
Argumentation Accelerated Reinforcement Learning for
Cooperative Multi-Agent Systems

Yang Gao and Francesca Toni 1

Abstract. Multi-Agent Learning is a complex problem, especially
in real-time systems. We address this problem by introducing Ar-
gumentation Accelerated Reinforcement Learning (AARL), which
provides a methodology for defining heuristics, represented by argu-
ments, and incorporates these heuristics into Reinforcement Learn-
ing (RL) by using reward shaping. We define AARL via argumenta-
tion and prove that it can coordinate independent cooperative agents
that have a shared goal but need to perform different actions. We test
AARL empirically in a popular RL testbed, RoboCup Takeaway, and
show that it significantly improves upon standard RL.

1 Introduction

Learning to coordinate in cooperative multi-agent systems (MAS)
is recognised as a complex problem and has attracted much atten-
tion [2,8,10,13]. In this context, coordination is defined as ‘the ability
of two or more agents to jointly reach a consensus over which actions
to perform in an environment’ [12]. Argumentation [4], studying the
concept of “good” arguments among conflicting arguments, is widely
viewed as a powerful tool in solving conflicts and reaching agree-
ment (e.g. [5]). In this paper, we investigate the use of argumentation
to coordinate multiple independent learning agents.

We focus on Reinforcement Learning (RL), because it allows
agents to learn by interacting with the environment and has been
shown to be a generic and robust learning algorithm to achieve co-
ordinated behaviours [18]. However, RL may converge slowly in co-
operative MAS, mainly because of the huge joint action space which
is exponential in the number of agents [2]. Potential-based reward
shaping [16] has been used to improve performance of RL in coop-
erative MAS (see, e.g., [3]), but its effectiveness heavily relies on the
quality of the heuristics this technique is deployed with. Obtaining
high-quality heuristics for RL is challenging in cooperative MAS,
not only because the domain knowledge given by domain experts
can be error-prone or even self-conflicting, but also because heuris-
tics are required to instruct individual agents as well as to coordi-
nate multiple independent agents. We propose a methodology, based
on value-based argumentation frameworks (VAFs) [1], to tackle this
problem. Compared with existing research in integrating argumenta-
tion into RL [7], our research focuses on complex multi-agent prob-
lems, and provides more generic techniques in proposing heuristics.
We prove that our methodology recommends different actions to dif-
ferent agents so that, when making decisions, an agent only needs to
know its teammates’ arguments and does not need to explore the joint
action space. We then use this VAF-based methodology to generate
high-quality heuristics that we incorporate into RL using potential-
based reward shaping. The resulting Argumentation Accelerated RL

1 Imperial College London, UK, email: {yg211,ft}@imperial.ac.uk

(AARL) is, to the best of our knowledge, the first generic algorithm
that uses argumentation to aid the definition of heuristics and to im-
prove the performance of RL in cooperative MAS. We empirically
show the effectiveness of AARL in the RoboCup Soccer Takeaway
game, a widely used real-time testbed for MAS [19], interesting as
it takes place in a continuous space.

2 Background

First we give fundamentals of abstract and value-based argumen-
tation. Then we describe RL, followed by an introduction to
potential-based reward shaping, by means of which we integrate
argumentation-based heuristics into RL. Finally, we describe the
RoboCup Soccer Takeaway game, which we use as a testbed.

2.1 Argumentation Frameworks

An abstract argumentation framework (AF) [4] is a pair (Arg,Att)
where Arg is a set of arguments and Att ⊆ Arg × Arg is a binary
relation ((A,B) ∈ Att is read ‘A attacks B’). Suppose S ⊆ Arg and
B ∈ Arg. S attacks B iff some member of S attacks B. S is conflict-
free iff S attacks none of its members. S defends B iff S attacks all
arguments attacking B. Semantics of AFs are defined as sets of “ra-
tionally acceptable” arguments, known as extensions. For example,
given some F = (Arg,Att), S ⊆ Arg is an admissible extension for
F iff S is conflict-free and defends all its elements; S is a complete
extension for F iff S is conflict-free and S = {a|S defends a}; S is
the grounded extension for F iff S is minimally (wrt. ⊆) complete
for F. The (possibly empty) grounded extension is guaranteed to be
unique [4], consisting solely of the uncontroversial arguments and
being thus “sceptical”. For example, consider two arguments:

a: Let’s have dinner at home today
b: Let’s have dinner in a restaurant today

Sceptically, we may think that neither is acceptable since nei-
ther of them is convincingly good. Formally, we can build an AF
(ArgT ,AttT ), where ArgT = {a, b} and AttT = {(a, b), (b, a)}.
This AF is depicted as a directed graph in Fig. 1(a). {a, b} is not
admissible because it is not conflict-free. {a} ({b}) is admissible be-
cause it is conflict-free and it can defend itself. The grounded exten-
sion is ∅, consistent with our intuition that neither is convincing.

In some contexts, the attack relation between arguments is not
enough to decide what is “rationally acceptable”, and the “values”
promoted by arguments must be considered. Value-based argumen-
tation frameworks (VAFs) [1] incorporate values and preferences
over them into AFs. The key idea is to allow for attacks to suc-
ceed or fail, depending on the relative worth of the values promoted
by the competing arguments. Given a set V of values, an audi-
ence Valpref is a strict partial order over V (corresponding to the

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-333

333



a �� b�� a �� b

Figure 1: (a) An argumentation framework and (b) its simplification.
The argument in the tail of an arrow attacks the argument in the head.
A double-sided arrow stands for mutual attack.

preferences of an agent), and an audience-specific VAF is a tuple
(Arg,Att, V, val,Valpref), where (Arg,Att) is an AF and val : Arg →
V gives the values promoted by arguments. In VAF, the ordering over
values, Valpref, is taken into account in the definition of extensions.
The simplification of an audience-specific VAF is the AF (Arg,Att−),
where (A,B) ∈ Att− iff (A,B) ∈ Att and val(B) is not higher
than val(A) in Valpref. (A,B) ∈ Att− is read ‘A defeats B’. Then,
(acceptable) extensions of a VAF are defined as (acceptable) exten-
sions of its simplification (Arg,Att−). We refer to (Arg,Att−) as the
simplified AF derived from (Arg,Att, V, val,Valpref). For example,
extend our earlier illustrative AF with the following two values:

v1: Cheap v2: Time-saving
Let valT be such that valT (a) = v1, valT (b) = v2 and let ValprefT
give v1 >v v2.2 Then we obtain a VAF (ArgT ,AttT , VT , valT ,
ValprefT ) and derive the simplified AF (ArgT ,Att−T ), where Att−T =
{(a, b)}, as shown in Fig. 1(b). The grounded extension for
(ArgT ,Att−T ) is {a}. This can be interpreted as follows: if we think
cheap is of higher importance than time-saving, we will choose to eat
at home. Thus, VAF is a powerful tool for determining the “rationally
acceptable” arguments with conflicting domain knowledge.

2.2 Markov Decision Process (MDP)

MDP is one of the most widely used RL models [21]. A MDP is a
tuple (S,A, T,R), where S is the state space, A is the action space,
T (s, a, s′) = Pr(s′|s, a) is the transition probability of moving
from state s to state s′ by executing action a, and R(s, a, s′) gives
the immediate reward received when action a is taken in state s,
moving to state s′. The goal of planning in a MDP is to find a policy
π : S → A, specifying for each state the action to take, which max-
imises the expected future rewards. In many real problems, the tran-
sition probabilities and the reward functions are not known. In these
cases, temporal difference updates [20] are used to propagate infor-
mation about values of states, V (s), or state-action pairs, Q(s, a).

SARSA(λ) with eligibility traces [21], as shown in Algorithm 1,
is a popular temporal difference RL algorithm and has been widely
used in cooperative MAS [9,19]. In Algorithm 1, α is a learning rate
parameter and γ is a discount factor governing the weight placed on
the future. e represents eligibility traces, which store the credit that
previous action choices should receive for current rewards, while λ
governs how much credit is delivered back to them. The policy used
in line 5 and line 8 is ε-greedy: the action with highest Q(s, a) value
will be selected for a proportion 1 − ε; for the other ε proportion,
actions will be selected randomly.

2.3 Potential-Based Reward Shaping

Potential-based reward shaping was proposed by Ng et al. [16] as the
difference of some potential function Φ over the current state s and
the following state s′. Wiewiora et al. [22] extended the potential-
based method to the case of shaping functions based on both states
and actions: Φ(s, a). In particular, Wiewiora et al. proposed look-
back advice for incorporating action-based domain knowledge into

2 Given two values V1 and V2, V1 >v V2 stands for ‘V1 is preferred to V2
in Valpref’, and V1 =v V2 stands for V1 >v V2 ∧ V2 >v V1.

Algorithm 1 SARSA(λ) with replacing eligibility traces

1: Initialise Q(s, a) arbitrarily for all states s and actions a
2: for each episode do

3: Initialise e(s, a) = 0 for all s and a
4: Initialise current state st
5: Choose action at from st using the policy derived from Q
6: while st is not a terminal state do

7: Execute action at, observe reward rt and new state st+1

8: Choose at+1 from st+1 using the policy derived from Q
9: δ ← rt + γQ(st+1, at+1)−Q(st, at)

10: e(st, at) ← 1
11: for all s and a do

12: Q(s, a) ← Q(s, a) + αδe(s, a)
13: e(s, a) ← γλe(s, a)
14: end for

15: st ← st+1; at ← at+1

16: end while

17: end for

RL. When integrating look-back advice into Alg. 1, line 9 becomes
δ ← rt + γQ(st+1, at+1)−Q(st, at) + F (st−1, at−1, st, at)

where
F (st−1, at−1, st, at) = Φ(st, at)− γ−1Φ(st−1, at−1)

is obtained when moving from state st−1 to st by action at−1. Al-
though it has been empirically shown that look-back advised RL can
converge regardless of Φ values, the convergence speed still heav-
ily relies on the values of Φ [14]. Potential values can be viewed
as numerical representatives of the heuristics, which can be difficult
to obtain, especially when the domain knowledge is conflicting. In
Section 4 we will show that, by using argumentation, high-quality
heuristics can be extracted from conflicting domain knowledge, and
these heuristics can be naturally represented by Φ values.

2.4 RoboCup Soccer Takeaway Game

The Takeaway game is proposed [11] to facilitate RL research in the
context of RoboCup Soccer. In N -Takeaway (N ∈ N, N ≥ 1), N +
1 hand-coded keepers are competing with N independent learning
takers on a fixed-size field. Keepers attempt to keep possession of
the ball, whereas takers attempt to win possession of the ball. The
game consists of a series of episodes, and an episode ends when the
ball goes off the field or any taker gets the ball. A new episode starts
immediately with all the players reset.

To facilitate RL in the RoboCup Soccer, macro actions were pro-
posed by Stone et al. [19] and then adjusted for Takeaway [11]. In
Takeaway, there are two macro actions:
• TackleBall(): move directly towards the ball to tackle it
• MarkKeeper(i): go to mark keeper Ki, i �= 1
where Ki represents the ith closest keeper to the ball (so that K1 is
the keeper in possession of the ball). When a taker marks a keeper,
the taker blocks the path between the ball and that keeper. Thus, a
taker is not allowed to mark the ball holder, and the action set in
N -Takeaway consists of M=N+1 actions.

Each taker’s observation of its environment is represented by a
state vector, whose elements, known as state variables, are listed in
Table 1. Most existing research on Takeaway assumes that each taker
has a 360◦ vision and uses the ball-holder-oriented state variables
[3,11], collecting information from the ball holder’s perspective. Our
state vector, however, not only includes some ball-holder-oriented
state variables, but also includes takers’ self-oriented state variables
in order to facilitate coordination between takers.

Y. Gao and F. Toni / Argumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems334



State Variable(s) Description

dist(Ki,Me),i∈[1, N+1] Distance between keepers and self
dist(Tj ,Me), j ∈ [2, N ] Distance between other takers and self
ang(Ki,Me), i ∈ [2, N + 1] Angle between the free keepers and

self, with vertex at K1.
dist(Ki,K1), i ∈ [2, N + 1] Distance between K1 and the other

keepers
dist(Tj ,K1), j ∈ [2, N ] Distance between K1 and the other

takers
min

j∈[1,N ]
ang(Ki, Tj),

i ∈ [2, N + 1]

The smallest angle between Ki and the
takers with vertex at K1.

Table 1: State variables in N -Takeaway for learning taker T1 (i, j ∈
N). The top three rows give self-oriented variables, the others give
ball-holder-oriented variables.

3 Argumentation For Agent Coordination

We consider N -player MAS problems with N cooperative indepen-
dent learning agents, denoted Agent1 , . . . , AgentN , with N ∈N,
N≥2,3 where each agent has the same action set Act={a1,. . . ,aM},
where M ∈N,M ≥ 2, is the number of available actions. The do-
main knowledge contributing to heuristics is action-based, i.e. rec-
ommending action(s) in specific states. We use arguments to repre-
sent this knowledge, where an argument A is of the form:

con(A) IF pre(A)
where con(A) (the conclusion of A) is the recommended action and
pre(A) (the premise of A) describes under which conditions argu-
ment A is applicable. Throughout this section, we make i and j range
resp. over agents and actions. An argument A supports an action aj

iff con(A)=aj . We denote Agenti’s observation of the current state
by Stai and that argument A is applicable in Stai by Stai |= pre(A).

Arg∗ = ∪M
j=1Arg∗j

is the set of all candidate arguments s.t. A∈ Arg∗j iff con(A) = aj .
So Arg∗j is the set of arguments supporting action aj . We assume that
each agent is aware of all arguments in Arg∗.

Example 1 (Candidate arguments in Takeaway). Given the macro
actions (Section 2.4) in Takeaway and our observation of the game,
it is unnecessary for multiple agents to tackle the ball or mark the
same keeper because agents can fulfil these tasks individually. So we
propose the following domain knowledge for taker Ti:

1. Ti should tackle the ball if Ti is closest to the ball holder;
2. If a keeper is in a quite ‘open’ position, Ti should mark this keeper;
3. If a keeper is ‘far’ from all takers, Ti should mark this keeper;
4. If the angle between Ti and a keeper, with vertex at the ball holder,
is the smallest, Ti should mark this keeper;
5. If Ti is closest to a keeper, Ti should mark this keeper.

Note that this domain knowledge is action-based. Given the state
variables in Table 1, we “translate” the knowledge above into the
following five categories of candidate arguments:

1. TiTK: TackleBall() IF i = arg min
1≤t≤N

dist(K1, Tt)

2. TiO(p): MarkKeeper(p) IF min
1≤t≤N

ang(Kp, Tt) ≥ 15

3. TiF(p): MarkKeeper(p) IF min
1≤t≤N

dist(Kp, Tt) ≥ 10

4. TiA(p): MarkKeeper(p) IF i = arg min
1≤t≤N

ang(Kp, Tt)

5. TiC(p): MarkKeeper(p) IF i = arg min
1≤t≤N

dist(Kp, Tt)

where p ∈ {2, · · · , N + 1} for arguments referred to as TiO(p),
TiF(p) ,TiA(p) and TiC(p), because K1 cannot be marked. 15 and
10 in items 2 and 3 are threshold values we used to define resp. ’open’

3 Note that, theoretically, our technique also allows N = 1.

and ’far’. Overall, for a N -Takeaway game, there are 4N2 +N can-
didate arguments4 in Arg∗.

Recall that we face two main issues in extracting “good” heuristics
from domain knowledge: (i) domain knowledge may have conflicts,
and (ii) since each agent is self-interested, the domain knowledge for
each agent may not result in “good” heuristics for the team. To tackle
these issues, we define argumentation frameworks as follows:

Definition 1. Given Sta = 〈Sta1, · · · , StaN 〉, where Stai is Agenti’s
observation of state s, then a Sta-specific cooperative argumentation
framework is a tuple SCAF = (Arg,Att) s.t.:
1. Arg = 〈Arg1, · · · ,ArgN 〉 s.t. Argi ⊆ Arg∗ and A ∈ Argi iff

Stai |= pre(A) (for all i)
2. Att ⊆ ∪N

i=1Argi × ∪N
i=1Argi s.t. (A,B) ∈ Att iff

for some p, q ∈ {1, · · · , N}:
(i) con(A) = con(B), A∈Argp, B∈Argq and p �= q, or
(ii) con(A) �= con(B) and A,B ∈ Argp.

We refer to (∪N
i=1Argi,Att) as the AF derived from SCAF.

The argument set of a SCAF is a subset of the candidate argument
set Arg∗: for Agenti, only the arguments whose premises are true
according to Agenti’s observation of the current state are in Argi.
By doing this, we ensure that all arguments in a SCAF are applica-
ble. Attack(s) between two applicable arguments are built iff these
two arguments are (i) applicable for different agents but support the
same action, or (ii) applicable for the same agent but support differ-
ent actions. These rules for building attacks are consistent with our
intuition that one agent should perform only one action and differ-
ent agents perform different actions. Note that given these rules for
attacks, if argument A attacks B in a SCAF, then B also attacks A.

Example 2 (Continuation of Example 1). We build the SCAF for
Sta depicted in Fig. 2(a), First, we choose the applicable arguments.
Let us consider T1’s candidate arguments one by one. Because T1

is the closest taker to the ball, the premise of T1TK is true and this
argument is applicable. However, because the angle between K2/K3

and T1, with vertex at K1, is smaller than 15, K2/K3 is not open
in this scenario. Therefore, T1O(2)/T1O(3) is not applicable. Sim-
ilarly, since neither K2 nor K3 are far, T1F(2) and T1F(3) are not
applicable either. The angle between T1 and K2/K3, with vertex at
K1, is smallest among all takers, so T1A(2) and T1A(3) are appli-
cable in this scenario. The distance between T1 and K2 is smaller
than the distance between T2 and K2, so argument T1C(2) is ap-
plicable. However, since T2 is closer to K3 than T1, T1C(3) is not
applicable. Overall, the applicable arguments for T1 are: Arg1 =
{T1TK, T1A(2), T1A(3), T1C(2)}. Similarly, we can get the appli-
cable arguments for T2: Arg2 = {T2C(3)}.

We then build attacks (Att) between these applicable arguments.
To illustrate, consider T1TK and T1A(2): they are both applicable
for T1 but recommend different actions, so they attack each other.
Consider also T1A(3) and T2C(3): they are applicable for different
agents but recommend the same action, so they attack each other. The
full attack relationship is given in Fig. 2(b).

Below, Argij stands for Argi∩Arg∗j . Intuitively, Argij are the argu-
ments recommending aj applicable in Agenti’s observation of the
current state. Each Argij is “rationally acceptable”, as follows:

Proposition 1. Let (Arg,Att) be a SCAF and the AF derived from it
be F=(∪N

i=1Argi,Att). Then, Argij is an admissible extension for F.

4 For taker Tj , TjTK gives one argument and the other four categories of
arguments each give N (as there are N free keepers to be marked). So
there are N×(4×N + 1) candidate arguments in total.

Y. Gao and F. Toni / Argumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems 335



(a)

����������

������

������ ������

(b)

Figure 2: (a) An example state in 2-Takeaway and (b) its AF.

Proof. By definition of Att, Argij is conflict-free. Let A ∈ Argij and
B ∈ Arg−Argij . If (B,A) ∈ Att, then (A,B) ∈ Att necessarily. So
Argij can defend all its elements.

Proposition 1 sanctions that, in a SCAF, all actions supported by
applicable arguments are “equally good” for an agent, since their ar-
guments can defend themselves. There may be several such “equally
good” actions for an agent, and different agents may have the same
“equally good” actions: these situations are not desirable in a coop-
erative MAS. To address this problem, we introduce values into our
argumentation frameworks, as shown next.
Definition 2. Given Sta = 〈Sta1, · · · , StaN 〉 as in Definition 1, a
value-based Sta-specific cooperative argumentation framework is a
tuple VSCAF = (SCAF,V, val,Valpref) s.t.:
1. SCAF is a Sta-specific cooperative argumentation framework
2. V is a set (of values)
3. val : Arg∗ → V is a function from Arg∗ to V
4. Valpref is a strict partial order over V
We denote val(A) = v, for A ∈ Arg∗, as A → v, and say that A
promotes v. If (∪N

i=1Argi,Att) is the AF derived from SCAF, then we
call (∪N

i=1Argi,Att,V, val,Valpref) the VAF derived from VSCAF.
Note that, as in standard VAFs, each argument can only pro-

mote one value, whereas each value can be promoted by several
arguments. We assume that agents share the same value preference
(Valpref), in line with our assumption that agents are cooperative. As
in standard VAFs (see Section 2.1), a simplified AF can be derived
from the VAF derived from a VSCAF. We use

AF− = (∪N
i=1Argi,Att−)

to refer to this simplified AF derived from the VAF derived from
(SCAF,V, val,Valpref) (with SCAF = (Arg,Att)).

Example 3 (Continuation of Example 2). We add values to SCAF.
Consider arguments TiTK, for instance. Performing this category of
arguments is to prevent the ball holder from holding the ball for too
long (value VT). Similarly, we give a value for each category of can-
didate arguments as follows:

1. VT: Prevent the ball being held by the keepers;
2. VO: Prevent the ball being passed to an ’open’ keeper;
3. VF: Prevent the ball being passed to a ’far’ keeper;
4. VA: Ensure that each pass can be quickly intercepted;
5. VC: Ensure that, after each pass, the ball can be quickly tackled.
The mapping from arguments to values (val) is defined as follows:
TiTK →VT, TiO(p) →VO, TiF(p) →VF, TiA(p) →VA, TiC(p) →
VC. Further, we give the ranking of values (Valpref) as follows:
VT>v VA=v VC>v VO>v VF.5 Given these rankings of values,
5 Note that, for simplicity, we assume the same ranking of values throughout

the game, but our technique can be applied with value rankings that change
over time.

����������������

������ ������

Figure 3: The simplified AF− derived from Fig 2(b).

we can simplify the AF in Fig. 2(b) and obtain the simplified AF− as
illustrated in Fig. 3.

Lemma 1. If the grounded extension G for AF− is non-empty, then
∃i, j s.t. G ∩ Argij �= ∅.

Proof. G∩Argij=G∩Argi∩Arg∗j . Since G⊆∪N
i=1Argi⊆∪M

j=1Arg∗j ,
the lemma trivially holds.

Theorem 1. If the grounded extension G for AF− is non-empty, then
∀i, if ∃p, q ∈ {1, · · · ,M} s.t. Argip ∩ G �= ∅ and Argiq ∩ G �= ∅,
then p = q.

Proof. Necessarily, ∃A,B ∈ G s.t. A ∈ Argip, B ∈ Argiq . If
A = B, then the theorem is obviously true. If A �= B, by contra-
diction, assume p �= q. Then, by definition of Att, (A,B) ∈ Att
and (B,A) ∈ Att. Since the simplification process may only elimi-
nate attacks, (A,B) or (B,A) or both are in Att−.6 Hence, G is not
conflict-free and so not grounded: contradiction.

Theorem 2. If the grounded extension G for AF− is non-empty, ∀j,
if ∃p, q ∈ {1,· · ·, N} s.t. Argpj ∩ G �= ∅ and Argqj ∩ G �= ∅, then
p = q.

Proof. ∃A,B as in the proof of Theorem 1. Again, if A = B, the
proof is trivial. If A �=B but p �= q, (A,B) or (B,A) or both are in
Att− which contradicts that G is grounded.

We have proven that, if there is a non-empty grounded exten-
sion for AF−, at least one agent will get a recommended action
(Lemma 1), each agent will be recommended at most one action
(Theorem 1) and each action will be recommended to at most one
agent (Theorem 2). These properties are significant as they guaran-
tee that argumentation can help agents choose what to do (the rec-
ommended action) while being cooperative (since no two agents are
recommended the same action).

Theorem 3. Let V i
ach = {v|v ∈ V, ∃A ∈ Argi s.t. A → v}, and

vimax∈V i
ach s.t. ∀v∈V i

ach, v �>v vimax. For any i ∈ {1, · · · , N}, if
G ∩ Argi �= ∅, then ∃A∈G s.t. A →vimax.

Proof. Suppose G ∩ Argi �= ∅. We assume, by contradiction, that
�A∈G ∩ Argi s.t. A → vimax and ∃B ∈ Argi − G s.t. B → vimax.
For any C∈G∩Argi, (B,C)∈Att− and (C,B) /∈Att−. As a result,
G is not admissible and thus not grounded: contradiction.

Theorem 3 sanctions that for each agent, if it has any recom-
mended action, this action must promote the highest value among
all the achievable values: values which are promoted by some appli-
cable arguments for this agent. Hence, the recommended action is the
best. Note that when the grounded extension for AF− is empty, ac-
cording to the semantics of grounded extension (see Section 2.1), no
“uncontroversially acceptable” arguments can be obtained given the
current domain knowledge (argument set). Then additional knowl-
edge should be added; otherwise, no convincing heuristics can be
extracted from the argumentation framework.

The grounded extension of AF− (Fig 3) is {T1TK, T2C(3)}, sat-
isfying Theorems 1, 2 and 3.

6 According to the simplification rules of VAF (see Section 2.1), no attacks (if
any) between arguments A and B can be eliminated if val(A)=v val(B).

Y. Gao and F. Toni / Argumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems336



4 Argumentation Accelerated RL

To encourage agents to perform the actions supported by arguments
in the grounded extension, we give these actions positive shaping re-
wards, by using look-back advice (see Section 2.3). If the grounded
extension is empty, then all actions’ potential values are 0. For sim-
plicity, we give all the recommended actions the same potential
value. Formally, in a state s, given the observation vector Sta, its
corresponding SCAF, VSCAF the derived simplified AF− and its
grounded extension G, the potential value function for action aj is:

Φ(s, aj) =

{
0 if � ∃A ∈ G s.t. con(A) = aj

c otherwise
(1)

where c > 0 is a constant.
Argumentation Accelerated RL is the integration into RL of

argumentation-based heuristics via look-back reward shaping. We
can obtain AARL from Alg. 1 by making the following revisions
(all line numbers below are the original line numbers in Alg. 1):
• Between line 1 and 2, add “Initialise Arg∗, V, val and Valpref”.

We initialise all these values before the learning starts because
they all remain the same throughout the learning process.

• Between line 4 and 5, add “Initialise lp = 0”, where lp is a vari-
able used to store the potential value in the last learning step.

• Between line 6 and 7, add three steps in the following order:
– “Observe Stai in st, obtain Argi”. Argi can be obtained by se-

lecting the applicable arguments (see Def. 1).
– “Obtain Argq , q ∈ {1, · · · , N}, q �= i, then build SCAF,

VSCAF and derive AF−”. To build SCAF, each agent needs
to know all agents’ arguments. If Agenti can observe other
agents’ states, it can directly compute other agents’ applicable
arguments; otherwise, it can obtain the other agents’ applicable
arguments by communicating with them. Based upon SCAF,
VSCAF and AF− can be easily built, by their definitions.

– “Compute Φ(st, a) for all action a as described in Eq. (1)”.
This requires computing the grounded extension of AF−.

• Replace line 9 with “δ ← rt + γQ(st+1, at+1) − Q(st, at) +
Φ(st, at)− γ−1lp” to implement look-back advice.

• Between line 14 and 15, add “lp ← Φ(st, at)” to update lp.
Note that when communication is needed, its burden is tractable: as
all candidate arguments are known by all agents a priori, agents can
just communicate the indexes of arguments. Also, since the SCAF,
VSCAF and AF− are the same for all agents (see Definitions 1 and 2),
these argumentation frameworks’ construction and computation can
be performed by any agent, and other agents only need to know their
recommended actions by communication. This property is especially
valuable in applications where computation is more expensive than
communication or when agents have heterogeneous computing capa-
bilities. Note that, in AARL, an agent makes decisions based on its
own observation of the environment and the arguments of its team-
mates. Since, for each action, the number of supporting arguments is
independent of the total number of agents and actions, the number of
arguments supporting a specific action can be viewed as a constant.
Hence, for a cooperative MAS problem with N agents and M ac-
tions, the complexity of the joint action space is O(MN ) whereas
the complexity of the argumentation framework is O(M × N). So
instead of searching the exponential joint action space, agents only
need to search the polynomial argumentation framework to coordi-
nate their behaviours. Also note that, if the grounded extension is
empty at some learning steps, then AARL behaves like standard RL.

5 Empirical Results for Takeaway

We use Alg. 1 as our standard RL algorithm, with the same param-
eters as in [3]. The size of the field is 40×40. Each agent receives

a reward of 10 when an episode ends and −1 in all other learning
steps. Since allowing takers to update actions in each cycle7 leads to
poor performances [11], takers update their action(s) every 5 cycles.
The hand-coded strategies of keepers are described in [19], and we
design a hand-coded strategy for the takers, s.t. takers who have a
recommended action will perform it; those receiving no recommen-
dations will tackle the ball. c in Eq. 1 is 2. The results for 2- and
3-Takeaway are shown in Fig. 4. Since the hand-coded strategies are
stable, we give their averaged performance (the horizontal straight
lines in Fig. 4). Recall that takers’ learning goal is to win possession
of the ball more quickly, so the strategy that leads to shorter aver-
age episode duration is better. We see that the performance of AARL
is constantly better than standard RL, and the standard deviation of
AARL is also smaller, suggesting that AARL is more stable. Note
that, although AARL and the hand-coded strategy for takers use the
same domain knowledge, the former has much better performance.
This indicates that AARL is robust to errors in prior knowledge.

Devlin et al. [3] also used look-back advice to integrate do-
main knowledge into Takeaway, and their performances in 2- and
3-Takeaway (also on a 40×40 field) are shown in Fig. 6a and Fig. 8a
in [3], resp. All RL parameters they used are the same with ours8.
They used three heuristics: “separation-based shaping” encourages
each agent to take actions that increase its distance to other team-
mates; “role-based shaping” assigns each agent a role (either tack-
ler or marker) a priori and only the tackler is encouraged to tackle;
“combined shaping” is the integration of these two heuristics. Even
though these heuristics successfully improve RL performances in 3-
Takeaway (Fig. 8a in [3]), they mislead RL in 2-Takeaway (Fig. 6a
in [3]). We believe the reason for these mixed results lies in their lack
of systematic methodology to provide heuristics. Instead, AARL al-
lows to integrate domain knowledge into RL while providing a high-
level abstraction method (VAFs) for domain experts to propose do-
main knowledge. Also, the improvements of their heuristically aug-
mented strategies over SARSA(λ) are not as significant as AARL.

6 Related Work

Some research has been devoted to incorporating domain knowl-
edge into RL to improve its performance in MAS. Grzes and Ku-
denko [9] used high-level STRIPS knowledge in combination with
reward shaping to search for an optimal policy and showed that
the STRIPS-based reward shaping converges faster than the abstract
MDP approach. But their approach requires an explicit goal state and
STRIPS-style domain knowledge, unavailable in several applications
(e.g. Takeaway). As for cooperative RL, Claus and Boutilier [2] dis-
tinguished two forms of multi-agent RL: independent learners (ILs),
which only consider their own Q-values when choosing actions, and
joint action learners, which search the exponential joint action space
to maximise the sum of all agents’ Q-values. Our agents can be seen
as ILs. Guestrin et al. [10] used coordination graphs to restrain the
coordination relationships so that actions are selected to maximise
the sum of Q-values of only related agents. Thus, to obtain the Q-
values of all related teammates, an agent has to compute all these Q-
values or communicate with other agents. Hierarchical RL (HRL) has
also been used to guide coordination. For example, Ghavamzadeh
et al. [8] proposed Cooperative HRL, in which coordination is only

7 In RoboCup Simulator, the platform receives and executes actions every
100 milliseconds [17], known as a cycle.

8 However, the state variables used in [3] are slightly different from ours in
that they did not use the takers’ self-oriented state variables. Also, they
use RoboCup Simulator v11.1.0. whereas we use v15.1.0. So their baseline
performances are different from ours.

Y. Gao and F. Toni / Argumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems 337



 9

 10

 11

 12

 13

 14

 15

 16

 0  5  10  15  20  25  30  35  40

E
p
is

o
d
e
 d

u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Learning time (hours)

SARSA-based strategy
AARL-based strategy
Hand-coded strategy

 6

 7

 8

 9

 10

 11

 12

 13

 0  5  10  15  20  25  30  35  40

E
p
is

o
d
e
 d

u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Learning time (hours)

Baseline (SMDP) algorithm
Argumentation-based algorithm

Hand-coded strategy

Figure 4: Performances in 2-Takeaway (the upper figure) and (b) 3-
Takeaway (the bottom figure). Error bars represent one standard de-
viation. Results are averaged 30 independent experiments.

learnt in predefined cooperative subtasks, defined by domain experts
as subtasks where coordination would significantly improve the per-
formance of the whole team. Lau et al. [13] modelled coordination
among agents as coordination constraints and used these to limit the
joint action space for exploration. However, in all these cooperative
RL approaches, domain knowledge is in the form of hard constraints
and the action exploration is strictly constrained. Hence, learning
cannot correct errors in the domain knowledge and the performances
are highly sensitive to the quality of the domain knowledge.

As for integration of argumentation and machine learning, most
existing works are based on single-agent learning [7, 15]. An excep-
tion is our previous work [6], which analysed the emerged perfor-
mance when both takers and keepers learn. However, it did not give
any theoretical analysis, but only presented limited empirical results
(only one performance of each strategy was presented).

7 Conclusions

We presented Argumentation-Accelerated RL (AARL), a new ap-
proach to RL where domain knowledge is represented and organ-
ised as an argumentation framework. We proved that, by obtain-
ing the grounded extension of the argumentation framework, each
agent is recommended at most one action and each action is rec-
ommended to at most one agent and, thus, the agents’ behaviours
are coordinated. We implemented AARL using the SARSA(λ) al-
gorithm and performed experiments in RoboCup Soccer Takeaway.
Empirical results showed that AARL outperforms standard RL and
some other state-of-the-art heuristics for Takeaway games. Differ-
ently from other works (e.g. [3]), our approach allows users to pro-
vide conflicting information and resolves conflicts at run-time.

Our research could be extended in several directions. In the cur-
rent version of AARL, preferences of values (Valpref ) and potential
values (Φ) are defined a priori and remain the same. Further research
is needed to investigate the theoretical possibility of changeable Val-
pref and Φ and the consequent empirical performances. By doing so,
domain experts can update their domain knowledge during the learn-
ing process and, hence, give “on-line” instructions to the learning
agents. Also, since our theoretical results (see Section 3) are indepen-
dent of any learning algorithm, we believe that our approach can in
principle be integrated within other learning algorithms (not limited
to RL) or within RL via other techniques (not limited to reward shap-
ing). In addition to trying out our methodology with other learning
methods and in other application domains, future work also includes
studying how other coordination principles could be represented in
argumentation. Finally, we focused on one-agent-one-action prob-
lems: we plan to extend our approach to allow each agent to execute
multiple actions and multiple agents to play one action.

Acknowledgements
This research was partially supported by the EPSRC TRaDAr
project: EP/J020915/1.

REFERENCES

[1] T. Bench-Capon, ‘Persuasion in practical argument using value-based
argumentation frameworks’, J. Log. Comput., 13(3), 429–448, (2003).

[2] C. Claus and C. Boutilier, ‘The dynamics of reinforcement learning in
cooperative multiagent systems’, in Proc. of AAAI, (1998).

[3] S. Devlin, M. Grzes, and D. Kudenko, ‘An empirical study of potential-
based reward shaping and advice in complex, multi-agent systems’, Ad-
vances in Complex Systems, 14, 251–278, (2011).

[4] P. M. Dung, ‘On the acceptability of arugments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games’,
Artificial Intelligence, 77(2), 321–357, (1995).

[5] X. Fan and F. Toni, ‘Argumentation dialogues for two-agent conflict
resolution’, in Proc. of COMMA, (2012).

[6] Y. Gao and F. Toni, ‘Argumentation accelerated reinforcement learning
for robucup keepaway-takeaway’, in Proc. of TAFA, (2013).

[7] Y. Gao, F. Toni, and R. Craven, ‘Argumentation-based reinforcement
learning for robocup soccer keepaway’, in Proc. of ECAI, (2012).

[8] M. Ghavamzadeh, S. Mahadevan, and R. Makar, ‘Hierarchical multi-
agent reinforcement learning’, Autonomous Agents and Multi-Agent
Systems, 13(2), 197–229, (2006).

[9] M. Grzes and D. Kudenko, ‘Plan-based reward shaping for reinforce-
ment learning’, in Proc. of IEEE Conference ’Intelligent Systems’,
(2008).

[10] C. Guestrin, M. Lagoudakis, and R. Parr, ‘Coordinated reinforcement
learning’, in Proc. of ICML, (2002).

[11] A. Iscen and U. Erogul, ‘A new perspective to the keepaway soccer:
The takers (short paper)’, in Proc. of AAMAS, (2008).

[12] S. Kapetannakis and D. Kudenko, ‘Reinforcement learning of coordi-
nation in cooperative multi-agent systems’, in Proc. of AAAI, (2002).

[13] Q. P. Lau, M. Li Lee, and W. Hsu, ‘Coordination guided reinforcement
learning’, in Proc. of AAMAS, (2012).

[14] B. Marthi, ‘Automatic shaping and decomposition of reward shaping’,
in Proc. of ICML, (2007).

[15] M. Mozina, J. Zabkar, and I. Bratko, ‘Argument based machine learn-
ing’, Artificial Intelligence, 171, 922–937, (2007).

[16] A. Ng, D. Harada, and S. Russell, ‘Policy invariance under reward
transformations: theory and application to reward shaping’, in Proc. of
ICML, (1999).

[17] The RoboCup Federation, RoboCup Soccer Server, 2002.
[18] S. Sen, M. Sekaran, and J. Hale, ‘Learning to coordinate without shar-

ing information’, in Proc. of AAAI, (1994).
[19] P. Stone, R. Sutton, and G. Kuhlmann, ‘Reinforcement learning for

robocup soccer keepaway’, Adaptive Behavior, 13, 165–188, (2005).
[20] R. Sutton, Temporal credit assignment in reinforcement learning, Ph.D.

dissertation, University of Massachusetts, 1984.
[21] R. Sutton and A. Barto, Reinforcement Learning, MIT Press, 1998.
[22] E. Wiewiora, G. Cottrell, and C. Elkan, ‘Principled methods for advis-

ing reinforcement learning agents’, in Proc. of ICML, (2003).

Y. Gao and F. Toni / Argumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems338


