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Abstract. In this paper we present a novel approach to multiagent
planning in domains with concurrent actions and associated concur-
rent action constraints. In these domains, we associate the actions of
individual agents with subsets of objects, which allows for a trans-
formation of the problems into single-agent planning problems that
are considerably easier to solve. The transformation forces agents
to select joint actions associated with a single subset of objects at a
time, and ensures that the concurrency constraints on this subset are
satisfied. Joint actions are serialised such that each agent performs
their part of the action separately. The number of actions in the re-
sulting single-agent planning problem turns out to be manageable in
many real-world domains, thus allowing the problem to be solved
efficiently using a standard single-agent planner. We also describe a
cost-optimal algorithm for compressing the resulting plan, i.e. merg-
ing individual actions in order to reduce the total number of joint
actions. Results show that our approach can handle large problems
that are impossible to solve for most multiagent planners.

1 INTRODUCTION

Many real-world planning domains, e.g. those inspired by ap-
plications in transportation, logistics, manufacturing and job-shop
scheduling, involve multiple agents acting concurrently in the same
environment, either to achieve a shared goal, or multiple (potentially
conflicting) different goals. Over the past twenty years, multiagent
planning has received much attention in both the automated planning
[1, 15] and multiagent systems [7, 8] communities, and contributions
in the area address various sub-problems, such as the coordination of
agents that plan independently [4], methods for merging individual
agents’ plans [16], and the computation of plans that are acceptable
to a set of self-interested planning agents with different goals [3].

For multiagent planning problems with concurrent actions, the
problem of synthesising a plan for all agents involved is signifi-
cantly harder than its single-agent counterpart. This is especially true
when there are explicit constraints on which concurrent actions are
allowed. Having all agents act in parallel may lead to a potentially ex-
ponential increase in the number of actions that have to be considered
in each step, and it is unlikely that we can come up with algorithms
that scale to large numbers of agents with many interdependencies
between them in the worst case. However, it turns out that, in many
practical domains, most of these interdependencies arise from agents
jointly manipulating the state of objects in relatively limited numbers
of ways, and that the number of agents involved in such manipula-
tion is usually rather small. Also, many actions that can be taken by
an agent (including those not involving such joint object manipula-
tion) do not depend on what other agents do at the same time.

1 University of Edinburgh, UK, email: {mcrosby1,mrovatso}@inf.ed.ac.uk
2 Universitat Pompeu Fabra, Spain, email: anders.jonsson@upf.edu

In this paper, we propose a new planning method that transforms
multiagent planning problems into single-agent problems and builds
on the above observations. The transformation forces agents to se-
lect joint actions associated with a single subset of objects at a time,
and ensures that the concurrency constraints on this subset are satis-
fied. Such constraints relate to whether an action cannot be, or must
be, performed by certain numbers of agents concurrently. Joint ac-
tions are further serialised such that each agent performs their part of
the action on their own. The result is a single-agent planning prob-
lem in which agents perform actions individually, one at a time. The
main benefit of our approach is that the number of actions is vastly
reduced, leading to a significant speed-up in planning time.

Once the single-agent problem has been solved, we re-introduce
concurrency and minimise overall plan length using a cost-optimal
compression algorithm. The resulting plan is not necessarily opti-
mal with respect to the original multiagent problem but can be com-
puted much faster. In addition, the plan merging process is provably
tractable given certain restrictions on the compressed plan.

We emphasise that our work is exclusively concerned with the of-
fline, centralised computation of a plan that involves multiple agents
acting concurrently and cooperatively. This means that we disregard
many aspects that are important for multiagent planning, and focus
only on the purely algorithmic issue of finding an action sequence
that will lead to a joint, known goal in environments where large
numbers of possible actions can be taken by the agents at every step.
However, even in settings in which we are more interested in coor-
dination among independent agents and multiple goals, the ability to
compute joint plans is an important one. For example, it can be used
to detect conflicts among individual agent goals, or for any agent to
propose a joint plan that can then be negotiated with others.

The remainder of this paper is structured as follows. In Section 2
we introduce the type of multiagent planning problem that we con-
sider in this paper. Section 3 describes the transformation of multi-
agent planning problems to single-agent planning problems, as well
as the compression algorithm for translating a solution to the single-
agent problem back to a concurrent multiagent plan. In Section 4
we present the results of an empirical evaluation of our algorithm in
several multiagent benchmark domains. We describe related work in
Section 5 and conclude with a discussion of the work in Section 6.

2 MULTIAGENT PLANNING

We consider the problem of centralised multiagent planning in which
agents share a common goal. Agents may have different action capa-
bilities and can perform actions in parallel, forming joint actions. The
problem is to find a plan, i.e. a sequence of joint actions that brings
the system from the initial state to the goal. Concurrency constraints
disallow some joint actions, either because two or more individual
actions cannot be performed in parallel or, on the contrary, because
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they have to be performed in parallel. Each joint action has an associ-
ated cost, and lower-cost solutions are preferred. In this work, we do
not attempt to output cost-optimal plans, but the capability of dealing
with costs is included to make the approach as general as possible.

We take a PDDL view of planning in which actions are instan-
tiated from action templates, each with an associated set of param-
eters. An example action template from the LOGISTICS domain is
given by load-truck(?p, ?t, ?l) where ?p is an object representing a
package, ?t is an object representing a truck, and ?l is an object rep-
resenting a location. We assume that the agent itself always appears
as a parameter, and in general, nothing prevents the parameters from
including other agents as well. In the example action template, the
agent is the truck. If agents have different action capabilities, we can
define a static predicate capable-a(?a) for each action template a,
add this predicate to the precondition of a, and use the initial state of
a planning problem to indicate which agents are capable of perform-
ing actions of type a. In an example LOGISTICS problem with an
object truck1 representing a truck, this would lead to the following
fluent being added to the initial state: capable-load-truck(truck1).

In PDDL, each planning problem is defined by a set of objects that
are assigned to the parameters of action templates to form actions.
We assume that concurrency constraints can be formulated in terms
of such objects. In particular, for each action template, we use a sub-
set of its parameters to define the associated concurrency constraints.
The intuition is that objects later associated to these parameters are
objects common to all agents that limit their interaction. In the exam-
ple action template, the concurrency constraints are defined in terms
of the parameter ?p, i.e. the object representing a package. For ease
of presentation, we assume that planning domains are untyped, but it
is straightforward to extend our approach to typed domains.

We proceed to define multiagent planning problems of the type we
consider. Let F be a set of ground fluents. A literal l is a positive or
negative fluent from F , i.e. l = f or l = ¬f for some f ∈ F . For a
set of literals L, let L+ = {f |f ∈ L} denote the set of fluents that
appear as positive in L, and L− = {f |¬f ∈ L} the set of fluents that
appear as negative. L is well-defined if there exists no fluent f ∈ F
such that f ∈ L and ¬f ∈ L, i.e. if L+ ∩ L− = ∅.

A state s ⊆ F is a subset of fluents that are true in that state,
while all other fluents are assumed to be false. An action a =
〈pre(a), eff(a)〉 is composed of well-defined sets of literals pre(a)
and eff(a), where pre(a)+ is the set of positive pre-conditions,
pre(a)− the set of negative pre-conditions, eff(a)+ the set of add ef-
fects, and eff(a)− the set of delete effects. The precondition pre(a)
of a holds in a state s if pre(a)+ ⊆ s and pre(a)− ∩ s = ∅, and
executing a in s results in a new state

θ(s, a) =
(
s \ eff(a)−) ∪ eff(a)+.

We define a multiagent planning problem (MAP) as a tuple Π =
〈N,O, F, I,G, {Ai}ni=1, φ, c〉, where

• N = {1, . . . , n} is the set of agents,
• O is the set of objects defining the problem such that N ⊆ O,
• F is the set of fluents,
• I ⊆ F is the initial state,
• G ⊆ F is the goal state,
• Ai is agent i’s action set, and each action ai ∈ Ai has an associ-

ated set of objects O(ai) ⊆ O,
• φ : O → N × N is a set of concurrency constraints on subsets of

objects, where O = {O′ ⊆ O : ∃i ∈ N and ai ∈ Ai s.t. O(ai) =
O′} is the set of subsets of objects associated with actions,

• c : A1 × · · · ×An → R is a cost function.

We write A = A1× . . .×An for the joint action set assuming a con-
current, synchronous execution model. We assume that the action set
Ai of each agent i includes a no-op action noopi with empty pre-
condition and effect. Although we consider the goal as being shared,
each agent may have its own, personal goal; in this case the aim is to
satisfy the goal of all agents at once.

We define the preconditions and effects of a joint action a =
(a1, . . . , an) ∈ A as the union of the preconditions and effects of
its constituent single-agent actions ai, i.e. pre(a) = ∪ipre(ai) and
eff(a) = ∪ieff(ai). Note that the resulting precondition and effect
may be ill-defined. Given a joint action a = (a1, . . . , an) and a sub-
set of objects O′ ∈ O, let σ(a,O′) be the number of individual ac-
tions associated with O′, i.e. σ(a,O′) = |{i ∈ N : O(ai) = O′}|.

As an example, consider a LOGISTICS problem with three agents:
two trucks truck1 and truck2 and an airplane plane3, i.e. the set of
agents is N = {1, 2, 3}. An example joint action is given by a =
(load-truck(p1, truck1, l1), load-truck(p1, truck2, l1), noop3).
The set of objects associated with the first two actions is {p1}, i.e.
the package to be loaded, implying that σ(a, {p1}) = 2 since there
are two actions associated with this subset.

Each subset of objects O′ ∈ O has an associated concurrency con-
straint φ(O′) = (l(O′), u(O′)), where l(O′) and u(O′) are lower
and upper bounds (satisfying 1 ≤ l(O′) ≤ u(O′) ≤ n) on the
number of actions associated with O′. Note that |O| is bounded by
the number of actions, ensuring that the number of concurrency con-
straints is tractable. A joint action a ∈ A satisfies the concurrency
constraints iff for each subset of objects O′ ∈ O, σ(a,O′) = 0 or
l(O′) ≤ σ(a,O′) ≤ u(O′). Action a is applicable in a state s if
and only if pre(a) and eff(a) are well-defined, a satisfies the con-
currency constraints, and pre(a) holds in s. We assume that as long
as the concurrency constraints hold, we can always combine actions
with the same associated subset of objects, i.e. that a corresponding
joint action has well-defined precondition and effect.

If an agent i is free to take an action ai ∈ Ai on their own, we
associate ai with the agent itself, i.e. O(ai) = {i}, and define a
concurrency constraint φ({i}) = (1, 1), i.e. at most one individual
action may be associated with {i}. In LOGISTICS, action templates
drive-truck and fly-airplane are of this type, i.e. no object common
to agents are affected by the associated actions. In contrast, no-op
actions have no associated objects, i.e. O(noopi) = ∅ for each i.

The cost function c is defined over the joint action set A. We allow
arbitrary cost functions such that the cost of a joint action may be
unrelated to the costs of its constituent actions. Although the cost
function may require exponential space to represent in the worst case,
we can often represent it more compactly. For example, in the IPC
domains we consider, the cost of a joint action a simply equals the
number of individual actions in a different from the no-op action.

A plan π = 〈a1, . . . , ak〉 is a sequence of joint actions aj ∈ A
such that a1 is applicable in the initial state I , and aj is applicable in
the state θ(I, 〈a1, a2, . . . , aj−1〉) (where θ is canonically extended
to sequences of actions), for all 2 ≤ j ≤ k. We say that π solves the
MAP Π if the goal state G is satisfied following the application of
all actions in π, i.e. G ⊆ θ(I, π). The cost of a plan π is given by
C(π) =

∑k
j=1 c(a

j).

3 TRANSFORMATION

In this section we describe our algorithm for transforming multiagent
planning problems to single-agent problems. The goal is to construct
a single-agent problem that can be solved much more efficiently than
the original multiagent problem, without losing the expressivity of

M. Crosby et al. / A Single-Agent Approach to Multiagent Planning238



the multiagent problem. We also describe a cost-optimal algorithm
for compressing a solution to the resulting problem.

3.1 Transformation Into Single-Agent Problem

The aim of the transformation is to start with a MAP Π =
〈N,O, F, I,G, {Ai}ni=1, φ, c〉 and construct a single-agent planning
problem, i.e. a tuple Π′ = 〈F ′, I ′, G′, A′〉. We then solve the single-
agent problem Π′ and translate the solution back to Π. In what fol-
lows we describe how to construct the components of Π′.

We describe fluents in PDDL format, i.e. each fluent is associated
with a predicate. We first introduce a set of objects ct1, . . . , ctn that
represent agent counts, i.e. a number of agents between 1 and n. The
set of fluents F ′ includes all fluents in F , plus the following fluents:

• A fluent free indicating whether we are free to take any action.
• For each agent i and each subset O′ = {o1, . . . , ok} ∈ O, a fluent

use(i, o1, . . . , ok) indicating that i is using the subset O′.
• For each O′ = {o1, . . . , ok} ∈ O and agent count ctj , a fluent

count(o1, . . . , ok, ctj) indicating that there are j agents using O′.
• For each O′ = {o1, . . . , ok} ∈ O and agent count ctj , a flu-

ent sat(o1, . . . , ok, ctj) indicating whether ctj satisfies the con-
currency constraint on O′, i.e. whether l(O′) ≤ j ≤ u(O′).

• For each pair of agent counts (ctj , ctk), a fluent consec(ctj , ctk)
indicating that ctj and ctk are consecutive agent counts.

The initial state I ′ is defined as

I ′ = I ∪{free} ∪ {consec(ctj , ctk) : 1 ≤ j < n, k = j + 1}∪
{sat(O′, ctj) : O′ ∈ O, l(O′) ≤ j ≤ u(O′)}.

In other words, we are initially free to take any action, consecutive
counts are encoded in fluents of type consec, and concurrency con-
straints are encoded in fluents of type sat. The goal state is defined as
G′ = G∪{free}, where free ensures that joint actions have to finish
before we can check whether the goal has been satisfied.

We now discuss the ways in which joint actions are handled in our
single-agent planning version of the problem. We only allow joint
actions that involve a single subset O′ of objects, i.e. all constituent
actions (apart from no-op actions) are associated with O′. We also
serialise joint actions such that each agent performs their part of the
action separately. To achieve this effect, for each agent i and each
action ai ∈ Ai different from the no-op action (i.e. ai �= noopi),
we introduce four actions, listed below. The description of each ac-
tion includes additional parameters, preconditions and effects (each
action also includes the same preconditions and effects as ai). For
simplicity we write O′ instead of O(ai).

lone-ai()

pre += {free, sat(O′, ct1)}
eff += ∅
start-ai()

pre += {free}
eff += {¬free, use(i, O′), count(O′, ct1)}
do-ai(ct, ct

′)

pre += {¬use(i, O′), count(O′, ct), consec(ct, ct′)}
eff += {use(i, O′),¬count(O′, ct), count(O′, ct′)}
end-ai(ct, ct

′)

pre += {¬use(i, O′), count(O′, ct), consec(ct, ct′), sat(O′, ct′)}
eff += {free, ∀i ∈ N : ¬use(i, O′),¬count(O′, ct)}

The action lone-ai indicates that agent i can apply action ai in mu-
tual exclusion on the set of objects O′, i.e. l(O′) ≤ 1 ≤ u(O′),
encoded in the fluent sat(O′, ct1). The action start-ai is applicable
if we are free to take actions. The intention of this action is to start a
joint action associated with O′ involving multiple agents. The effect
is to delete free, effectively making other actions of type lone and
start inapplicable, and updating the use of O′ such that agent i uses
O′ and the count associated with O′ is 1.

The action do-ai is applicable whenever at least one agent is us-
ing O′, encoded in the fluent count(O′, ct). The precondition also
requires i not to be using O′, preventing i from contributing two
or more individual actions. The effect is that i is using O′, and the
count on O′ is incremented. The action end-ai is applicable when-
ever do-ai is, but also requires the next count to satisfy the concur-
rency constraint on O′. The intention is to end the joint action, and
the effect is to add the fluent free and delete the count on O′. In our
implementation we use a forall effect to delete use(i, O′) for each
agent i, but it would be relatively straightforward to encode the trans-
formation in STRIPS by defining actions that “step down” to delete
this fluent one agent at a time.

Because of the way preconditions are defined, an action of type
start always has to be succeeded by a sequence of actions of type do,
followed by an action of type end. No actions other than those asso-
ciated with the same subset of objects are applicable until after end:
actions of type lone and start because the precondition free does not
hold, and actions of type do and end associated with another subset
of objects O′′ because the precondition count(O′′, ct) does not hold
for any count ct. In a solution to Π′, a sequence of actions of type
〈start, do, . . . , do, end〉 corresponds to a joint action that involves
the individual actions of all agents appearing in the sequence.

Lemma 1. The number of actions of the planning problem Π′ is
bounded by 2n

∑
i∈N |Ai|.

Proof. For each action ai of agent i, the transformation contains 2n
actions: one copy of lone-ai and end-ai, and n−1 copies of start-ai

and do-ai (one for each pair (ct, ct′) that satisfies consec(ct, ct′)).
There is a total of

∑
i∈N |Ai| such individual actions of agents. Thus

the transformation contains exactly 2n
∑

i∈N |Ai| actions.

In general, the number of joint action of the original MAP Π is ex-
ponential in the number of agents. In contrast, the single-agent plan-
ning problem Π′ has a small polynomial number of actions.

3.2 Example

We use the maze domain [6] to illustrate the transformation from
multiagent to single-agent planning. The maze domain was designed
to test more complex concurrency constraints, covering situations
in which actions must/cannot be performed in parallel by several
agents. It also includes resources which cannot be used by an agent
once other agents have used them. A problem of the domain consists
of a grid of locations connected vertically and horizontally. Each
agent has to travel from an initial location to a goal location. Each
connection between neighbouring locations is of one of three types:

• Door: can only be traversed by one agent at a time.
• Bridge: can be crossed by multiple agents at once, but is destroyed

after the first crossing.
• Boat: can only be used by two or more agents at once, and only in

the same direction.
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Figure 1. An example problem for the maze domain. The unannotated
connections are doors, the annotations are br for bridge and bo for boat. The

boxed si represents the switch which opens the door labelled si. The
diamond represents the goal location for the agents. In the problem instances

used in the evaluation each agent may have a separate goal location.

In addition, some doors are initially locked, and can only be unlocked
by pushing an associated switch at an arbitrary location.

The domain has four action templates:

• move(?a, ?d, ?l1, ?l2), where ?a is an agent, ?d is a door, and ?a
moves from ?l1 to ?l2 via ?d,

• cross(?a, ?br, ?l1, ?l2), where ?a is an agent, ?br is a bridge, and
?a moves from ?l1 to ?l2 via ?br,

• row(?a, ?bo, ?l1, ?l2), where ?a is an agent, ?bo is a boat, and ?a
moves from ?l1 to ?l2 via ?bo,

• push(?a, ?s, ?l, ?d), where ?a is an agent, ?s is a switch, ?l is the
location of ?s, and ?d is the door to be unlocked.

Figure 1 shows an example problem of the maze domain with five
agents in a 4 × 4 grid. The initial agent locations are denoted A1-
A5, and agents have the same goal location, marked with a diamond.
Unannotated connections represent unlocked doors, while s1, s2, and
s3 denote locked doors that can be opened by pushing the switch with
the same label. Bridges and boats are labelled br and bo, respectively.

We define concurrency constraints for each action template in the
following way. The move template is associated with the subset of
parameters {?d}, i.e. the door, the cross template with {?br}, i.e.
the bridge, the row template with {?bo, ?l1}, i.e. the boat and initial
location, and the push template with {?s}, i.e. the switch.

Each door object d can only be traversed by one agent at a time,
so we define φ({d}) = (1, 1). Each bridge br can be crossed by
multiple agents at a time, so we define φ({br}) = (1, n), i.e. any
number of agents can use it in parallel. Each combination {bo, l} of
a boat and initial location can only be used by at least two agents,
so we define φ({b, l}) = (2, n). The reason we need to include the
initial location in addition to the boat is that otherwise, agents could
simultaneously row in opposite directions which, unlike crossing a
bridge, we do not want to allow. Finally, each switch s can only be
pushed by one agent at a time, so we define φ({s}) = (1, 1).

We illustrate our approach for transforming a multiagent problem
of the maze domain into a single-agent problem. Two of the action
templates, move and push, have associated subsets of objects whose
concurrency constraints equal (1, 1). As a consequence, a joint
action only ever admits a single action of each type. In turn, this
means that actions of type start-move, do-move, and end-move
(and the corresponding actions for push) are not needed, since each
of these are only part of a joint action involving more than one agent.
Likewise, we can remove actions of type lone-row since agents can
never row on their own. The single-agent formulation of the problem
thus includes the following action templates:

lone-move(?a, ?d, ?l1, ?l2),
lone-cross(?a, ?br, ?l1, ?l2),
start-cross(?a, ?br, ?l1, ?l2),
do-cross(?a, ?br, ?l1, ?l2, ?ct1, ?ct2),
end-cross(?a, ?br, ?l1, ?l2, ?ct1, ?ct2),
start-row(?a, ?bo, ?l1, ?l2),
do-row(?a, ?bo, ?l1, ?l2, ?ct1, ?ct2),
end-row(?a, ?bo, ?l1, ?l2, ?ct1, ?ct2),
lone-push(?a, ?s, ?l, ?d).

3.3 Compressing Single-Agent Plans

Once we have computed a plan π′ that solves the single-agent plan-
ning problem Π′, we compress the plan by merging actions of π′

into more complex joint actions. One way to obtain a concurrent
plan is to apply a SAT-based planner [10, 14], but the resulting plans
typically contain more than one simultaneous action for each agent
(e.g. a truck in LOGISTICS can load multiple packages simultane-
ously). Moreover, these planners assume that the cost of a joint action
equals the sum of the costs of the constituent single-agent actions,
which is not necessarily the case in our framework.

Instead, given a sequential solution π′ to Π′, our approach is to
compute a compressed plan π that satisfies the following restrictions:

1) π contains the same individual actions as π′.
2) π preserves the order in which actions appear in π′, although con-

secutive actions in π′ may appear together as part of a joint action.

Out of all such compressed plans, we compute the plan that min-
imises global cost. We remark that there are ways to compress plans
that do not respect the above restrictions. In particular, we could con-
sider joint plans in which the order of two actions of different agents
is reversed, which may result in shorter joint plans overall. However,
we conjecture that there exists no tractable algorithm for computing
the cost-optimal joint plan in this case, since in the worst case we
would have to consider all different ways in which to order actions.

The first compression step is to merge sequences of actions of type
〈start, do, . . . , do, end〉, since such sequences in fact represent sin-
gle joint actions. We also revert actions to their original action in the
MAP Π, stripping them of the prefix as well as additional parameters,
preconditions, and effects. Finally, we insert a no-op action for each
agent that does not perform another action. Let π′′ = 〈a1, . . . , am〉
be the resulting sequence of joint actions of the original MAP Π, and
let N(aj) ⊆ N be the subset of agents performing an action different
from the no-op action for each 1 ≤ j ≤ m.

We then attempt to compress the plan further by merging ac-
tions in a cost-optimal way. Table 1 describes an algorithm called
COMPRESS which achieves this in polynomial time using dynamic
programming. The algorithm COMPRESS takes the plan π′′ =
〈a1, . . . , am〉 described above as input and returns a compressed plan
with optimal cost among the plans satisfying restrictions 1) and 2).
For each step j of the plan π′′, A(j) denotes the optimal cost of a
compressed plan involving actions a1 through aj , and B(j) denotes
the index of the action such that aB(j), . . . , aj should be merged into
a single joint action to achieve cost A(j).

The dynamic programming part of the algorithm involves three
variables: an index k, a set of agents S, and a joint action a. Initially,
S = ∅ and each agent performs a no-op action. For every k start-
ing from j in descending order, the algorithm checks whether some
agent in N(ak) already appears in S. If so, we cannot merge actions
ak, . . . , aj since the action sequence contains two actions associated
with the same agent.
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1 algorithm COMPRESS(π′′)
2 A(0) ← 0
3 for each j = 1, . . . ,m
4 A(j) ← ∞
5 B(j) ← 0
6 k ← j
7 S ← ∅
8 a ← (noop1, . . . , noopn)
9 while k > 0 and N(ak) ∩ S = ∅ do

10 S ← S ∪N(ak)
11 a ← a⊕ ak

12 if a is well-defined and A(k − 1) + c(a) ≤ A(j) then

13 A(j) ← A(k − 1) + c(a)
14 B(j) ← k
15 k ← k − 1
16 π ← 〈〉
17 j ← m
18 while j > 0
19 a ← (noop1, . . . , noopn)
20 for each k = B(j), . . . , j
21 a ← a⊕ ak

22 append a to the beginning of π
23 j ← B(j)− 1
24 return π

Table 1. Algorithm COMPRESS(π′).

If merging is possible, we include all agents in N(ak) in S and
update a. The operation a⊕ak returns a joint action such that agents
in N(ak) perform their action in ak and other agents perform their
action in a. The resulting joint action a is well-defined if its pre-
condition and effect are well-defined and it satisfies the concurrency
constraint on each subset of objects in O. If a is well-defined, we
retrieve the cost A(k−1) of the optimal compressed plan for actions
a1 through ak−1 and add the cost c(a) of a. If this cost is the lowest
found for j so far, we update A(j) and B(j). Ties are broken in a
way that favors merging as many actions as possible.

Constructing the compressed plan π amounts to using the indices
B(j) to merge actions. The complexity of COMPRESS is O(N ·m),
where the N derives from the maximum number of iterations of
the inner loop (we can add at most N distinct agents to S without
repetition). The operation a ← a ⊕ ak can be computed in time
O(|N(ak)|) by changing only the actions of agents in N(ak).

4 EVALUATION

In this section we present results from an empirical evaluation of our
algorithm in several multiagent planning domains. We first discuss
how our algorithm could be applied to multiagent planning domains
taken from the International Planning Competition, or IPC for short.
We then present results of applying our transformation to multiagent
planning problems from the maze domain.

Several single-agent benchmark domains from the IPC are typi-
cally used as multiagent benchmarks, since some objects of planning
problems are naturally thought of as agents. Examples of domains
from the IPC used to evaluate multiagent planners in the literature
include DEPOTS, LOGISTICS, ROVERS and SATELLITE.

In the multiagent formulation of LOGISTICS, agents are trucks and
airplanes, and the objects over which concurrency constraints are de-
fined are packages. The concurrency constraint defined on each pack-
age p is φ({p}) = (1, 1), i.e. only a single agent can manipulate p
at a time. As previously mentioned, the concurrency constraint on

each agent i is also defined as φ({i}) = (1, 1), i.e. actions exclusive
to each agent can only be applied by the agent itself. Following our
discussion from the previous section, we can eliminate all actions of
type start, do, and end. Since only actions of type lone remain, fluent
free is no longer needed (no action adds or deletes it). Thus in LO-
GISTICS, our transformation of a multiagent problem into a single-
agent problem results in the standard single-agent formulation.

The case is similar for the other IPC domains. DEPOTS is essen-
tially a combination of the BLOCKSWORLD and LOGISTICS domains
in which agents are trucks and hoists that have to move and stack
crates at different locations. The common objects are crates, which
can only be manipulated by one agent at a time. In ROVERS, agents
are Mars rovers that have to collect samples, take images, and com-
municate findings to a lander. The only common object is the lander,
and rovers can only communicate information to the lander one at a
time. In SATELLITE, agents are satellites charged with taking images
in different directions. Each action is exclusive to each agent, imply-
ing that there are no actions that require concurrency constraints.

In each of the three domains, all concurrency constraints equal
(1, 1), i.e. only a single agent can manipulate each object set at a
time. Our transformation is thus equal to the standard single-agent
formulation. In the IPC domains, the cost of a joint action a is defined
as the number of individual actions in a different from the no-op ac-
tion. In this case, compressing a single-agent plan into a shorter joint
plan does not change the cost of the plan, although the makespan of
the plan (i.e. the length of the joint plan) may be shorter.

In experiments, we used the LAMA planner [13] to solve the
single-agent problems of the IPC domains, and ran our compression
algorithm to produce a joint plan. On average, the compressed plans
were 21% shorter than the single-agent plans. Although these results
are not groundbreaking from a multiagent perspective, they still serve
as a lesson: when actions associated with the same common objects
cannot be applied concurrently, a simple way to reduce the complex-
ity is to force actions to be applied individually, drastically reducing
the number of joint actions of the multiagent planning problem.

We also ran experiments with our approach in the maze domain
described in the previous section. We randomly generated 4 prob-
lems of the maze domain for 5, 10, 15, and 20 agents, and grid
sizes of 4x4, 8x8, 12x12, 16x16, and 20x20. It was hard to guarantee
that problems were solvable, and we found that the best combina-
tion of connections was to define 70% of connections as doors, 10%
as bridges, 10% as boats, and 10% as locked doors with associated
switches. Still, some problems remained unsolvable, or at the very
least, LAMA was unable to solve them. Unlike the example problem
in Figure 1, each agent had its own random destination.

Table 2 shows results of experiments in the maze domain. As be-
fore, we defined the cost of a joint action as the number of indi-
vidual actions different from the no-op action. The table shows, for
each combination of agents and grid sizes, the average length of the
single-agent plan (L′) and of the joint plan after merging and com-
pression (L). The average was only taken over problems solved; in
two cases, none of the four problems were solved by LAMA. The so-
lutions frequently included cross and row actions in addition to move
actions, but push actions were rare, presumably because agents could
not reach switches or because other action sequences were shorter.

The results in the maze domain highlight that our approach makes
it possible to solve large multiagent planning problems with tens of
agents and relatively complex interaction between agents (in the form
of cross and row actions that can or have to be taken concurrently).
We are aware of no other multiagent planning approach that could
handle problems of this type and dimension.
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n = 5 n = 10 n = 15 n = 20
L′ L L′ L L′ L L′ L

4× 4 8 5 28 16 39 24 43 21
8× 8 29 24 52 41 56 39 88 60

12× 12 38 31 43 31 − − 97 49
16× 16 59 50 56 38 153 133 127 98
20× 20 55 47 − − 81 63 132 104

Table 2. Results in the maze domain; see the text for explanations.

5 Related work

Methods for cooperative, centralised multiagent planning mostly fo-
cus on techniques for reducing the combinatorial explosion that re-
sults from agents acting concurrently in the same environment. Early
on, Lansky [11] suggested a decomposition of a STRIPS-style plan-
ning domain into several potentially overlapping local search spaces
(“regions”), and applied a hierarchical constraint satisfaction tech-
nique to combine “region plans” in combination with backtracking.
Brafman and Domshlak [2] investigate loosely coupled planning do-
mains by looking at “coordination points” in a MAP based on the
distinction between public and private fluents. Nissim et al’s [12] dis-
tributed multiagent planning algorithm exploits exactly this type of
loose coupling, solving a distributed CSP for those parts of the global
plan where individual agents’ contributions overlap, while allow-
ing the agents to plan independently for other parts of the planning
problem. The empirical evaluations of all of these approaches show
that the degree of coupling present in the domains determines the
planning complexity in practice. While the approach of Jensen and
Veloso [9] uses OBDDs for concurrent multiagent non-deterministic
planning, the number of joint actions could still be exponential in the
number of agents in the worst case.

Boutilier and Brafman [1] address the lack of a proper treatment of
concurrent action in most STRIPS-based formalisms, and propose a
sound and complete partial-order planner that can deal with concur-
rency constraints (where individual agents’ actions have to be or can-
not be executed in parallel). The focus of their paper is on appropriate
representations for multiagent planning with concurrent actions, and
it does not address issues of scalability or empirical performance in
real-world domains.

In [5], Crosby also defines concurrent action constraints on the ob-
jects in a domain and it is shown how a translation can be made to
temporal planning so that these problems can be solved using a tem-
poral planner. However, Crosby does not include an equivalent of the
function φ : O → N×N, meaning that it is not possible to associate
different concurrency constraints together based on specifically cho-
sen objects that can appear in a ground action. Instead, concurrency
constraints are always linked to all actions that contain a particular
constrained object in their preconditions or effects. This means that
there are certain constraints that are expressible in our approach that
would not be in his. However, the domains used in this paper would
all be expressible using the methods found in [5].

6 CONCLUSION

In this paper, we presented a new planning method for synthesising
multiagent plans with concurrent actions and concurrency constraints
among those actions. Our method is based on transforming the orig-
inal multiagent planning problem to a single-agent problem, while

specifying concurrency constraints in terms of sets of objects associ-
ated with actions. As the number of possible interactions among indi-
vidual agents’ actions is manageable in many real-world domains if
we adopt this perspective, our experiments show that the potentially
exponential blow-up in the number of total joint actions that have to
be considered can often be avoided in practice.

The second contribution is a plan compression algorithm that is
based on dynamic programming and which minimises total action
cost when iteratively merging sequential actions to exploit concur-
rency in the joint multiagent plan. This could be particularly impor-
tant in domains with more complex cost functions, but also results
in plans that are shorter than those returned by standard single-agent
planners in conventional benchmark domains with unit action costs.

In future work, we would like to extend our work to domains
with other types of concurrency constraints that cannot be captured
by objects, but still permit transformations to single-agent plan-
ning. For example, a domain that includes actions for both painting
and passing-through a doorway may only permit one agent to pass
through at a time while multiple agents can paint the door concur-
rently. This suggests a mapping of concurrency constraints onto the
affordances of objects, though details will be left for another paper.
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