
Solving Maximum Weight Clique Using Maximum
Satisfiability Reasoning

Zhiwen Fang1,2 and Chu-Min Li2 and Kan Qiao3 and Xu Feng1 and Ke Xu1

Abstract. Satisfiability (SAT) and maximum satisfiability

(MaxSAT) techniques are proved to be powerful in solving combi-

natorial optimization problems. In this paper, we encode the maxi-

mum weight clique (MWC) problem into weighted partial MaxSAT

and use MaxSAT techniques to solve it. Concretely, we propose a

new algorithm based on MaxSAT reasoning called Top-k failed lit-

eral detection to improve the upper bound for MWC, and imple-

ment an exact branch-and-bound solver for the MWC problem called

MaxWClq based on the Top-k failed literal detection algorithm. To

our best knowledge, this is the first time that MaxSat techniques are

integrated to solve the MWC problem. Experimental evaluations on

the broadly used DIMACS benchmark, BHOSLIB benchmark and

random graphs show that MaxWClq outperforms state-of-the-art ex-

act algorithms on the vast majority of instances. In particular, our

algorithm is surprisingly powerful for dense and hard graphs.

1 Introduction

Given an undirected graph G = (V ,E), a clique is a complete sub-

graph of G where each pair of vertices is connected. The maximum

clique (MC) problem (MCP) calls for finding the clique with the

largest cardinality, denoted by ω(G). MCP is a prominent combina-

torial optimization problem, which appears in a variety of real-word

applications like social network analysis and bioinformatics.

A vertex-weighted undirected graph is an undirected graph G =

(V ,E), in which every vertex is associated with a nonnegative value

as the weight. The weight of a clique is defined as the total weight

of vertices in it. Given a vertex-weighted undirected graph, the max-

imum weight clique (MWC) problem (MWCP) consists in finding a

clique with the largest weight. MWCP is an important generalization

of MCP and has wide applications in real-world problems such as

protein structure predictions and combinatorial auctions. Much more

effort has been devoted to MCP than to MWCP.

MCP is NP-hard and its decision problem is one of Karp’s 21 NP-

complete problems. A huge amount of effort has been devoted to

solve MCP and MWCP. Generally speaking, there are two types of

algorithms for MCP. One is approximation algorithms including the

stochastic local search, e.g., [17, 4, 2, 3]. The other is exact algo-

rithms including the branch-and-bound search, e.g., [15, 16, 19, 8,

13, 23, 14]. Approximation algorithms are able to solve large-scale

instances but cannot guarantee the optimality of their solutions. Exact

1 State Key Lab. of Software Development Environment, Beihang Univer-
sity, Beijing, China, email: zhiwenf@gmail.com; isaiah.feng@gmail.com;
kexu@nlsde.buaa.edu.cn

2 MIS, Université de Picardie Jules Verne, Amiens, France, email: chu-
min.li@u-picardie.fr

3 Department of Computer Science, Illinois Institute of Technology, Chicago
IL, USA, email: kqiao@iit.edu

algorithms guarantee the optimality of their solutions, but the worst-

case time complexity is exponential unless P = NP .

Exact branch-and-bound algorithms often need a high-quality

bound obtained within reasonable time for pruning. How to obtain

such an upper bound is a challenging problem in solving MCP and

MWCP. Independent set partition (Graph coloring) and MaxSAT

reasoning are the two most powerful techniques to solve MCP,

which have been used in most state-of-the-art solvers. For example,

Fahle [5] uses the constructive heuristic DSATUR to color vertices

one by one according to their degrees. The number of colors is used

as the upper bound. MCQ [19] uses a heuristic vertex order for inde-

pendent set partition. MaxCliqueDyn [6] improves MCQ by comput-

ing the degree of vertices dynamically. MaxCLQ [13] encodes Max-

Clique problem into MaxSAT based on the independent set partition

of the graph, then it applies MaxSAT reasoning to improve the upper

bound. The performance of MaxCLQ shows that MaxSAT reasoning

is a powerful technique for MCP. IncMaxClq [14] combines an in-

cremental upper bound and MaxSAT, which allows one to obtain an

even tighter bound with less time consumption. Besides independent

set partition and MaxSAT techniques, other approaches are also used

to solve MCP. For instance, Régin [18] computes an upper bound

using a matching algorithm.

A straightforward way to solve MWCP is to extend techniques for

MCP. For instance, Cliquer [16, 15] is one of state-of-the-art exact

solvers for both MCP and MWCP, and it deals with MCP and MWCP

using similar methods. It sets a static ordering of vertices based on

an independent set partition and tries to find a larger clique by adding

new vertices on by one in this ordering. Meanwhile, a value is asso-

ciated to each vertex as an upper bound for the maximum clique con-

taining it. Kumlander [8] adopts the independent set partition method

and uses the sum of the maximum weight of vertex in each indepen-

dent set as an upper bound for MWC. Also, some specific techniques

are introduced to MWCP. For example, Yamaguchi and Masuda [23]

propose a new upper bound based on the longest path in a directed

acyclic graph constructed from the original graph, which improves

the bound based on the independent set partition.

Observe that the independent set partition has been used for solv-

ing both MCP and MWCP. However, MaxSAT reasoning, which

proves to be very effective for MCP, has not been extended for

MWCP to our best knowledge. Indeed, while many approaches for

unweighted combinatorial optimization problems such as MaxSAT

can be efficiently extended to the weighted case without substantial

difficulty, extending MaxSAT reasoning from MCP to MWCP is not

easy to be efficient because of the vertex weights. More precisely,

when a solving technique for unweighted MaxSAT is extended to

weighted MaxSAT in the literature, it is usually assumed all variables

in a weighted clause have the same importance, although different

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-303

303



clauses can have different weights in a weighted MaxSAT instance.

However, when the MaxSAT encoding of MCP is extend to MWCP

directly, the variables in a clause DO NOT have the same importance,

and clauses should be dynamically split taking into account the dif-

ferent importance of their variables.

In this paper, we encode MWCP into weighted partial MaxSAT, in

which not only clauses have different weights, but variables in each

clause also have different weights. Then we propose an algorithm

named Top-k failed literal detection to handle this specific weighted

MaxSAT instance for computing tight upper bounds for MWC. The

idea of Top-k failed literal detection is to split the weight of a variable

when necessary to generate more clauses, allowing to detect more

conflicts. Consequently, tighter upper bounds can be obtained based

on MaxSAT reasoning for MWC.

The rest of the paper is organized as follows. In the next section,

we introduce some necessary background knowledge before describ-

ing a basic branch-and-bound algorithm for MWC. The next two

sections present the method to encode from MWCP into MaxSAT

and the algorithm to compute a tight upper bound based on MaxSAT

reasoning respectively. Experimental results are shown in Section 6.

Finally, we give some concluding remarks.

2 Preliminaries

An undirected graph G = (V ,E) comprises a set V = {v1, v2,...,

vn} of n vertices together with a set E of m edges. The density

of G is computed as 2m/(n(n − 1)). A clique of G is a subset C
⊆ V such that every pair of vertices in C is connected by an edge.

C is a maximum clique if no clique with larger size exists in G. Let

V ′ ⊆ V , the subgraph of G induced by V ′ isG(V ′) = (V ′,E′), where

E′ = {{vi,vj}| vi,vj∈V
′ ∧ {vi,vj} ∈ E}. For each vertex v, Γ(v)

= {u| {u,v}∈E} is the neighbor vertices of v and the cardinality

|Γ(V )| is called the degree of v. We use Gv to denote the subgraph

induced by Γ(v) ∪ {v} and G\v for the one induced by V \{v}.
Note that, for any given vertex v, the maximum clique of graph G

exists either in Gv or in G\v. An independent set of G is an subset

I ⊆ V such that any pair of vertices in I are disconnected. If G can

be partitioned into k independent sets, then ω(G) ≤ k, since each

independent set can contribute at most one vertex to the clique.

A vertex-weighted undirected graph G = (V ,E,w) is an undirected

graph G = (V ,E) combined with a weighting function w: V → R+

such that each vertex v is associated with a nonnegative value w(v)
as its weight. Given a weighted graph G = (V,E,w), the weight of a

clique C in G is the total weight of vertices in C, denoted by W (C).

The maximum weight clique problem consists of finding a clique

with the largest weight, denoted by MW(G). MWCP is an important

generalization of MCP and it is also a NP-hard problem.

In propositional logic, a variable x may take value 0 (false) or

1 (true). A literal l is a variable x or its negation x. A clause

c = l0 ∨ l1 ∨ ... ∨ lk is a disjunction of literals and can be ex-

pressed in a set of literals: {l1, l2, ..., lk}. The length of clause c is the

number of literals it contains, denoted by length(c). A unit clause

is a clause containing only one literal and an empty clause is the

clause without any literal. A conjunctive normal form (CNF) formula

F = c1 ∧ c2 ∧ ... ∧ cm is a conjunction of clauses. Given a formula

F on the set of variables {x1, x2, ..., xn}, the maximum satisfiabil-

ity problem is to find an assignment satisfying the maximum number

of clauses. The MaxSAT problem is partial when it contains hard

clauses, i.e., clauses that must be satisfied in all solutions, and soft

clauses which can be unsatisfied. The partial MaxSAT problem is to

find an assignment to maximize the number of soft clauses satisfied

Algorithm 1: ConflictDetectionByUP(F , S), to detect an incon-

sistent subset of soft clauses.

Input: MaxSAT formula F and a stack of unit clauses S
Output: return an inconsistent subset of soft clauses , ∅ if no

inconsistent subset is found

1 begin

2 while S is not empty do

3 pop a unit clause uc from S
4 l← literal in uc
5 foreach clause cl ∈ F contains l do

6 satisfy cl

7 foreach clause cl ∈ F constains l do

8 remove l from cl
9 if cl is empty then

10 return the inconsistent subset of soft clauses

11 if cl is a unit clause then

12 push cl into S

13 return ∅

while satisfying all hard clauses. Notice that the MaxSAT problem is

a particular partial MaxSAT problem containing only soft clauses. A

weighted clause is a pair (c,w), where c is the clause and w is a non-

negative value as its weight. The weighted MaxSAT problem is to

find an assignment to maximize the total weight of satisfied clauses.

A weighted partial MaxSAT problem calls for finding an assignment

maximizing the total weight of the satisfied soft clauses while satis-

fying all the hard clauses.

To maximize the number of satisfied clauses equals to minimize

the number of unsatisfied clauses, therefore many branch-and-bound

based algorithms for MaxSAT underestimate the minimum number

of unsatisfied clauses as a bound [12, 9]. Detecting disjoint inconsis-

tent subsets is proved to be very powerful in computing such a bound.

A subset of soft clauses is called inconsistent if this subset together

with hard clauses results in a contradiction (an empty clause). The

number of disjoint inconsistent subsets is a lower bound of the num-

ber of unsatisfied clauses, since there is at least one unsatisfied clause

in each inconsistent subset. Unit propagation (UP) is an effective

technique widely used in SAT and MaxSAT solvers [10, 11]. The

pseudo-code allowing to find an inconsistent subset of soft clauses

based on UP is given in Algorithm 1. The algorithm works as fol-

lows, it uses a stack S to store all unit clauses in F and does UP until

an empty clause is produced or all unit clauses in S are propagated.

It is called iteratively to find as many disjoint inconsistent subsets as

possible. Notice that soft clauses involved in an inconsistent subset

should not be used to produce other inconsistent subsets.

Failed literal detection is proposed to enhance unit propagation. A

literal l is called failed literal in the formula F , if unit propagation in

F ∪ {l} produces an empty clause. Let InconSet(l) be the set of soft

clauses used to produce the empty clause. If both l and l are failed lit-

erals, the union of the clauses used to produce the two empty clauses,

i.e., InconSet(l) ∪ InconSet(l), constitutes an inconsistent subset. For

the MaxSAT instance encoding a MCP instance, one does not detect

whether or not a negative literal is failed, because a variable only has

positive occurrence in a soft clause. Therefore, given a soft clause

c = l1∨l2∨...∨lt, if l1, l2, . . ., lt are all failed literals, then {c} ∪
InconSet(l1) ∪ InconSet(l2) ∪ . . . ∪ InconSet(lt) is an inconsistent

subset. Refer to [13] for more details.

Z. Fang et al. / Solving Maximum Weight Clique Using Maximum Satisfiability Reasoning304



Algorithm 2: MaxWClq(G, C, LB), a branch-and-bound algo-

rithm for MWCP.

Input: A vertex-weighted graph G=(V , E, W ), a clique C, and

a lower bound LB
Output: A maximum weight clique with weight larger than

LB, ∅ if no such clique is found

1 begin

2 if |V | = 0 then

3 return C

4 UB ← overestimate(G)+W(C)

5 if UB ≤ LB then

6 return ∅

7 v← select(V )

8 C1 ←MaxWClq(Gv \ v, C ∪ v, LB)

9 C2←MaxWClq(G \ v, C, max(LB,W (C1)))
10 return the one with larger weight in {C1, C2}

3 MaxWClq: A New Algorithm for MWCP

We propose a basic branch-and-bound algorithm, called MaxWClq,

for MWCP in this section. Algorithm 2 shows the pseudo-code of

MaxWClq.

Given any v in graph G, MWC is either a clique in Gv containing

v or one in G\v without v. Thus MaxWClq tries to find the opti-

mal solution in Gv and G\v respectively. To make MaxWClq fast,

a high-quality upper bound is needed to prune useless search that

cannot give cliques with weight larger than LB, which is always the

weight of the best solution found so far. At the same time, the order-

ing of the vertices to determine which v to branch on next, also plays

an important role in search. In this paper, we use a very simple vertex

ordering to select the vertex with the largest weight, breaking ties in

favor of the one with higher degree. In fact, a better heuristic ver-

tex ordering is one direction of our future work. Our work focus on

how to compute a tight upper bound within reasonable time, which

is presented in the following sections.

4 Encode Maximum Weight Clique into MaxSAT

v1

v2 v5

v3 v4

v6

Figure 1. Graph with w1=1, w2=7, v3=2, w4=3, w5=4, w6=6

Given an undirected graph G = (V,E), we introduce a boolean

variable xi for each vertex vi to indicate whether or not vi is in the

clique, i.e., xi = 1 if and only if vi is contained in the clique. For the

weighted graph G = (V,E,w), each variable xi can be associated

with the value wi = w(vi) as its weight.

To encode MWCP into weighted partial MaxSAT, the set of hard

clauses is always the same for different encodings. For each uncon-

nected pair of vertices vi and vj ({vi, vj} /∈ E), xi ∨ xj should be

added into the set of hard clauses to say that they cannot be con-

tained in the same clique. For the example in Figure 1, the set of hard

clauses is {x1 ∨ x3, x1 ∨ x4, x1 ∨ x6, x2 ∨ x4, x2 ∨ x5, x2 ∨ x6,

x3 ∨ x5, x3 ∨ x6, x4 ∨ x6}.
Given a weighted undirected graph G = (V ,E,w), the direct way

to encode MWCP into weighted MaxSAT is to associate each vertex

vi with a weighted soft clause (xi,wi). Maximizing the weight of

satisfied soft clauses while satisfying all the hard clauses gives rise

to a maximum weight clique. Take Figure 1 for example, the set of

soft clauses is {(x1,1), (x2,7), (x3,2), (x4,3), (x5,4), (x6,6)}. One

drawback of this encoding is that the soft clauses cannot capture the

structure of the graph well, since it generates soft clauses regardless

of the connections between vertices.

MaxCLQ [13] introduces an approach based on independent set

partition to encode MCP into MaxSAT. Suppose that a graph can be

partitioned into k independent sets. For each independent set, a soft

clause is created to be the disjunction of the variables correspond-

ing the vertices in the independent set. We extend this encoding to

weighted graph for MWCP as follows.

Definition 1 Given a weighted graph G = (V ,E,w), let P = {I1,

I2, ..., Ik} be an independent set partition of G. The indepen-

dent set based MaxSAT encoding of MWCP is defined as fol-

lows: (1) each vertex vi is represented by a weighted boolean

variable (xi,wi) where wi = w(vi). (2) for independent set Ii =

{vi1 , vi2 , ..., vij}, a weighted soft clause (ci,w(ci)) is added, where

ci = xi1∨xi2∨...∨xij and w(ci) = maxxj∈ci wj . (3) a hard clause

xi∨xj is added for each pair of vertices {vi,vj} 6∈ E.

A weighted clause can also be presented as a set. For instance, in

Definition 1 (ci,w(ci)) can be also represented as ci = {(xi1 ,wi1 )),

(xi2 ,wi2 )), ..., (xij ,wij ))}. ci is ordered if wi1 ≥ wi2 ≥ ... ≥ wij .

Example 1 Refer to Figure 1, one possible independent set parti-

tion is {{v1, v4, v6}, {v2, v5}, {v3}}. By Definition 1, soft clauses

in the encoding based on the partition are ({(x6,6), (x4,3), (x1,1)},
6), ({(x2,7), (x5,4)}, 7) and ({(x3,2)}, 2), respectively.

A trivial upper bound for MWC is to sum the vertex weight to ob-

tain the upper bound based on the direct encoding. Refer to Figure 1,

this upper bound is 23. A tighter bound can be obtained using the

MaxSAT formula based on the independent set partition.

Proposition 1 Given a weighted undirected graph G=(V, E,w),
Let P={I1, I2, ..., Ik} be an independent set partition of G and {c1,

c2, . . ., ck} be the set of soft clauses in the MaxSAT encoding based

on P , then MW(G) ≤
∑

1≤i≤k
w(ci).

The correctness of Proposition 1 is straightforward since every

independent set can contribute at most one vertex with the largest

weight to the clique. Take Figure 1 for example, the MaxSAT for-

mula in Example 1 improves the upper bound to 15.

It is not hard to verify that the maximum weighted clique of Fig-

ure 1 is {v5,v6} with weight 10. In fact, the minimal number of in-

dependent set, i.e., the chromatic number, in Figure 1 is 3, since it

is an imperfect graph and the chromatic number can be larger than

the size of maximum clique. In other words, the best upper bound

may not be obtained based on the independent set partition of an im-

perfect graph. How to achieve a tighter upper bound with MaxSAT

techniques for a weighted graph will be presented in the next section.

5 Upper Bound for MWC

In partial MaxSAT, a subset of soft clauses is called inconsistent if

the subset together with hard clauses can result in a contradiction.

Z. Fang et al. / Solving Maximum Weight Clique Using Maximum Satisfiability Reasoning 305



Branch-and-bound MaxSAT solvers often detect disjoint inconsistent

subsets to obtain a tight upper bound. The weight of an inconsistent

subset of soft clauses S is computed as follows.

W (S) = min
c∈S

w(c)

Proposition 2 Given a weighted undirected graph G=(V, E,w), let

F be the set of soft clauses in the independent set based MaxSAT

encoding, if there are s disjoint inconsistent subsets: S1, S1, ..., Ss

detected in F , then
∑

c∈F
w(c)-

∑
1≤i≤s

W (Si) is an upper bound

for the optimal solution of F .

UP detects inconsistent subset of soft clauses as follows.

Example 2 In the independent based MaxSAT encoding of the

graph in Figure 1 presented in Example 1, the set of soft clauses is

{(x1 ∨ x4 ∨ x6, 6), (x2 ∨ x5, 7), (x3, 2)} while the set hard clauses

is{x1 ∨ x3, x1 ∨ x4, x1 ∨ x6, x2 ∨ x4, x2 ∨ x5, x2 ∨ x6, x3 ∨ x5,

x1 ∨ x6, x4 ∨ x6}. The initial upper bound based on Proposition 1

is 15. Let us see how UP allows to improve the upper bound. Set

x3 = 1 to satisfy unit clause (x3, 2), then x3 will be removed from

clauses x1 ∨ x3, x3 ∨ x5, x3 ∨ x6. Three new unit clauses: x1, x5,

x6 imply that x1 = 0, x5 = 0, x6 = 0. After removing x1 and x6

from x1 ∨ x4 ∨ x6 and x5 from x2 ∨ x5, two new unit clauses: x4

and x2 make the hard clause x2 ∨ x4 empty. So far, an inconsistent

soft clause subset containing all three soft clauses is detected and the

weight of the subset is 2. Using Proposition 2, it allows to decrease

the upper bound by 2, thus the improved upper bound is 13.

Since all soft clauses are involved in the inconsistent subset, we

cannot improve the upper bound any more unless we can generate

more soft clauses. To generate more soft clauses, a simplification

rule is needed, which transforms a formula F into an equivalent, but

presumably easier formula F ′. In this section, we propose two sim-

plification rules for MaxSAT clauses with different variable weights.

Rule 1 Given a weighted undirected graph G = (V ,E,w) and an

inconsistent subset S of soft clauses in the independent set based

MaxSAT encoding of G, let δ = W (S), then for every ordered soft

clause c = {(x1,w1), (x2,w2), . . ., (xt,wt)} in S, c can be replaced

by c′ = {(x1,min(w1,δ)), (x2,min(w2,δ)), ..., (xt,min(wt,δ))} and

c′′ = {(x1,max(w1-δ,0)), (x2,max(w2-δ,0)), ..., (xt,max(wt-δ,0))}.
Rule 1 is used to simplify all soft clauses in an inconsistent subset.

It does not change the total weight of soft clauses. Clause c′ contains

the same collection of literals as c with w(c′) = δ. Recall that the

variable with weight 0 in c′′ should be removed from it.

Proposition 3 Let S = {c1, c2, ..., ci} be an inconsistent subset of

soft clauses with weight δ = w(S), apply Rule 1 for S to replace

every c by c′ and c′′, then S′ = {c′1, c′2, ..., c′i} is still an inconsistent

soft clause subset with weight w.

Recall that each soft clause c′ ∈ S′ involves the same collection

of literals as the corresponding soft clause c ∈ S and every clause

c′ ∈ S has the same weight equaling δ, thus S′ is an inconsistent soft

clause with the weight δ, therefore S′′ = {c′′1 , c
′′
2 , . . . , c

′′
i } can still be

used to improve the upper bound.

Example 3 As presented in Example 2, {{(x6,6), (x4,3), (x1,1)},
{(x2,7),(x5,4)}, {(x3,2)}} is an inconsistent subset with weight

2. Applying Rule 1, it is replaced by {{(x4,2), (x6,2), (x1,1)},
{(x6,4), (x4,1)}, {(x2,2),(x5,2)}, {(x2,5),(x5,2)}, {(x3,2)}}. Notice

that {(x1∨x4∨x6,2), (x2∨x5,2), (x3,2)} is still an inconsistent sub-

set of soft clause with the weight 2. The remaining clauses {{(x6,4),

(x4,1)}, {(x2,5),(x5,2)}} can be used to improve the upper bound.

Algorithm 3: overestimate(G), overestimate an upper bound

for MWC by Top-k failed literal detection.

Input: A weighted graph G=(V , E, w)

Output: An upper bound for maximum weight clique in G
1 begin

2 partition G into k independent sets:I1, I2,...,Ik
3 encode G into a weighted partial MaxSAT formula F
4 UB←

∑
c∈F

w(c)

5 mark all soft clauses available

6 while existing soft clause c∈F is available do

7 sort literals of c in non-increasing weight order

8 k← 0, S ← ∅
9 while k < length(c) do

10 if lk+1 ∈ c is not a failed literal then

11 break

12 S ← S ∪ InconSet(lk+1)
13 k ← k + 1

14 if k > 0 then

15 if k = length(c) then

16 S← S∪{c}

17 else if k = length(c) then

18 apply Rule 2 to replace c by c′ and c′′

19 S← S∪{c′}

20 UB← UB−W(S)

21 apply Rule 1 to simplify S
22 mark all soft clauses contained in the inconsistent

subset unavailable

23 return UB

After the simplification, unit propagation cannot be used since

there is no unit clause and another approach named failed literal de-

tection does not work either because no clause contains only failed

literals [13]. We propose Top-k failed literal detection algorithm to

detect more conflicts. An ordered soft clause c = {(x1,w1), (x2,w2),

..., (xt,wt)} is Top-k failed if x1,x2,...,xk are all failed literals.

Rule 2 Given an ordered clause c = {(x1,w1), (x2,w2), . . .,
(xl,wl)} and an integer k < l, let δ = w1-wk+1, then c can be re-

placed by c′ = {(x1,δ),(x2, min(w2,δ), . . ., (xk,min(wk,δ)} and

c′′ = {(x1,max(w1-δ,0), (x2,max(w2-δ,0)), . . ., (xk,max(wk-δ,0)),

(xk,wk+1), . . ., (xt,wt)}.
Rule 2 is used to simplify a Top-k failed soft clause. We can verify

that w(c) = w(c′)+w(c′′), therefore Rule 2 does not change the total

weight of soft clauses neither. Note that all literals in c′ are failed

literals, therefore {c′} together with InconSet(x1) ∪ InconSet(x2) ∪
. . . ∪ InconSet(xk) is an inconsistent soft clause subset.

Example 4 Continuing with Example 3, we can easily verify

{(x2,5),(x5,2)} is Top-k failed with k = 1, since setting x2=1 re-

sults in x4=0 and x6=0 so that {(x4,1), (x6,4)} becomes an empty

clause. With Rule 2, {(x2,5),(x5,2)} is replaced by {(x2,3)} and

{(x2,2),(x5,2)}. Then {(x2,3)} together with {(x6,4), (x4,1)} con-

stitutes an inconsistent subset with the weight 3. Apply Rule 1 to

replace it by {{(x2,3)}, {(x6,3), (x4,1)}, {(x6,1)}}. At last, we de-

tect that {{(x2,3)}, {(x6,3), (x4,1)}} is an inconsistent subset with

the weight 3. Therefore, the upper bound can be improved by 3 and

Top-k failed literal detection achieves the tightest upper bound 10.

The algorithm based on Top-k failed literal detection is presented

in Algorithm 3. It works as follows. First, the weighted graph is en-

coded into weighted partial MaxSAT based on an independent set

Z. Fang et al. / Solving Maximum Weight Clique Using Maximum Satisfiability Reasoning306



partition. Vertices are sorted by the decreasing order of their weights

and are inserted into an independent set one by one. Suppose the cur-

rent independent sets are I1, I2, . . ., Ik, we try to find an indepen-

dent set from I1 to Ik to insert the vertex, if no such an independent

set exists, a new independent set Ik+1 is created. We use the total

weights of soft clauses as an initial upper bound and then use Top-k

failed literal detection algorithm to detect as many disjoint incon-

sistent subsets as possible. Add c into S if an inconsistent subset is

detected or apply Rule 2 to simplify c and add c′ into S if c is Top-k

failed. Afterwards, use Rule 1 to simplify S. Note that an inconsis-

tent subset is detected if c is Top-k failed while k = length(c). At

last, the initial upper bound can be improved by the total weight of

the disjoint inconsistent subsets detected.

6 Empirical Evaluation

Table 1. Average runtime in sec on 50 graphs each case. |V | stands for

vertex number, D for density, W is average weight of MWC. ’-’ means none
of 50 graphs cat be solved within 3600s.

|V | D W Cliquer MaxWClq

150 0.90 3392 22.97 0.76

150 0.95 4735 959.1 0.88

200 0.80 3275 4.21 1.15

200 0.90 5055 1409 22.09
200 0.95 7269 - 70.75

300 0.70 2465 2.03 1.32

300 0.80 3341 81.38 19.27

300 0.90 5342 - 1205

500 0.60 2283 4.27 6.91
500 0.70 2955 139.7 117.3

600 0.60 2509 25.26 39.70
600 0.70 3283 1395 1039

We evaluate the performance of MaxWClq on the widely used DI-

MACS benchmark4 and BHOSLIB benchmark5 as well as random

graphs. We convert a non-weighted graph into a weighted graph as

follows. For each vertex vi, we set wi = i mod 200 + 1 as the weight

of vi. This method was initially proposed in [17] and has been used

as a standard converting approach to generate weighted graphs from

non-weighted benchmarks [20, 2].

The DIMACS benchmark is taken from the Second DIMACS Im-

plementation Challenge, which has been used widely for benchmarks

purposes in the literature on MCP algorithms. The DIMACS in-

stances are generated from problems in coding theory, fault diag-

nosis problems and so on. BHOSLIB benchmark is based on a CSP

model named RB [22, 21]. It arises from the SAT competition 2004

and is also widely used to evaluate maximum clique and minimum

vertex cover solvers. Weighted graphs converted from both bench-

marks are also used to evaluate approximation algorithms for MWCP

in [17, 20, 2].

Random graphs allow one to show asymptotic behavior of a solver.

In our experiments, random graphs are generated based on the G(n,

p) model, in which each edge is included in the graph with probabil-

ity p independently from any other edge. Then they are converted in

a weighted graph with the standard approach.

4 http://cs.hbg.psu.edu/txn131/clique.html
5 http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/

graph-benchmarks.htm

We compare our solver with other state-of-the-art exact solvers for

MWC. Although there are many exact solvers for MC, to our best

knowledge, only Cliquer [16, 15] can handle weighted instances. We

compare MaxWClq with the latest version of Cliquer 6 updated in

2012. Algorithms presented in [8, 23] are not available to us. We

also compare MaxWClq with some state-of-the-art MaxSAT solvers,

such as akmaxsat [7], maxsatz-2013 [12], WPM1-2013 [1], on the

DIMACS benchmark and the BHOSLIB benchmark.

MaxWClq is implemented in C. Both MaxWClq and Cliquer are

compiled using gcc 4.8.1 with option ”-O2”. All experiments are

running on a machine with Intel(R) Core2 Duo CPU E8400 @3.0G
and 2G RAM under Ubuntu 13.10. The cut-off time is 3600s for

each graph. For random instances, 50 graphs are generated for each

case and the average runtime of 50 graphs is considered the runtime

for the case.

Table 2. Runtime in sec on DIMACS and BHOSLIB. |V | stands for
vertex number, W for the minimal weight, D for density. ’-’ means cannot

be solved within 3600s. Instances solved within 10s by both MWCP solvers
or not solved by neither within 3600s are omitted.

Instance |V | D W Cliq MaxW akmax maxs
-uer -Clq -sat -atz

brock400 1 400 0.74 3422 283 162 - -
brock400 2 400 0.74 3350 398 157 - -
brock400 3 400 0.74 3471 317 133 - -
brock400 4 400 0.74 3626 313 101 - -
brock800 1 800 0.64 3121 1633 1725 - -
brock800 2 800 0.65 3043 1690 2441 - -
brock800 3 800 0.64 3076 1785 1874 - -
brock800 4 800 0.64 2971 2099 2501 - -

C250.9 250 0.89 5092 - 60.1 423 -
DSJC1000.5 1000 0.50 2186 33.4 99.1 - -

gen200 p0.9 44 200 0.90 5043 798 9.64 39.3 -
gen200 p0.9 55 200 0.90 5416 2016 3.79 17.1 -
hamming10-2 1024 0.99 50512 1924 - 127 12.4

p hat1000-2 1000 0.49 5777 - 3511 - -
p hat300-3 300 0.74 3774 19.8 3.13 340 430
p hat500-3 500 0.75 5375 - 1254 - -
p hat700-2 700 0.49 5290 196 66.4 - -

san200 0.7 1 200 0.70 3370 23.3 0.04 28.8 14.6
san200 0.7 2 200 0.70 2422 464 0.02 - 3493
san200 0.9 1 200 0.90 6825 - 0.31 1.75 1.63
san200 0.9 2 200 0.90 6082 270 2.11 11.2 13.5
san200 0.9 3 200 0.90 4748 2730 21.2 123 175
san400 0.5 1 400 0.50 1455 88.1 0.08 - -
san400 0.7 1 400 0.70 3941 - 5.72 - -
san400 0.7 2 400 0.70 3110 - 8.32 - -
san400 0.7 3 400 0.70 2771 - 10.0 - -
san400 0.9 1 400 0.90 9776 - 1714 - -
sanr200 0.9 200 0.89 5126 1339 8.67 62.7 106
sanr400 0.7 400 0.70 2992 32.3 30.2 - -

Total No. of DIMACS instances: 80 51 58 36 37

frb30-15-1 450 0.82 2990 - 405 - -
frb30-15-2 450 0.82 3006 1188 54.0 - -
frb30-15-3 450 0.82 2995 - 265 - -
frb30-15-4 450 0.82 3032 - 358 - -
frb30-15-5 450 0.82 3011 - 83.6 - -

Total No. of BHOSLIB instances: 5 1 5 0 0

Table 1 shows the performances of MaxWClq and Cliquer on ran-

dom graphs. MaxWClq is faster than Cliquer on 10 (10/12) cases.

MaxWClq also dominates Cliquer completely for random graphs

with density D ≥ 0.7. For the cases with D ≥ 0.9, MaxWClq is at

least 30 times faster than Cliquer and MaxWClq outperforms Cliquer

even by 1000X speed up for case (150,0.95). Furthermore, MaxW-

6 http://users.tkk.fi/pat/cliquer.html

Z. Fang et al. / Solving Maximum Weight Clique Using Maximum Satisfiability Reasoning 307



Clq solves all graphs from case (200, 0.95) and case (300,0.9), which

cost 70.75s and 1205s on average respectively, while Cliquer solves

none of them. MaxWClq is competitive with Cliquer on the only two

cases where Cliquer is faster.

Table 2 presents the experimental results on the DIMACS bench-

mark and the BHOSLIB benchmark. All 80 instances of the DI-

MACS benchmark are used. MaxWClq solves 58 instances of them,

while Cliquer solves 51 instances. For 29 instances displayed in

Table 2, MaxWClq is faster than Cliquer on 23 instances. Further-

more, MaxWClq solves 8 instances which Cliquer cannot finish be-

fore the cut-off time, 5 of which only cost MaxWClq less than 100s.

hamming10-2 is the only instance that MaxWClq cannot solve but

Cliquer can. For graphs with density D ≥ 0.7, MaxWClq dominates

Cliquer completely except hamming10-2. For the 20 instances both

algorithms solve within the cut-off time, Cliquer is slightly faster

than MaxWClq on 5 instances, but MaxWClq is faster than Cliquer

by a large margin on 15 instances (and is even more than 50 times

faster than Cliquer on 8 instances among them). Since the BHOSLIB

benchmark is much harder, both MaxWclq and Cliquer can only

solve the 5 smallest instances with 450 vertices, MaxWClq solves

all of them while Cliquer solves only one.

Table 2 also shows that it is inefficient to solve MWCP with

MaxSAT solvers directly. For 29 instances displayed in Table 2,

MaxWClq is faster than all MaxSAT solvers on all instances ex-

cept hamming10-2. For all 80 instances from the DIMACS bench-

mark, MaxWClq solves 58 of them, while akmaxsat solves 36 in-

stances and maxsatz solves 37 instances. WPM1-2013 solves only

3 of them (hamming6-2, hamming8-2, hamming10-2), which is not

displayed in the table. It is also interesting that MaxSAT solvers can

solve hamming10-2 effectively, which is hard for both MaxWClq and

Cliquer. None of the MaxSAT solvers can solve BHOSLIB instances.

We conclude that MaxWClq outperforms Cliquer on most of in-

stances from the DIMACS benchmark, the BHOSLIB benchmark

as well as random graphs. It is competitive with Cliquer on other in-

stances except hamming10−2. Meanwhile, MaxWClq is extremely

powerful for dense and hard graphs.

7 CONCLUSION

SAT and MaxSAT are powerful tools to solve combinatorial opti-

mization problems. MaxSAT reasoning has been proved to be very

effective for MCP. Since MaxSAT encoding and MaxSAT reason-

ing used in MCP are based on the assumption that each vertex has

the same weight, they cannot be directly used to deal with weighted

graph. We introduce an approach to encode a weighted graph into a

specific weighted MaxSAT and two new simplification rules to split

a weighted vertex, so that more conflicts can be detected. Then an

algorithm called Top-k failed literal detection is proposed to com-

pute a tight upper bound for MWC using the two simplification rules

and MaxSAT reasoning. Finally, an exact branch-and-bound solver

named MaxWClq is implemented using the new upper bound. Exper-

imental results on commonly used benchmarks and random graphs

show that MaxWClq outperforms other state-of-the-art solver for

MWC. In particular, MaxWClq is surprisingly powerful for dense

and relatively hard graphs.

In the future, we plan to integrate more MaxSAT and MC solving

techniques into MaxWClq to solve large-scale and harder instances.

It is also interesting to use MaxWClq to solve instances from real-

world applications like combinatorial auctions.

ACKNOWLEDGEMENTS

We would like to thank Jichang Zhao, Ge Zheng and anonymous

reviewers for their helpful comments and suggestions. This research

was partly supported by the National 863 Program of China (No.

2012AA011005), Research Fund for the Doctoral Program of Higher

Education of China (Grant No. 20111102110019) and the Chinese

State Key Laboratory of Software Development Environment Open

Fund (Grant No. SKLSDE-2012KF-07).

REFERENCES

[1] C. Anstegui, M. L. Bonet, and J. Levy, ‘Solving (weighted) partial
maxsat through satisfiability testing’, in Theory and Applications of

Satisfiability Testing-SAT 2009, pp. 427–440, (2009).
[2] U. Benlic and J. K. Hao, ‘Breakout local search for maximum clique

problems’, Computers & Operations Research, 40, 192–206, (2013).
[3] S. Cai, K. Su, C. Luo, and A. Sattar, ‘Numvc: An efficient local search

algorithm for minimum vertex cover’, J. Artif. Intell. Res.(JAIR), 46,
687–716, (2013).

[4] S. Cai, K. Su, and A. Sattar, ‘Local search with edge weighting and
configuration checking heuristics for minimum vertex cover’, Artificial

Intelligence, 175(9), 1672–1696, (2011).
[5] T. Fahle, ‘Simple and fast: Improving a branch-and-bound algorithm

for maximum clique’, in Proc. of ESA-2002, pp. 485–498, (2002).
[6] J. Konc and D. Janezic, ‘An improved branch and bound algorithm for

the maximum clique problem’, Communications in Mathematical and

in Computer Chemistry, 58, 569–590, (2007).
[7] A. Kuegel, ‘Improved exact solver for the weighted max-sat problem’,

in Workshop Pragmatics of SAT, volume 436, (2010).
[8] D. Kumlander, ‘A new exact algorithm for the maximum-weight clique

problem based on a heuristic vertex-coloring and a backtrack search’,
in Proc. of MOC’04., pp. 202–208, (2004).

[9] J. Larrosa, F. Heras, and S. de Givry, ‘A logical approach to efficient
max-sat solving’, Artificial Intelligence, 172, 204–233, (2008).

[10] C. M. Li and Anbulagan A., ‘Heuristics based on unit propagation for
satisfiability problems’, in Proc. of IJCAI’97, volume 1, pp. 366–371,
(1997).

[11] C. M. Li, F. Manyà, and J. Planes, ‘Exploiting unit propagation to com-
pute lower bounds in branch and bound max-sat solvers’, in Proc. of

CP’05, volume 3709, pp. 403–414. LNCS, (2005).
[12] C. M. Li, F. Manyà, and J. Planes, ‘New inference rules for max-sat’,

Journal of Articial Intelligence Research, 30, 321–359, (2007).
[13] C. M. Li and Z Quan, ‘An efficient branch-and-bound algorithm based

on maxsat for the maximum clique problem’, in Proc. of AAAI-2010,
pp. 128–133, (2010).

[14] C.M. Li, Z. Fang, and K. Xu, ‘Combining maxsat reasoning and in-
cremental upper bound for the maximum clique problem’, in Proc. of

ICTAI-2013, pp. 939–946, (2013).
[15] P.R. Östergård, ‘A new algorithm for the maximum-weight clique prob-

lem’, Nordic Journal of Computing, 8, 424–436, (2001).
[16] P.R. Östergård, ‘A fast algorithm for the maximum clique problem’,

Discrete Applied Mathematics, 120, 197–207, (2002).
[17] W. Pullan, ‘Approximating the maximum vertex/edge weighted clique

using local search’, Journal of Heuristics, 19, 117–134, (2008).
[18] J. C. Régin, ‘Solving the maximum clique problem with constraint pro-

gramming’, in Proc. of CPAIOR-2003, pp. 634–648, (2003).
[19] E. Tomita and T. Seki, ‘An efficient branch-and-bound algorithm for

finding a maximum clique’, in Proc. Discrete Mathematics and Theo-

retical Computer Science, volume 2731, pp. 278–289, (2003).
[20] Q. Wu, J. K. Hao, and F. Glover, ‘Multi-neighborhood tabu search for

the maximum weight clique problem’, Annals of Operations Research,
196, 611–634, (2012).

[21] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre, ‘Random constraint
satisfaction: Easy generation of hard (satisfiable) instances’, Artificial

Intelligence, 171, 514–534, (2007).
[22] K. Xu and W. Li, ‘Exact phase transitions in random constraint satis-

faction problems’, J.Artif. Intell. Res. (JAIR), 12, 93–103, (2000).
[23] K. Yamaguchi and S. Masuda, ‘A new exact algorithm for the maxi-

mum weight clique problem’, in Proc. of ITC-CSCC’08, pp. 317–320,
(2008).

Z. Fang et al. / Solving Maximum Weight Clique Using Maximum Satisfiability Reasoning308


