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Abstract. State-of-the-art Monte-Carlo tree search algorithms can
be parametrized with any of the two information updating proce-
dures: MC-backup and DP-backup. The dynamics of these two pro-
cedures is very different, and so far, their relative pros and cons have
been poorly understood. Formally analyzing the dependency of MC-
and DP-backups on various MDP parameters, we reveal numerous
important issues that get hidden by the worst-case bounds on the al-
gorithm performance, and reconfirm these findings by a systematic
experimental test.

1 INTRODUCTION

Markov decision processes (MDPs) is a standard model for plan-
ning under uncertainty [17]. An MDP 〈S,A,P, R〉 is defined by a
set of states S, a set of state transforming actions A, a stochastic
transition function P : S × A × S → [0, 1], and a reward function
R : S × A × S → R. The states are fully observable and, in the
finite horizon setting considered here, the rewards are accumulated
over some predefined number of steps H . The objective of planning
in MDPs is to sequentially choose actions so as to maximize the ac-
cumulated reward. The representation of large-scale MDPs can be ei-
ther declarative or generative, but anyway concise, and allowing for
simulated execution of all feasible action sequences, from any state
of the MDP. In online MDP planning, the agent focuses on its current
state s0 only, deliberates about the set of possible policies from that
state onwards and, when interrupted, chooses what action to perform
next. In formal analysis of algorithms for online MDP planning, the
quality of the action a, chosen for s0 with H steps-to-go, is assessed
in terms of the induced “simple regret”, capturing the performance
loss that results from taking a and then following an optimal policy
π∗ for the remaining H − 1 steps, instead of following π∗ from the
beginning [4].

Many popular algorithms for online MDP planning constitute
what is called Monte-Carlo tree search (MCTS) [21, 16, 15, 7, 6,
19, 22, 14, 10, 12], and adaptations of some of these algorithms
are also popular in other settings of sequential decision making,
including those with partial state observability and adversarial ef-
fects [13, 20, 2, 8, 3]. At a high level, all MCTS algorithms explore
the state-space region around s0 by iteratively (i) simulating an ac-
tion/state trajectory from s0, and (ii) using the outcome of that tra-
jectory to update various action-value estimates related to the state-
space region of interest, as well as to update the estimate of what ac-
tion should be best applied at state s0. In that respect, specific MCTS
algorithms differ both in their trajectory rollout strategies, as well as
in their rollout-based update strategies.

Recent work substantially advanced our understanding of how the
performance of MCTS depends on the specifics of the rollout strat-
egy, as well as on the choice of what pieces of information should be
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updated based on a given rollout [15, 7, 9]. Recently, however, Keller
& Helmert [14] demonstrated empirically that the performance of
MCTS also depends to a large extent on how the respective up-
dates are being performed. Prior to the work of Keller & Helmert,
updates in MCTS algorithms were all based on MC-backups, that
is, sample averaging updates of the selected action-value estimates.
Keller & Helmert showed that modifying a standard MCTS algo-
rithm (such as UCT [15]), by replacing its MC-backups with dy-
namic programming estimates propagation a la Bellman backups in
value iteration [1], can substantially affect the performance, and, at
least in their experiments, typically in favor of DP-backups. Later on,
Feldman & Domshlak [12] showed that switching from MC-backups
to such DP-backups preserves the order-of-magnitude convergence
rates of MCTS instances that guarantee exponential rate performance
improvement (such as BRUE [9]), and can even allow for proving
somewhat better convergence bounds. Still, the relative pros and cons
of MC- and DP-backups have not been systematically studied so far,
and thus are still poorly understood.

This is precisely our contribution in this paper: Using BRUE and
MaxBRUE, a pair of state-of-the-art MCTS algorithms that, ceteris
paribus, use MC-backups and DP-backups, respectively, we study
the dynamics of MC- and DP-backups both formally and empirically.
Starting with establishing a pair of comparable worst-case bounds
on the convergence rates of these two algorithms, we use the anal-
ysis behind these bounds to examine specific dependencies of the
two algorithms on various MDP parameters, namely the state and
action branching factors, the shape of the reward function, and the
entropy of the transition function. To our knowledge, our analysis is
first of its kind, and it reveals numerous important issues that get hid-
den by the worst-case bounds due to certain deficiencies in the for-
mal worst-case analysis of MC-backups. In particular, it suggests that
MC-backups are less sensitive than DP-backups to the state branch-
ing factor, especially when the transition function concentrates on
a small number of outcomes, as it is typically the case in practical
applications. The various aspects of the analysis are then put on a
systematic experimental test, which reconfirms its key findings.

2 BACKGROUND

In what follows, we adopt the notation and pseudo-code convention
from [12]. In particular, when considering an MDP 〈S,A,P, R〉,
its state and action branching factors are respectively denoted by
K = maxs |A(s)| and B = maxs,a |{s′ | P(s′|s, a) > 0}|, s〈h〉
denotes state s ∈ S with h steps-to-go, and A(s) ⊆ A denotes the
actions applicable in state s. Some auxiliary notation: The operation
of drawing a sample from a distribution D over set ℵ is denoted by
∼ D[ℵ], U denotes uniform distribution, and �n� for n ∈ N denotes
the set {1, . . . , n}. For a sequence of tuples ρ, ρ[i] denotes the i-th
tuple along ρ, and ρ[i].x denotes the value of the field x in that tuple.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-321

321



MCTS: [input: 〈S,A, Tr,R〉; s0 ∈ S]

while time permits do
ρ← ROLLOUT
UPDATE(ρ)

return argmaxa
̂Q(s0〈H〉, a)

procedure ROLLOUT
ρ← 〈〉 ; s← s0; d← 0
while not STOP-ROLLOUT(ρ) do

a← ROLLOUT-ACTION(s〈H − d〉)
s′ ← ROLLOUT-OUTCOME(s〈H − d〉, a)
r ← R

(

s, a, s′
)

ρ [t]← 〈

s, a, r, s′
〉

s← s′; d← d + 1
return ρ

procedure UPDATE(ρ)
for d← |ρ|, . . . , 1 do

h← H − d
〈s, a, r, s′〉 ← ρ[d]
n(s〈h〉)← n(s〈h〉) + 1
n(s〈h〉, a)← n(s〈h〉, a) + 1
n(s〈h〉, a, s′)← n(s〈h〉, a, s′) + 1
r̄ ← r + ESTIMATE(s′〈h− 1〉)
MC-BACKUP(s〈h〉, a, r̄)

procedure ESTIMATE(s〈h〉)
r̄ ← 0
for d← 0, . . . , h− 1 do

a← EST-ACTION(s〈h− d〉)
s′ ← EST-OUTCOME(s〈h− d〉, a)
r̃d+1 ← R

(

s, a, s′
)

r̄ ← r̄ + r̃d+1

s← s′
return r̄

procedure MC-BACKUP(s〈h〉, a, r̄)
̂Q(s〈h〉, a)←

n(s〈h〉,a)−1
n(s〈h〉,a)

̂Q(s〈h〉, a) + 1
n(s〈h〉,a)

r̄

procedure UPDATE(ρ)
for d← |ρ|, . . . , 1 do

h← H − d
a← ρ[d].a
s′ ← ρ[d].s′

n(s〈h〉)← n(s〈h〉) + 1
n(s〈h〉, a)← n(s〈h〉, a) + 1
n(s〈h〉, a, s′)← n(s〈h〉, a, s′) + 1
̂R(s〈h〉, a) = ̂R(s〈h〉, a) + ρ[d].r
DP-BACKUP(s〈h〉, a)

procedure DP-BACKUP(s〈h〉, a)
̂Q(s〈h〉, a)← ̂R(s〈h〉,a)

n(s〈h〉,a)

υ ← 0
for s′ ∈ {s′ | n(s〈h〉, a, s′) > 0} do

υ ← υ +
n(s〈h〉,a,s′)
n(s〈h〉,a)

maxa′ ̂Q(s′〈h−1〉, a′)
̂Q(s〈h〉, a)← ̂Q(s〈h〉, a) + υ

(a) MCTS (b) MC (c) DP

Figure 1. (a) Monte-Carlo tree search general scheme, with “separation of concerns” versions of (b) MC-backup and (c) DP-backup updates

MCTS, a canonical scheme underlying various MCTS algorithms
for online MDP planning, is depicted in Figure 1. MCTS explores
the state space in the radius of H steps from the initial state s0 by
iteratively issuing simulated ROLLOUTs from s0. Each such rollout
ρ comprises a sequence of simulated steps 〈s, a, r, s′〉, where s is a
state, a is an action applicable in s, r is an immediate reward col-
lected from issuing the action a, and s′ is the resulting state. Once
generated, the rollout is used to UPDATE some variables of interest,
typically including at least the action value estimators Q̂ (s〈h〉, a)
and the counters n(s〈h〉, a) that record the number of times the cor-
responding estimators Q̂ (s〈h〉, a) have been updated. Once inter-
rupted, MCTS uses the information collected throughout the explo-
ration to recommend an action to perform at state s0.

Instances of MCTS vary mostly along their ROLLOUT-ACTION

policies, prescribing the action to apply in the current state of the roll-
out; and their UPDATE strategies, specifying (i) which of the main-
tained variables should be updated based on the rollout, as well as
(ii) how those variables should be updated. The “how” aspect of the
MCTS UPDATE procedures is of our focus here. By decoupling be-
tween the decisions of what to update and how to update, the empha-
sized text in Figures 1b and 1c shows the respective subroutines for
MC-backup and DP-backup, the two alternatives for “how to update”
that are in use these days by various MCTS algorithms.

• MC-backups are based on the principle of averaging random vari-
able samples: Given a new value sample r̄ for an action a at s〈h〉,
r̄ updates the running sample average Q̂(s〈h〉, a), either knowing
or just assuming that this way Q̂(s〈h〉, a) will eventually converge
to the true Q-value of a at s〈h〉.

• DP-backups implement dynamic programming style estimates
propagation, resembling Bellman backups in value iteration. With
DP-backups, action value estimates Q̂(s〈h〉, a) are updated by the
weighted sum of the value estimates of the empirically best ac-
tions at the outcomes of a (discovered so far), with the weights
being induced by the gradually learned parameters of the MDP’s
stochastic transition function.

Earlier MCTS algorithms, such as flat MC, ε-greedy, UCT, and
their numerous variations [3], all reflected rather directly the algo-
rithms for reinforcement learning-while-acting in multi-armed bandit

problems (MAB) [18]: Given a rollout ρ, update (the selected) action
value estimates “by ρ”, that is, by the actual rewards obtained along
the rollout. Recent works on MCTS algorithms for online MDP plan-
ning examined the important differences between the (single state)
MABs and (multi-state) general MDPs, leading to what was baptized
as the principle of separation of concerns [9]: Instead of updating “by
ρ”, update (the selected) action value estimates “along the trajectory
of ρ” by some information that goes beyond, and possibly even has
nothing to do with, the specific rewards achieved by ρ. In particular,
one can use one of the following.

1. MC-updates along additional rollouts, issued from the states along
ρ according to a special, update-oriented, “estimation” policy.
Such an UPDATE procedure in particular gives rise to the BRUE
algorithm [9], and it is depicted in Figure 1b, together with a gen-
eral template for its ESTIMATE policy.

2. DP-updates along the trajectory of ρ, as depicted in Figure 1c.
This procedure in particular gives rise to the MaxUCT [14] and
MaxBRUE [12] algorithms.

3 WORST-CASE GUARANTEES VS.
REALISTIC EXPECTATIONS

Our comparison between MC-backups and DP-backups in MCTS
is carried through two particular MCTS algorithms, BRUE [9] and
MaxBRUE [12], which guarantee exponential-rate reduction of sim-
ple regret. The only difference between BRUE and MaxBRUE is
that the former employs MC-backups while the latter employs DP-
backups. Hence, for ease of presentation, in what follows we refer to
these two algorithms as MC and DP, respectively. Both MC and DP
use uniform sampling for ROLLOUT-ACTION, and both use the same
ROLLOUT-OUTCOME that samples the provided generative model of
the action’s transition function. With UPDATE as in Figure 1c, that
basically concludes the definition of DP. The UPDATE procedure of
MC in Figure 1b, and in particular, its ESTIMATE subroutine, needs
one more choice to be made.

In analogy to DP-backup that propagates the value of the empir-
ically best actions, MC in ESTIMATE makes the estimation rollouts
along the empirically best actions (selected by EST-ACTION). Thus,
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in particular, no implementation choices are left open here. In con-
trast, for outcome selection along the estimation rollouts, two options
are plausible, and both are viable in terms of consistency and perfor-
mance guarantees. One option is to use the generative model of the
action’s transition function, same as in ROLLOUT-OUTCOME, while
another option is to estimate the transition probabilities, similarly to
DP, and draw samples from that empirical distribution.

The advantage of the second scheme is that the number of “oracle
calls” to the generative model is similar to that of DP. In contrast, the
first scheme performs a factor of H

2
more calls to generative model.

In applications where such oracle calls are expensive, due to, e.g., a
need to simulate a complex physical model, this can be an important
argument for using the second scheme. However, the advantage of
the first scheme is that it is not affected by the errors in the estimation
of the transition probabilities. In what follows, whenever we need to
distinguish between the two options, we will use MCM to refer to MC
with EST-OUTCOME using the generative model, and MCP to refer to
MC with EST-OUTCOME using the estimated transition probabilities.

As we already mentioned, both DP and MC have been recently
proven to reduce simple regret at exponential rate. However, the cor-
responding statements of the formal bounds in [9] and [12] are some-
what involved, and this complicates the comparative analysis and
discussion of DP and MC that we want to make here. Propositions 1
and 2 below provide much more accessible formal bounds on the per-
formance of DP and MC, simplified by assuming B,K 	 0, which
allows keeping track only of the highest order factors of B and K,
and replacing uniform ROLLOUT-ACTION with round-robin, which is
equivalent in expectation but allows for simplifying the bounds fur-
ther. We note that, while the bound for DP in Proposition 1 is qual-
itatively similar to this in [12], the bound for MC in Proposition 2
actually improves over the result in [9]. The proofs are delegated to
a technical report [11].

Proposition 1 Let πB(s0〈H〉) be the action recommendation of DP
after applying n iterations. Then,

P

{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ δ

}
≤ K(2BK)H−1e

− δ2n
4K(BK)H−1H2

Proposition 2 Let πB(s0〈H〉) be the action recommendation of MC
after applying n iterations. Then,

P

{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ δ

}

≤
(
6B2K

Δ2

)H−1

(9BK)
1
2
(H−1)2(H − 1)!2e

− Δ2n
2K(9BK)H−1H2

Roughly speaking, the exponents in the bounds in Propositions 1
and 2 capture the reduction rate of the simple regret, while the mul-
tiplicative factors capture the length of the “cooling periods” after
which the respective bounds become meaningful. In that respect, the
convergence rates of DP and MC appear to be rather comparable, ex-
cluding numerical constants, while the “cooling period” of MC ap-
pears to be much longer than that of DP. The latter suggests, even if
only informally, that the empirical performance of DP should be ex-
pected to be more attractive than the empirical performance of MC.
However, a deeper inspection of MC and DP below suggests a differ-
ent perspective on the relative attractiveness of these two algorithms,
and more generally, on the relative attractiveness of MC-backups and
DP-backups in MCTS.

First, in [9] it was shown that the formal guarantees of MC can be
improved by basing the action value estimators only on a fraction α
of the most recent samples. This enhancement was referred in [9] as
“learning by forgetting”. For some specific values of α convenient for
our discussion here, the bound for MC from Proposition 1 translates
to a bound for the “learning by forgetting” MC(α) as in Proposition 3
below.

Proposition 3 Let πB(s0〈H〉) be the action recommendation of
MC(α) after applying n iterations with a steps-to-go-dependent av-
eraging fraction αh ∼ 1

(9BK)h−1 . Then, we have

P

{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ δ

}
≤

(
40BK

δ2

)H−1

(H − 1)!2e
− δ2n

2K(9BK)H−1H2

As it appears, the worst-case cooling period of MC(α) improves
on that of MC, and this seems to come at no cost in terms of the
convergence rate, expressed by the exponent. However, as we ex-
plain below, it seems that this improvement of the bound in Proposi-
tion 3 should be attributed mostly to the looseness of the bound for
the standard setup of MC, and much less to the actual improvement
of the performance measures. Indeed, adopting “learning by forget-
ting” leads to only minor empirical improvement, if at all.2 Never-
theless, in comparison to DP, the cooling period length of MC(α)
has stronger dependency on the accuracy level δ and the horizon H .

At this point, two things should be noted with regards to the above
formal bounds. First, by definition, formal bounds capture the worst-
case settings of the MDP parameters, that is, uniform transition prob-
ability functions, tree-structured state space, etc. As such, the bounds
tend to blur certain advantages of one algorithm over another in
solving MDPs with some specific (and possibly expected in prac-
tice) characteristics. Second, due to conceptual differences between
the dynamics of MC- and DP-backups, derivation of the bounds in
Propositions 1 and 2 is based on two very different types of analy-
sis. Hence, unlike what often happens for conceptually close tech-
niques [5, 9], the value of formal bounds as indicators for the rela-
tive attractiveness of MC and DP is questionable. Having these two
reservations in mind, in what follows we provide a more conceptual
(aka less mathematically specific) comparative analysis of MC and
DP by exploring several key features of MDP models, and reasoning
about the (possibly different) effects of each of these features on the
performance of the two algorithms.

Branching factors B and K (The size of the problem) In both
Proposition 1 and Proposition 2, the basis of the analysis that gives
rise to the formal guarantees is the fact that identifying the optimal
action a∗ at the root node s0〈H〉 requires that

(1) the value of a∗ at s0〈H〉 is not too underestimated, and that
(2) the values of all the other, sub-optimal actions at s0〈H〉 are not

too overestimated.

Both MC and DP ensure that these accuracy requirements are met,
yet they differ in the way that these requirements recursively translate
into requirements from the descendants of s0〈H〉.

In DP, to ensure that a sub-optimal action a is not too overes-
timated, all the applicable actions in all of the outcome states of a
must not be too overestimated. Thus, the accuracy of estimating a

2 This was observed both in our experiments for this work, as well as in [9].
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sub-optimal action a in DP translates to accuracy requirements be-
ing posed to all the possible BK immediate action successors of a.
In contrast, in MC, the likelihood that a sub-optimal action a will be
too overestimated is negligible, and this because the expected value
of the samples that induce the estimate of a is upper-bounded by
the true value of a, regardless of the estimates of the action succes-
sors of a. Thus, the accuracy of estimating a sub-optimal action a
in MC translates to no accuracy requirements from the successors
of a. In sum, in terms of “not overestimating sub-optimal actions”,
MC-backups seem to be clearly preferred to DP-backups.

Examining now the requirement of not underestimating the opti-
mal action a∗ too much, meeting this requirement in DP requires
that the optimal actions at all of the outcome states of a∗ are not too
underestimated. Indeed, if the latter holds, then the maximal action
values propagated to a∗ from its outcome states are also not too un-
derestimating. Thus, the requirement of “not too underestimating the
optimal action” a∗ at s0〈H〉 translates in DP into B similar require-
ments being posed to all of the state successors of s0〈H〉 via a∗.

When it comes to MC, the picture is somewhat more complicated.
Not underestimating the optimal action a∗ too much requires that, in
expectation, each of the samples inducing the estimate Q̂(s0〈H〉, a∗)
does not underestimate too much the true value of a∗. This implies
that all of the outcome states of a∗ should “identify” their optimal ac-
tions, which in turn translates into accuracy requirements posed to all
(both optimal and sub-optimal) actions applicable at these outcome
states of a∗. As we just mentioned, the accuracy requirements from
sub-optimal actions in MC are negligible, and thus the effective bur-
den is only with the accuracy requirements from the optimal actions
at the outcome states.

In sum, the requirement of not underestimating the optimal action
translates to accuracy requirements from the optimal actions at the
outcome states, at different stages of planning. In the lack of more ef-
fective proof methods, the accuracy of each estimation sample in the
proof of Proposition 2 is considered in isolation, and this is precisely
the point where the difference between the bound and the actual per-
formance may inflate. Indeed, the accuracy of an action estimate cor-
relates with the accuracy of the same action estimate at subsequent
points in time, yet this correlation is not factored into the bounds.

Importantly, the analysis of MC(α) in that respect is not any dif-
ferent: partial averaging does not offer a way to factor this correla-
tion, but only reduces the bound by imposing accuracy requirements
on fewer samples. Clearly, as the number of iterations increases, the
correlation increases as well. The question, however, is when can we
expect to have higher correlation at earlier stages. For instance, when
the probability mass of the transition function concentrates on a small
number of outcomes, the effective action branching becomes smaller
than the nominal action branching B. In such cases, one should ex-
pect to have more samples based on overlapping rollouts, and thus to
have a higher correlation. In any case, when the correlation is high,
MC becomes equivalent to DP in terms of the accuracy requirement
on the optimal action.

In summary, the dependency of DP on B and K is of order
(BK)H , whereas, depending on the correlation, the dependency of
MC on B and K can be of order as small as BH . Therefore, MC can
be expected to be less sensitive than DP to K, especially when the
effective action branching is relatively low, and thus the correlation
is relatively high.

The shape of the reward function If right from the first steps, the
immediate rewards of the optimal actions appear more attractive than
these of the suboptimal actions, then identifying the optimal action

a∗ at s0〈H〉 is somewhat a simpler problem. The more challenging
cases in that respect are when the discriminative rewards are pushed
down the search tree, similarly to what happens in goal-driven MDPs.
In such cases, identifying the optimal action a∗ at s0〈H〉 requires
properly identifying optimal actions far from the root, where samples
are much sparser. Relating this point to the previous discussion on the
size of the problem, it can be expected that the advantage of MC in
the more challenging cases becomes more dependent on the effective
action branching being relatively low.

The entropy of the transition function For all the bounds, the
factor 1

B

H in the exponent results from the worst-case transition
probability function, which, for each action, induces a uniform dis-
tribution over its outcomes. Clearly, as the entropy of the transition
functions decreases, the better the bounds and performance of both
DP and MC would be. However, here as well, some differences are
expected depending on the update scheme. Since DP and MCP use
in their UPDATE the estimated transition function, their value estima-
tions would be skewed towards the value of the more probable out-
comes. Although this skew decreases with the number of samples,
this decrease is slower at the deeper nodes since they are sampled
less frequently. MCM, on the other hand, is free from this type of
inaccuracy and therefore has certain advantage in that respect.

4 EXPERIMENTAL STUDY

In what follows, we put the qualitative comparison above into an em-
pirical test. In previous work, the empirical effectiveness of online
MDP planning algorithms was typically examined on a set of spe-
cific MDP problems, such as the benchmark suites of planning com-
petitions (IPPC). These benchmarks, however, are problematic to use
if one wants to examine the marginal impact of various parameters
of the MDPs on the effectiveness of the algorithms, because these
parameters simply cannot be controlled. In fact, almost all of these
benchmarks are too large to compute the actual value of different ac-
tions at a state, and without that, assessing simple regret of different
algorithms is impossible. Taking that on board, we devised a para-
metric MDP model from which one can select MDP instances with
(i) arbitrary set of action values at the initial state, and (ii) arbitrary
setting of the parameters discussed in the previous section. This al-
lows us to experiment with large MDPs, for which otherwise it would
be impossible (in reasonable time and computational resources) to
compute the value function, and based on it, assess simple regret of
different algorithms.

For ease of presentation, in what follows we refer to nodes s〈h〉
simply by s; the steps-to-go component of the nodes remains clear
from the text. In our base MDP setup, the horizon is set to H = 10,
there are exactly K = 20 actions applicable at every node, and each
node/action pair induces exactly B equiprobable outcome nodes, ex-
clusive to that node/action pair, i.e, the induced state-space is tree-
structured, and the transition probability functions are all uniform.
For a node s, an applicable action a, and a possible outcome s′, the
immediate reward is set to R(s, a, s′) = Q(s,a)

h
, and the value of the

outcome node receives the remainder V (s′) = Q(s, a)−R(s, a, s′).
At any node s, there is exactly one optimal action, the value of which
equals the value V (s) of the node, whereas all other actions have
identical values of εV (s), for some ε ∈ (0, 1). The choice of ε plays
an important role here. If, for instance, ε is set equally for all nodes,
then basing the value updates in both MC and DP on random (and
not empirically best) action successors will surface the optimal ac-
tion at s0, and this because all the actions will be underestimated by
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Figure 2. Experimental results on the base setup with K = 20, B = 20, and all action outcomes being equiprobable (top-center), as well as on the variants
with (↙) K = 200, (↘) B = 200, (↓) K = 200 and B = 200, (←) “good likely” transition functions, and (→) “bad likely” transition functions.

a similar magnitude. Therefore, in our setup, for all nodes reachable
by the optimal policy from s0, we set ε = 0.6, while for all nodes
off the optimal policy, we set ε = 0.8. The only node that is not
properly covered by this categorization is the actual initial node s0,
and there we also set ε = 0.8. In this setup, the estimates induced
by random updates would not preserve the right order of the action
values, imposing a harder challenge on the algorithms.

The emphasized plot in the top-center of Figure 2 depicts the sim-
ple regret obtained by the three examined algorithms, DP, MCP,
and MCM, on the base setup as above, as a function of the num-
ber of iterations. While MC here appear slightly better at the start,
DP quickly catches up and gradually outperforms MC. However,
the picture changes when the base setup is modified in several dif-
ferent ways. First, when scaling up the problem by increasing K
to 200 (bottom-left), or by increasing B to 200 (bottom-right), or
both (bottom-center), MC performs much better than DP at all times,
with MCM being the clear dominator. Second, the top-left and top-
right plots in Figure 2 depict the results for two setups that deviate
from the base only by altering the entropy of the transition proba-
bility functions. In both setups, for each node s and each applica-
ble action a, one outcome s′ is substantially more likely than all
other, with P(s′ | s, a) = 0.9 and, for all outcomes s′′ �= s,
P(s′′ | s, a) = 0.1

B−1
. The difference between the two setups is the

relative value of the more likely outcome s′: In the “good likely”
setup (GL), the more likely outcome is also more valuable, i.e.,
R(s, a, s′) + V (s′) > R(s, a, s′′) + V (s′′) for all s′′ �= s′, and in
the “bad likely” setup (BL), it is the other way around. In either case,
all action-outcome values are set such that (1) they reflect the value
of the action, i.e.

∑
s′ P(s

′ | s, a) (R(s, a, s′) + V (s′)) = Q(s, a),
and (2) each action-outcome value is neither smaller than half of the
action value, nor higher than the maximal immediate reward (= 1, in
our experiments), times the number of steps-to-go.

In both “good likely” and “bad likely” variants, the reduction in
the entropy of the transition function basically reduces the effective
state branching of the actions, and thus the correlation between the

successive samples in MC is expected to grow, getting more in line
with the optimistic assumption on MC’s dependence on B and K.
The results depicted in Figure 2 support this expectation. Moving
from the base setup, the performance of MC improves in both “good
likely” and “bad likely” setups, and in fact, in both setups, MC out-
performs DP. Likewise, importantly, while in “good likely” there is
effectively no difference between MCM and MCP, in “bad likely”,
MCM is performing much better than MCP, with the latter meeting
the very poor performance of DP. Basically, the “bad likely” setup
demonstrates how dramatic can be the implications of establishing
value estimation on the estimated transition probabilities. Here, the
underestimation of the values by DP and MCP results in their very
poor performance. To recap Figure 2, it appears that MC outperforms
DP except for on MDPs of relatively small size, and MCM being jus-
tifiably more robust than MCP.

Another important aspect that we examined in our experiments
pertains to the dependence of the algorithm performance on the shape
of the rewards as a function of the node depth. In the base setup,
at any node, the actions are rewarded proportionally to their actual
value, and thus, in particular, optimal actions have higher immediate
rewards than the sub-optimal actions.

Figure 3 shows the results for two setups that deviate from the base
setup in that aspect as follows. (Both these setups are more challeng-
ing than the base, and thus the x-axis in Figure 3 goes up to 105

iterations, and not to 104 iterations like in Figure 2.) In “first equal”
(top-center), the immediate rewards differ from the base setup only
at the root, where, instead of rewarding the optimal action higher
than the sub-optimal actions, all the actions have the same reward
of 0.5, independently of the outcome. The results for the “good
likely” and “bad likely” variants of “first equal” are depicted in top-
left and top-right corners of Figure 3. In the even more challenging
setup “first few equal” (bottom-center), the immediate rewards are
set to the minimum between 0.5 and the action-outcome value, that
is R(s, a, s′) = min{0.5, Q(s, a)}; in the “good likely” (bottom-
left) and “bad likely” (bottom-right) variants, the appropriate factor
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Figure 3. Experimental results on the “first equal” (top-center) and “first few equal” (bottom-center) modifications of the base setup, as well as on their
variants with “good likely” (←) and “bad likely” (→) transition functions.

is added to Q(s, a).
Comparing the results for the variants of the base setup in Figure 2

with the results for “first equal” and “first few equal” in Figure 3, the
qualitative relative performance of DP, MCP, and MCM remains the
same, with the absolute performance of all algorithm decreasing, as
expected, from the base setup to “first equal”, and from “first equal”
to “first few equal”. It should also be noted that here, in contrast to
the base setup, the advantage of DP over MC under equiprobable ac-
tion outcomes was observed also when K and B were higher than
20. This goes in line with the dependence of MC’s performance on
the correlation between the successive samples, because pushing the
discriminative rewards down the tree delays the correlation. Finally,
we also experimented with various graph-structured (in contrast to
tree-structured) variants of our MDP model. As expected, the perfor-
mance of all three algorithms improved with the degree of the multi-
connectedness of the nodes, but the improvements were of the same
magnitude for all three algorithms. In sum, based on our experiments
and in line with the analysis in Section 3, DP appear more effective
than MC as long as the size of the problem is sufficiently small, but
otherwise, MC outperforms DP even under most challenging con-
ditions, especially if the probability mass of the transition functions
concentrates on very few outcomes.
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