) can be recognized by a finite Büchi automaton. These
are finite state automata that accept infinite runs, by requiring that
some accepting state is visited infinitely often [3]. In our case, addi-
tional care is needed in handling atomic formulas holds(φ), which
require the use of FOL reasoning.

Given a history h, we denote by thms[h] the set {holds(φ) ∣ D∪
Sensed(h) ⊧ φ[end[h]]}. Then, given a run � = (a0, v0)⋅(a1, v1)⋅
⋯ we define the corresponding trace π� = thms[ε] ⋅ thms[(a0, v0)] ⋅
thms[(a0, v0) ⋅ (a1, v1)] ⋅ ⋯.

In our setting, the agent reasons about the possible online execu-
tions, to verify whether FO LTL properties of interest hold. To do so,
we rely on model checking, which, in our context, amounts to check-
ing that all online executions of an agent following an action theory
D satisfy a FO LTL formula ϕ, written D ⊧ ϕ.7 Formally, D ⊧ ϕ iff
for all runs � such that � ∈ ExecM, for some M, we have π� ⊧ ϕ.
Notice that, by Theorem 2, if the initial situation description of the
action theory is expressed in FOL, then the above definition can be
simplified into: D ⊧ ϕ iff for all runs � ∈ ExecD we have π� ⊧ ϕ.

We can define a transition system (TS) that contains exactly all the
traces corresponding to the online executable runs of an action theory
D. Formally, such a TS is defined as TD = ⟨Q, q0, λ,→⟩, where:

● Q = ExecD is the set of states;
● q0 = ε is the initial state;
● λ is the labeling function, mapping each state q to the set of uni-

form situation-suppressed closed formulas λ(q) = thms(q);
● → ⊆ Q × Q is the transition relation, such that q → q′ iff q′ =

q ⋅ (a, v) for some a and v.

It is easy to see that TD generates all the traces corresponding to
the runs in ExecD .8 We denote the set of traces of TD by L(TD).
We now observe that to check whether D ⊧ ϕ we can check whether
L(TD) ∩ L(¬ϕ) = ∅. The problem however is that TD is infinite
so the usual model checking techniques based finite Büchi automata
[3] do not work. This is obviously true also for bounded theories.
However, under the boundedness assumption, the construction of a
finite faithful abstraction of TD becomes possible.

Theorem 4 Let D be an action theory bounded by b and ϕ a FO
LTL formula. Then, checking whether D ⊧ ϕ is decidable.

Proof (sketch). We show this result following the lines of [6].
The first step is to actually use progression for labeling states of

transition systems. Using progression we can re-define the labeling
function of TD as: λ(q) = {holds(φ) ∣ Prog(q) ⊧ φ[S0]}. By the
correctness of progression we have that this new specification defines
the same labeling function as the original one.

Now we observe that the actual value of constants that occur in the
formulas of λ(q) and are not mentioned in D is not relevant when
checking the FO LTL formula ϕ (as it can only mention constants in

7 To deal with temporal logics, which assume an infinite future, we assume,
wlog, that histories can be extended by at least one action. If needed, we
add a no-op dummy action without effects that can always be performed.

8 A transition system generates, through λ and →, all traces corresponding to
its infinite paths.

D by definition). As a result these constants can be renamed arbitrar-
ily, without affecting the result. Formally, two labelings Π and Π′ are
logically equivalent modulo renaming, written Π ∼ Π′, if there exists
a bijection g ∶ N → N s.t. Π ⊧ g(Π′) and Π′ ⊧ g−(Π) (for g− the
inverse of g), where: g(Π′) stands for the set of formulas obtained
from Π′ by replacing each constant n in Π′ not occurring in D by
g(n); and similarly g−(Π) is the theory obtained by replacing each
constant of n in Π not occurring in D, by g−(n).

Next we define bisimulation between TS as usual but using as local
condition the above equivalence modulo renaming. A bisimulation
between T1 and T2 is a relation B ⊆ Q1 ×Q2 s.t. B(q1, q2) implies:

● λ1(q1) ∼ λ2(q2);
● for every transition q1 →1 q′1, there exists a transition q2 →2 q′2,

s.t. ⟨q′1, q
′
2⟩ ∈ B;

● for every transition q2 →2 q′2, there exists a transition q1 →1 q′1,
s.t. ⟨q′1, q

′
2⟩ ∈ B.

T1 and T2 are said to be bisimilar written T1 ≈ T2, if ⟨q10, q20⟩ ∈
B, for some bisimulation B. As usual bisimilarity is an equivalence
relation, which implies trace equivalence [3]. Hence if T1 ≈ T2 then
T1 and T2 generate the same traces modulo renaming.

Next we construct a finite transition system TF , using Algo-
rithm 1, which takes an action theory D bounded by b as input, and
returns a finite-state TS TF = ⟨Q, q0, ∂,→⟩ whose labels in the state
denote finite FOL theories, such that when we close them deductively
we get a TS that is bisimilar to TD .

Algorithm 1 Computation of a finite-state TS.
Q ∶= {q0}; ∂(q0) ∶= D0 after suppressing situations;
let→ be the empty relation;
let C be the set of constants occurring in D;
repeat

let q ∈ Q and C∂(q) be the set of constants occurring in ∂(q);
for all action types A with parameters x⃗ do

let o⃗ ⊂ N be any (finite) set s.t. ∣o⃗∣ = ∣x⃗∣ and
o⃗ ∩ (C ∪C∂(q)) = ∅;

for all parameter substitutions θ ∶ x⃗→ C∂(q) ∪C ∪ o⃗ do
let Dq,(a,v) be the situation suppressed progression of
∂(q) wrt a = A(x⃗θ) and sensing result v, such that
∂(q)[S0] ⊧ Poss(a,S0) and (D − Do) ∪ ∂(q)[S0] ∪
Sensed[(a, v)] is consistent;
if there exists q′ ∈ Q s.t. Dq,(a,v) ∼ ∂(q

′) then

→∶=→ ∪{q → q′};
else

let Q ∶= Q ⊎ {q′}, for q′ a fresh state, with ∂(q′) =
Dq,(a,v), and→∶=→ ∪{q → q′};

end if
end for

end for
until (transition relation→ does not change any more)

This procedure generates TF by iteratively progressing D, start-
ing from the (situation-suppressed) initial situation description. In
doing so, not all the infinitely many executable actions are consid-
ered for progression at each step, but only a finite subset. These can
be chosen so as to obtain one representative for each equivalence
class, wrt logical equivalence modulo renaming, of progressions that
can be obtained after applying all possible actions. This is actually
achieved by including in o⃗ a distinct value for each parameter, dis-
tinct also from all the elements of C and C∂(q). Then, to guarantee
coverage of all equivalence classes, all action types and all assign-
ments of parameters to o⃗ ∪C ∪C∂(q) are considered. Notice that by
the boundedness assumption and Th. 3, the progression of Dq,(a,v)

is computable, an obvious necessary condition for the algorithm to

G. De Giacomo et al. / LTL Verification of Online Executions with Sensing in Bounded Situation Calculus 373



terminate. Similarly, testing the condition of the if statement is de-
cidable, as D is b-bounded and so are all of the theories labeling the
states of Q. Termination of the algorithm follows by the fact thatD is
bounded by b, thus only finitely many equivalence classes of theories,
wrt logical equivalence modulo renaming, exist, which constitute Q.

Now, let us consider the TS T ′
F obtained from TF by substituting

the labeling function ∂ with λ such that λ(q) = {holds(φ) ∣ ∂(q) ⊧
φ}. Then we have that T ′

F ≈ TD . This can be proved by co-induction,
showing that q ∼ q′, with q from TD and q′ from T ′

F is indeed a
bisimulation, which includes the initial states of the two TSs. Finally,
since bisimilar TSs generate equivalent traces, the result follows.

Notice that Algorithm 1 in the proof provides a practical way to gen-
erate the TS to model check.

Example 2 Consider an agent in a Candy-Crush-like domain,
where candies of different flavours arrive in a continuous flow. The
agent has a bag of bounded capacity, where candies can be stored.
The actions available to the agent are: (i) grab a new candy from the
flow; (ii) pick a stored candy from the bag; (iii) store the candy in
its hand (grabbed or picked) into the bag (if space is available in the
bag); (iv) taste a candy to sense its flavour; (v) discard the candy in
its hand; (vi) eat a candy, if its flavour is cherry. We assume we have
fluents Grabbed, Eaten and Discarded to model that the respec-
tive actions have just been executed. The following formula expresses
that if the agent grabs new candies forever, then it must eat or discard
candies forever (as it cannot accumulate candies forever):

◻◇holds(∃x.Grabbed(x))) ⊃
◻◇holds(∃x.Eaten(x) ∨Discarded(x)).

We close the section by observing that we do not allow for quan-
tification “across situations”, i.e., for including temporal operators
within the scope of FO quantifiers. This feature can be shown to lead
to undecidability even in very simple cases, as verification in this
setting can be reduced to model checking of FO LTL with freezing
quantifiers [2]. As noted in [5], however, in a rich formalism like
the situation calculus, even when restricted to bounded action theo-
ries, the impact of such limitations can be mitigated by recording in
the current situation information from past situations. For instance,
one can introduce a finite number of “registers”, i.e., fluents storing
at most one tuple, and use them to refer to tuples across situations.
Then we can write, e.g. (assuming for simplicity that the mentioned
fluents have all the same arity), the formula:

◻(holds(∃x⃗.Regi(x⃗) ∧ F (x⃗)) ⊃ ◇holds(∃y⃗.Regi(y⃗) ∧ F
′(y⃗))),

which says that whenever the tuple referred to by register i has prop-
erty F , then eventually it comes to have property F ′.

6 Conclusion

In this paper, we have proposed a first-person, computationally
grounded account of agents reasoning about their online executions
with sensing, by checking sophisticated FO linear time logic proper-
ties (without quantification across situations) over situation calculus
action theories. For bounded theories, we have shown that progres-
sion over histories that include sensing results is always first-order,
and that verification of FO LTL properties is decidable. One key re-
sult has been showing that while reasoning, we can ignore the distinc-
tion between getting possible sensing values from a possible model
(for all models) and getting simply all consistent sensing values, in
the case of a first-order initial situation description.

It is possible to relate our first-person account to a third-person
account (a modeler’s perspective) involving a knowledge operator in

the logic [20, 4]. This is especially interesting when there are several
agents working from their own first-person account simultaneously,
and their relationship to a third-person (modeler) account [22]. We
will investigate this in future work. Finally, we would like to extend
the proposed first-person account with partial observability of actions
as in [1], while remaning computationally grounded. This would al-
low us to model a wider range of settings as bounded theories.
Acknowledgements This research has been partially supported by
the EU project Optique (FP7-IP-318338), the Sapienza Award 2013
“SPIRITLETS: SPIRITLET-based Smart Spaces”, and NSERC.

REFERENCES

[1] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy
sensors and effectors in the situation calculus. Artif. Intell., 111(1-
2):171–208, 1999.

[2] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and
M. Montali. Verification of relational data-centric dynamic systems
with external services. In Proc. of PODS’13.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[4] G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded Epistemic
Situation Calculus Theories. In Proc. of IJCAI’13.

[5] G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded Situation Cal-
culus Action Theories and Decidable Verification. In Proc. of KR’12.

[6] G. De Giacomo, Y. Lespérance, F. Patrizi, and S. Vassos. Progression
and Verification of Situation Calculus Agents with Bounded Beliefs. In
Proc. of AAMAS’14. To appear.

[7] G. De Giacomo and H. J. Levesque. An incremental interpreter for
high-level programs with sensing. In Logical Foundations for Cognitive
Agents, pages 86–102. 1999.

[8] H. B. Enderton. A Mathematical Introduction to Logic. Academic
Press, 1972.

[9] C. Fritz and S. McIlraith. Decision-theoretic Golog with qualitative
preferences. In KR, pages 153–163, 2006.

[10] H. J. Levesque. What is planning in the presence of sensing? In AAAI,
pages 1139–1146, 1996.

[11] H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. MIT
Press, 2001.

[12] F. Lin and R. Reiter. How to Progress a Database. Artificial Intelligence,
92(1-2):131–167, 1997.

[13] J. McCarthy and P. J. Hayes. Some Philosophical Problems From the
StandPoint of Artificial Intelligence. Machine Intell., 4:463–502, 1969.

[14] F. Pirri and R. Reiter. Some Contributions to the Metatheory of the
Situation Calculus. J. ACM, 46(3):261–325, 1999.

[15] A. Pnueli. The temporal logic of programs. In FOCS, 1977.
[16] R. Reiter. Knowledge in Action. Logical Foundations for Specifying

and Implementing Dynamical Systems. MIT Press, 2001.
[17] S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On

Ability to Autonomously Execute Agent Programs with Sensing. In
Proc. of AAMAS’04.

[18] S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On
the Limits of Planning over Belief States under Strict Uncertainty. In
Proc. of KR’06.

[19] S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On the
semantics of deliberation in indigolog - from theory to implementation.
Ann. Math. Artif. Intell., 41(2-4):259–299, 2004.

[20] R. B. Scherl and H. J. Levesque. The frame problem and knowledge-
producing actions. In AAAI, pages 689–695, 1993.

[21] R. B. Scherl and H. J. Levesque. Knowledge, action, and the frame
problem. Artif. Intell., 144(1-2):1–39, 2003.

[22] S. Shapiro, Y. Lespérance, and H. J. Levesque. The cognitive agents
specification language and verification environment for multiagent sys-
tems. In AAMAS, pages 19–26, 2002.

[23] E. Ternovska. Automata theory for reasoning about actions. In IJCAI,
pages 153–159, 1999.

[24] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Banff Higher Order Workshop, pages 238–266, 1995.

[25] S. Vassos and F. Patrizi. A Classification of First-Order Progressable
Action Theories in Situation Calculus. In Proc. of IJCAI’13.

[26] M. Wooldridge. Computationally Grounded Theories of Agency. In
Proc. of ICMAS, pages 13–22, 2000.

G. De Giacomo et al. / LTL Verification of Online Executions with Sensing in Bounded Situation Calculus374


