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Abstract. Recently, belief change within the framework of frag-
ments of propositional logic has gained increasing attention. Previ-
ous works focused on belief contraction and belief revision on the
Horn fragment. However, the problem of belief merging within frag-
ments of propositional logic has been neglected so far. This paper
presents a general approach to define new merging operators derived
from existing ones such that the result of merging remains in the frag-
ment under consideration. Our approach is not limited to the case of
Horn fragment but applicable to any fragment of propositional logic
characterized by a closure property on the sets of models of its for-
mulæ. We study the logical properties of the proposed operators in
terms of satisfaction of merging postulates, considering in particular
distance-based merging operators for Horn and Krom fragments.

1 Introduction

Belief merging consists in achieving a synthesis between pieces of
information provided by different sources. Although these sources
are individually consistent, they may mutually conflict. The aim of
merging is to provide a consistent set of information, making maxi-
mum use of the information provided by the sources while not favor-
ing any of them. Belief merging is an important issue in many fields
of Artificial Intelligence (AI) [3] and symbolic approaches to multi-
source fusion gave rise to increasing interest within the AI commu-
nity since the 1990s [2, 5, 12, 15, 16]. One of today’s major ap-
proaches is the problem of merging under (integrity) constraints in
order to generalize both merging (without constraints) and revision
(of old information by a new piece of information). For the latter the
constraints then play the role of the new piece of information. Postu-
lates characterizing the rational behavior of such merging operators,
known as IC postulates, have been proposed by Revesz [15] and im-
proved by Konieczny and Pino Pérez [10] in the same spirit as the
seminal AGM [1] postulates for revision. Concrete merging opera-
tors have been proposed according to either semantic (model-based)
or syntactic (formula-based) points of view in a classical logic set-
ting. We focus here on the model-based approach of distance-based
merging operators [9, 10, 16]. These operators are parametrized by
a distance which represents the closeness between interpretations
and an aggregation function which captures the merging strategy and
takes the origin of beliefs into account.

Belief change operations within the framework of fragments of
classical logic constitute a vivid research branch. In particular, con-
traction [4, 8, 18] and revision [7, 14, 19] have been thoroughly ana-
lyzed in the literature. The motivation for such a research is twofold:

• In many applications, the language is restricted a priori. For in-
stance, a rule-based formalization of expert’s knowledge is much
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easier to handle for standard users. In case users want to revise or
merge some sets of rules, they indeed expect that the outcome is
still in the easy-to-read format they are used to.

• Many fragments of propositional logic allow for efficient reason-
ing methods. Suppose an agent has to make a decision accord-
ing to a group of experts’ beliefs. This should be done efficiently,
therefore the expert’s beliefs are stored as formulæ known to be in
a tractable class. For making a decision, it is desired that the result
of the change operation yields a set of formulæ in the same frag-
ment. Hence, the agent still can use the dedicated solving method
she is equipped with for this fragment.

Most of previous work has focused on the Horn fragment ex-
cept [6] that studied revision in any fragment of propositional logic.
However, as far as we know, the problem of belief merging within
fragments of propositional logic has been neglected so far.

The main obstacle hereby is that for a language fragment L′, given
n belief bases K1, . . . ,Kn ∈ 2L

′
and a constraint μ ∈ L′, there is

no guarantee that the outcome of the merging, Δμ({K1, . . . ,Kn}),
remains in L′ as well. Let for example, K1 = {a}, K2 = {b} and
μ = ¬a ∨ ¬b be two sets of formulæ and a formula expressed in the
Horn fragment. Merging with typical distance-based operator pro-
posed in [10] does not remain in the Horn language fragment since
the result of merging is equivalent to (a ∨ b) ∧ (¬a ∨ ¬b), which is
not equivalent to any Horn formula (see [17]).

We propose the concept of refinement to overcome these problems.
Refinements have been proposed for revision in [6] and capture the
intuition of adapting a given operator (defined for full classical logic)
in order to become applicable within a fragment. The basic properties
of a refinement are thus (i) to guarantee the result of the change oper-
ation to be in the same fragment as the belief change scenario given
and (ii) to keep the behavior of the original operator unchanged in
case it delivers a result which already fits in the fragment.

Refinements are interesting from different points of view. Several
fragments can be treated in a uniform way and a general character-
ization of refinements is provided for any fragment. Defining and
studying refinements of merging operators is not a straightforward
extension of the revision case. It is more complex due to the na-
ture of the merging operators. Even if the constraints play the role
of the new piece of information in revision, model-based merging
deals with multi-sets of models. Moreover applying this approach to
different distance-based merging operators, each parameterized by a
distance and an aggregation function, reveals that all the different pa-
rameters matter, thus showing a rich variety of behaviors for refined
merging operators.

The main contributions of this paper are the following:

• We propose to adapt known belief merging operators to make
them applicable in fragments of propositional logic. We provide
natural criteria which refined operators should satisfy. We charac-
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terize refined operators in a constructive way.
• This characterization allows us to study their properties in terms of

the IC postulates [10]. On one hand we prove that the basic postu-
lates (IC0–IC3) are preserved for any refinement for any fragment.
On the other hand we show that the situation is more complex for
the remaining postulates. We provide detailed results for the Horn
and the Krom fragment in terms of two kinds of distance-based
merging operators and three approaches for refinements.

2 Preliminaries

Propositional Logic. We consider L as the language of proposi-
tional logic over some fixed alphabet U of propositional atoms. A
clause is a disjunction of literals. A clause is called Horn if at most
one of its literals is positive; and Krom if it consists of at most two
literals. We identify the following subsets of L: LHorn is the set of all
formulæ in L being conjunctions of Horn clauses, and LKrom is the
set of all formulæ in L being conjunctions of Krom clauses. In what
follows we sometimes just talk about arbitrary fragments L′ ⊆ L.
Hereby, we tacitly assume that any such fragment L′ ⊆ L contains
at least the formula �.

An interpretation is represented either by a set ω ⊆ U of atoms
(corresponding to the variables set to true) or by its corresponding
characteristic bit-vector of length |U|. For instance if we consider
U = {x1, . . . , x6}, the interpretation x1 = x3 = x6 = 1 and
x2 = x4 = x5 = 0 will be represented either by {x1, x3, x6} or by
(1, 0, 1, 0, 0, 1). As usual, if an interpretation ω satisfies a formula φ,
we call ω a model of φ. By Mod(φ) we denote the set of all models
(over U ) of φ. Moreover, ψ |= φ if Mod(ψ) ⊆ Mod(φ) and ψ ≡ φ
(φ and ψ are equivalent) if Mod(ψ) = Mod(φ).

A base K is a finite set of propositional formulæ {ϕ1, . . . , ϕn}.
We shall often identify K via

∧
K, the conjunction of formulæ of K,

i.e.,
∧

K = ϕ1 ∧ · · · ∧ ϕn. Thus, a base K is said to be consistent
if
∧

K is consistent, Mod(K) is a shortcut for Mod(
∧

K), K |= φ
stands for

∧
K |= φ, etc. Given L′ ⊆ L we denote by KL′ the set of

bases restricted to formulæ from L′. For fragments L′ ⊆ L, we also
use TL′(K) = {φ ∈ L′ | K |= φ}.

A profile E is a non-empty finite multiset of consistent bases E =
{K1, . . . ,Kn} and represents a group of n agents having different
beliefs. Given L′ ⊆ L, we denote by EL′ the set of profiles restricted
to the use of formulæ from L′. We denote

∧
K1∧. . .∧∧Kn by

∧
E.

The profile is said to be consistent if
∧

E is consistent. By abuse of
notation we write K � E to denote the multi-set union {K} � E.
The multi-set consisting of the sets of models of the bases in a profile
is denoted Mod(E) = {Mod(K1), . . . ,Mod(Kn)}. Two profiles
E1 and E2 are equivalent, denoted by E1 ≡ E2 if Mod(E1) =
Mod(E2). Finally, for a set of interpretations M and a profile E we
define #(M, E) = |{i : M∩Mod(Ki) 
= ∅}|.

Characterizable Fragments of Propositional Logic. Let B de-
note the set of all Boolean functions β : {0, 1}k → {0, 1} that have
the following two properties

• symmetry, i.e., for all permutations σ, β(x1, . . . , xk) =
β(xσ(1), . . . , xσ(k)) and

• 0- and 1-reproduction, i.e., for all x ∈ {0, 1}, β(x, . . . , x) = x.

Examples are the binary AND function denoted by ∧ or the
ternary MAJORITY function, maj3(x, y, z) = 1 if at least two
of the variables x, y, and z are set to 1. We extend Boolean func-
tions to interpretations by applying coordinate-wise the original
function (recall that we consider interpretations also as bit-vectors).

So, if M1, . . . ,Mk ∈ {0, 1}n, then β(M1, . . . ,Mk) is defined by
(β(M1[1], . . . ,Mk[1]), . . . , β(M1[n], . . . ,Mk[n])), where M [i] is
the i-th coordinate of the interpretation M .

Definition 1. Given a set M ⊆ 2U of interpretations and β ∈ B,
we define Clβ(M), the closure of M under β, as the smallest set
of interpretations that contains M and that is closed under β, i.e., if
M1, . . . ,Mk ∈ Clβ(M), then also β(M1, . . . ,Mk) ∈ Clβ(M).

Let us mention some easy properties of such a closure: (i) mono-
tonicity; (ii) if |M| = 1, then Clβ(M) = M; (iii) Clβ(∅) = ∅.

Definition 2. Let β ∈ B. A set L′ ⊆ L of propositional formulæ is
a β-fragment (or characterizable fragment) if:

1. for all ψ ∈ L′, Mod(ψ) = Clβ(Mod(ψ))
2. for all M ⊆ 2U with M = Clβ(M) there exists a ψ ∈ L′ with

Mod(ψ) = M
3. if φ, ψ ∈ L′ then φ ∧ ψ ∈ L′.

It is well-known that LHorn is an ∧-fragment and LKrom is a
maj3-fragment (see e.g. [17]).

Logical Merging Operators. Belief merging aims at combin-
ing several pieces of information coming from different sources.
Merging operators we consider are functions from the set of pro-
files and the set of propositional formulæ to the set of bases, i.e.,
Δ: EL × L → KL. For E ∈ EL and μ ∈ L we will write Δμ(E)
instead of Δ(E, μ); the formula μ is referred to as the integrity con-
straint (IC) and restricts the result of the merging.

As for belief revision some logical properties that one could expect
from any reasonable merging operator have been stated. See [10] for
a detailed discussion. Intuitively Δμ(E) is the “closest” belief base
to the profile E satisfying the integrity constraint μ. This is what the
following postulates try to capture.

(IC0) Δμ(E) |= μ
(IC1) If μ is consistent, then Δμ(E) is consistent
(IC2) If

∧
E is consistent with μ, then Δμ(E) =

∧
E ∧ μ

(IC3) If E1 ≡ E2 and μ1 ≡ μ2, then Δμ1(E1) ≡ Δμ2(E2)
(IC4) If K1 |= μ and K2 |= μ, then

Δμ({K1,K2}) ∧K1 is consistent if and only if
Δμ({K1,K2}) ∧K2 is consistent

(IC5) Δμ(E1) ∧Δμ(E2) |= Δμ(E1 � E2)
(IC6) If Δμ(E1) ∧Δμ(E2) is consistent,

then Δμ(E1 � E2) |= Δμ(E1) ∧Δμ(E2)
(IC7) Δμ1(E) ∧ μ2 |= Δμ1∧μ2(E)
(IC8) If Δμ1(E) ∧ μ2 is consistent,

then Δμ1∧μ2(E) |= Δμ1(E)

Similarly to belief revision, a representation theorem [10] shows
that a merging operator corresponds to a family of total preorders
over interpretations satisfying certain conditions. More formally,
for E ∈ EL, μ ∈ L and ≤E a total preorder over interpre-
tations, a model-based operator is defined by Mod(Δμ(E)) =
min(Mod(μ),≤E). The model-based merging operators select in-
terpretations that are the “closest” to the original belief bases.

Distance-based operators where the notion of closeness stems
from the definition of a distance (or a pseudo-distance3) between in-
terpretations and from an aggregation function have been proposed
in [10, 11]. More formally, let E = {K1, . . . ,Kn} ∈ EL, μ ∈ L,
d be a distance and f be an aggregation function, we consider the

3 Let ω, ω′ ∈ W , a pseudo-distance is such that d(ω, ω′) = d(ω′, ω) and
d(ω, ω′) = 0 if and only if ω = ω′.
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family of Δd,f
μ merging operators defined by Mod(Δd,f

μ (E)) =
min(Mod(μ),≤E) where ≤E is a total preorder over the set 2U

of interpretations defined as follows:

• d(ω,Ki) = minω′|=Ki
d(ω, ω′),

• d(ω,E) = f(d(ω,K1), . . . , d(ω,Kn)), and
• ω ≤E ω′ if d(ω,E) ≤ d(ω′, E).

Definition 3. A counting distance between interpretations is a func-
tion d : 2U × 2U → R

+ defined for every pair of interpretations
(ω, ω′) by d(ω, ω′) = g(|(ω \ ω′) ∪ (ω′ \ ω)|), where g : N → R

+

is a nondecreasing function such that g(n) = 0 if and only if n = 0.
If g(n) = g(1) for every n 
= 0, we call d a drastic distance and
denote it via dD . If g(n) = n for all n, we call d the Hamming dis-
tance and denote it via dH . If for every interpretations w, w′ and w′′

we have d(w,w′) ≤ d(w,w′′) + d(w′′, w′), then we say that the
distance d satisfies the triangular inequality.

Observe that a counting distance is indeed a pseudo-distance, and
both, the Hamming distance and the drastic distance satisfy the tri-
angular inequality.

As aggregation functions, we consider here Σ, the sum aggrega-
tion function, and the aggregation function GMax defined as fol-
lows. Let E = {K1, . . . ,Kn} ∈ EL and ω, ω′ be two interpreta-
tions. Let (dω1 , . . . , dωn), where dωj = dH(ω,Kj), be the vector of
distances between ω and the n belief bases in E. Let LE

ω be the vec-
tor obtained from (dω1 , . . . , d

ω
n) by ranking it in decreasing order. The

aggregation function GMax is defined by GMax(dω1 , . . . , d
ω
n) =

LE
ω , with GMax(dω1 , . . . , d

ω
n) ≤ GMax(dω

′
1 , . . . , dω

′
n ) if LE

ω ≤lex

LE
ω′ , where ≤lex denotes the lexicographical ordering.
In this paper we focus on the Δd,Σ and Δd,GMax operators where

d is an arbitrary counting distance. These operators are known to sat-
isfy the postulates (IC0)–(IC8), as shown in [9] generalizing more
specific results from [10, 13]. Note that these two operators coincide
for the drastic distance. Finally, we define certain concepts for merg-
ing operators and fragments.

Definition 4. A basic (merging) operator for L′ ⊆ L is any function
Δ : EL′ × L′ → KL′ satisfying Mod(Δμ({{�}})) = Mod(μ) for
each μ ∈ L′. We say that Δ satisfies an (IC) postulate (ICi) (i ∈
{0, . . . , 8}) in L′ if the respective postulate holds when restricted to
formulæ from L′.

3 Refined Operators

Let us reconsider the example from Section 1 to illustrate the prob-
lem of standard operators when applied within a β-fragment.

Example 1. Let U = {a, b}, E = {K1,K2} ∈ ELHorn and
μ ∈ LHorn such that Mod(K1) = {{a}, {a, b}}, Mod(K2) =
{{b}, {a, b}}, and Mod(μ) = {∅, {a}, {b}}. Consider the distance-
based merging operators, ΔdH ,Σ and ΔdH ,GMax. The following ta-
ble gives the distances between the interpretations of μ and the belief
bases, and the result of the aggregation functions Σ and GMax.

K1 K2 Σ GMax
∅ 1 1 2 (1, 1)

{a} 0 1 1 (1, 0)
{b} 1 0 1 (1, 0)

Hence, we have Mod(ΔdH ,Σ
μ (E)) = Mod(ΔdH ,GMax

μ (E)) =
{{a}, {b}}. Thus, for instance, we can give φ = (a∨ b)∧ (¬a∨¬b)
as a result of the merging for both operators. However, there is no

ψ ∈ LHorn with Mod(ψ) = {{a}, {b}} (each ψ ∈ LHorn satisfies
the following closure property in terms of its set of models: for every
I, J ∈ Mod(ψ), also I ∩ J ∈ Mod(ψ))). Thus, the result of the
operator has to be “refined”, such that it fits into the Horn fragment.
On the other hand, it holds that μ ∈ LKrom , E ∈ ELKrom and also
the result φ is in Krom. This shows that different fragments behave
differently on certain instances. Nonetheless, we aim for a uniform
approach for refining merging operators.

We are interested in the following: Given a known merging oper-
ator Δ and a fragment L′ of propositional logic, how can we adapt
Δ to a new merging operator Δ� such that, for each E ∈ EL′ and
μ ∈ L′, Δ�

μ(E) ∈ KL′? Let us define a few natural desiderata for
Δ� inspired by the work on belief revision. See [6] for a discussion.

Definition 5. Let L′ be a fragment of classical logic and Δ a merg-
ing operator. We call an operator Δ� : EL′ × L′ → KL′ a Δ-
refinement for L′ if it satisfies the following properties, for each
E,E1, E2 ∈ EL′ and μ, μ1, μ2 ∈ L′.

1. consistency: Δμ(E) is consistent if and only if Δ�
μ(E) is consis-

tent
2. equivalence: if E1 ≡ E2 and Δμ1(E1) ≡ Δμ2(E2) then

Δ�
μ1
(E1) ≡ Δ�

μ2
(E2)

3. containment: TL′(Δμ(E)) ⊆ TL′(Δ�
μ(E))

4. invariance: If Δμ(E) ∈ K〈L′〉, then TL′(Δ�
μ(E)) ⊆

TL′(Δμ(E)), where 〈L′〉 denotes the set of formulæ in L for
which there exists an equivalent formula in L′.

One can show that a Δ-refinement Δ� for a β-fragment satisfies
the properties: (i) Mod(Δ�

μ(E)) ⊆ Clβ(Mod(Δμ(E))) and (ii)
Mod(Δ�

μ(E)) = Mod(Δμ(E)) in case Mod(Δμ(E)) is closed un-
der β. This motivates the following candidates for such refinements.

Definition 6. Let Δ be a merging operator and β ∈ B. We define
the Clβ-based refined operator ΔClβ as:

Mod(Δ
Clβ
μ (E)) = Clβ(M).

where M = Mod(Δμ(E)).
We define the Min-based refined operator ΔMin as:

Mod(ΔMin
μ (E)) =

{
M if Clβ(M) = M,

{Min(M)} otherwise,

where Min is a function that selects a single interpretation from a set
of interpretations with respect to a given and fixed order.

We define the Min/Clβ-based refined operator ΔMin/Clβ as:

Δ
Min/Clβ
μ (E) =

{
ΔMin

μ (E) if #(M, E) = 0

Δ
Clβ
μ (E) otherwise.

Proposition 1. For any merging operator Δ : EL×L → KL, β ∈ B
and L′ ⊆ L a β-fragment, the operators ΔClβ , ΔMin and Δ

Min/Clβ
μ

are Δ-refinements for L′.

Example 2. Consider the profile E, the integrity constraint μ given
in Example 1, the distance-based merging operator ΔdH ,Σ, and let
β be the binary AND function. Let us have the following order over
the set of interpretations on {a, b}: ∅ < {a} < {b} < {a, b}.
The result of merging is Mod(ΔdH ,Σ

μ (E)) = {{a}, {b}}. The
Min-based ΔdH ,Σ-refined operator, denoted by ΔMin, is such that
Mod(ΔMin

μ (E)) = {{a}}. The Clβ-based ΔdH ,Σ-refined operator,
denoted by ΔClβ , is such that Mod(Δ

Clβ
μ (E)) = {{a}, {b}, ∅}.

The same result is achieved by the the Min/Clβ-based ΔdH ,Σ-
refined operator since #(Mod(ΔdH ,Σ

μ (E)), E) = 2.
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In what follows we show how to capture not only a particular re-
fined operator but characterize the class of all refined operators.

Definition 7. Given β ∈ B, we define a β-mapping, fβ , as an appli-
cation which to every set of models M and every multi-set of sets of
models X associates a set of models fβ(M,X ) such that:

1. Clβ(fβ(M,X )) = fβ(M,X ) (fβ(M,X ) is closed under β)
2. fβ(M,X ) ⊆ Clβ(M)
3. if M = Clβ(M), then fβ(M,X ) = M
4. If M 
= ∅, then fβ(M,X ) 
= ∅.

The concept of mappings allows us to define a family of refined
operators for fragments of classical logic that captures the examples
given before.

Definition 8. Let Δ : EL × L → KL be a merging operator and
L′ ⊆ L be a β-fragment of classical logic with β ∈ B. For a β-
mapping fβ we denote with Δfβ : EL′ ×L′ → KL′ the operator for
L′ defined as Mod(Δ

fβ
μ (E)) = fβ(Mod(Δμ(E)),Mod(E)). The

class [Δ,L′] contains all operators Δfβ where fβ is a β-mapping
and β ∈ B such that L′ is a β-fragment.

The next proposition is central in reflecting that the above class
captures all refined operators we had in mind, cf. Definition 5.

Proposition 2. Let Δ : EL ×L → KL be a basic merging operator
and L′ ⊆ L a characterizable fragment of classical logic. Then,
[Δ,L′] is the set of all Δ-refinements for L′.

Proof. Let L′ be a β-fragment for some β ∈ B. Let Δ� ∈
[Δ,L′]. We show that Δ� is a Δ-refinement for L′. Let μ ∈ L′

and E ∈ EL′ . Since Δ� ∈ [Δ,L′] there exists a β-mapping
fβ , such that Mod(Δ�

μ(E)) = fβ(Mod(Δμ(E)),Mod(E)). By
Property 1 in Definition 7 Δ�

μ(E) is indeed in KL′ . Consistency:
If Mod(Δμ(E)) 
= ∅ then Mod(Δ�

μ(E)) 
= ∅ by Property 4
in Definition 7. Otherwise, by Property 2 in Definition 7, we get
Mod(Δ�

μ(E)) ⊆ Clβ(Mod(Δμ(E))) = Clβ(∅) = ∅. Equiv-
alence for Δ� is clear by definition and since fβ is defined on
sets of models. Containment: let φ ∈ TL′(Δμ(E)), i.e., φ ∈ L′

and Mod(Δμ(E)) ⊆ Mod(φ). We have Clβ(Mod(Δμ(E))) ⊆
Clβ(Mod(φ)) by monotonicity of Clβ . By Property 2 of Defi-
nition 7, Mod(Δ�

μ(E)) ⊆ Clβ(Mod(Δμ(E))). Since φ ∈ L′

we have Clβ(Mod(φ)) = Mod(φ). Thus, Mod(Δ�
μ(E)) ⊆

Mod(φ), i.e., φ ∈ TL′(Δ�
μ(E)). Invariance: In case Δμ(E) ∈

K〈L′〉, we have Clβ(Mod(Δμ(E))) = Mod(Δμ(E)) since
L′ is a β-fragment. By Property 3 in Definition 7, we have
Mod(Δ�

μ(E)) = fβ(Mod(Δμ(E)),Mod(E)) = Mod(Δμ(E)).
Thus TL′(Δ�

μ(E)) ⊆ TL′(Δμ(E)) as required.
Let Δ� be a Δ-refinement for L′. We show that Δ� ∈ [Δ,L′].

Let f be defined as follows for any set M of interpretations and X
a multi-set of sets of interpretations: f(∅,X ) = ∅. For M 
= ∅, if
Clβ(M) = M then f(M,X ) = M, otherwise if there exists a pair
(E, μ) ∈ (EL′ ,L′) such that Mod(E) = X and Mod(Δμ(E)) =
M, then we define f(M,X ) = Mod(Δ�

μ(E)). If there is no such
(E, μ) then we arbitrarily define f(M,X ) as the set consisting of
a single model, say the minimal model of M in the lexicographic
order. Note that since Δ� is a Δ-refinement for L′, it satisfies the
property of equivalence, thus the actual choice of the pair (E, μ) is
not relevant, and hence f is well-defined. Thus the refined operator
Δ� behaves like the operator Δf .

We show that such a mapping f is a β-mapping. We show
that the four properties in Definition 7 hold for f . Property 1 is

ensured since for every pair (M,X ), f(M,X ) is closed under
β. Indeed, either f(M,X ) = M if M is closed under β, or
f(M,X ) = Mod(Δ�

μ(E)) and since Δ�
μ(E) ∈ KL′ its set of

models is closed under β, or f(M,X ) consists of a single inter-
pretation, and thus is also closed under β. Let us show Property
2, i.e., f(M,X ) ⊆ Clβ(M) for any pair (M,X ). It is obvious
when M = ∅ (then f(M,X ) = ∅), as well as when f(M,X ) is
a singleton and when M is closed and thus f(M,X ) = M. Oth-
erwise f(M,X ) = Mod(Δ�

μ(E)) and since Δ� satisfies contain-
ment Mod(Δ�

μ(E)) ⊆ Clβ(Mod(Δμ(E)). Therefore in any case
we have f(M,X ) ⊆ Clβ(M). Property 3 follows trivially from
the definition of f(M,X ) when M is closed under β. Property 4 is
ensured by consistency of Δ�.

Note that the β-mapping which is used in the characterization of
refined merging operators differs from the one used in the context of
revision (see [6]). Indeed, our mapping has two arguments (and not
only one as in the case of revision). The additional multi-set of sets of
models representing the profile is required to capture approaches like
the Min/Clβ-based refined operator, which are profile dependent.

4 IC Postulates

The aim of this section is to study whether refinements of merging
operators preserve the IC postulates. We first show that in case the
initial operator satisfies the most basic postulates ((IC0)–(IC3)),
then so does any of its refinements. It turns out that this result can
not be extended to the remaining postulates. For (IC4) we charac-
terize a subclass of refinements for which this postulate is preserved.
For the four remaining postulates we study two representative kinds
of distance-based merging operators. We show that postulates (IC5)
and (IC7) are violated for all of our proposed examples of refined
operators with the exception of the Min-based refinement. For (IC6)
and (IC8) the situation is even worse in the sense that no refinement
of our proposed examples of merging operators can satisfy them nei-
ther for LHorn nor for LKrom . Table 1 gives an overview of the results
of this section. However, note that some of the forthcoming results
are more general and hold for arbitrary fragments and/or operators.

Proposition 3. Let Δ be a merging operator satisfying postulates
(IC0)–(IC3), and L′ ⊆ L be a characterizable fragment. Then each
Δ-refinement for L′ satisfies (IC0)–(IC3) in L′ as well.

A natural question is whether refined operators for characterizable
fragments in their full generality preserve other postulates, and if not
whether one can nevertheless find some refined operators that satisfy
some of the remaining postulates.

First we show that one can not expect to extend Proposition 3 to
(IC4). Indeed, in the two following propositions we exhibit merging
operators which satisfy all postulates, whereas some of their refine-
ments violate (IC4) in some fragments.

Proposition 4. Let Δ be a merging operator with Δ ∈
{Δd,Σ,Δd,GMax}, where d is an arbitrary counting distance. Then
the Min-based refined operator ΔMin violates postulate (IC4) in
LHorn and LKrom . In case d is the drastic distance, ΔMin violates
postulate (IC4) in every characterizable fragment L′ ⊂ L.

Proposition 5. Let Δ = Δd,GMax be a merging operator where d is
an arbitrary non-drastic counting distance. Then the closure-based
refined operator ΔClβ violates (IC4) in LHorn and LKrom .

In order to identify a class of refinements which satisfy (IC4), we
now introduce the notion of fairness for Δ-refinements.
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(ΔdH ,Σ)Clβ (ΔdH ,GMax)Clβ (ΔdD,x)Clβ (Δd,x)Min (Δd,x)Min/Clβ

IC0 - IC3 + + + + +
IC4 + - + - +

IC5, IC7 - - - + -
IC6, IC8 - - - - -

Table 1. Overview of some results for (IC4)–(IC8) for refinements in the Horn and Krom fragment (x ∈ {Σ,GMax}, d ∈ {dH , dD}).

Definition 9. Let L′ be a fragment of classical logic. A Δ-refinement
for L′, Δ�, is fair if it satisfies the following property for each E ∈
EL′ , μ ∈ L′: If #(Δμ(E), E) 
= 1 then #(Δ�

μ(E), E) 
= 1.

Proposition 6. Let L′ be a characterizable fragment. (1) The Clβ-
based refinement of both ΔdD,Σ and ΔdD,GMax for L′ is fair. (2) the
Min/Clβ-based refinement of any merging operator for L′ is fair.

Fairness turns out to be a sufficient property to preserve the postu-
late (IC4) as stated in the following proposition.

Proposition 7. Let Δ be a merging operator satisfying postulate
(IC4), and L′ ⊆ L a characterizable fragment. Then every fair Δ-
refinement for L′ satisfies (IC4) as well.

With the above result at hand, we can conclude that the Clβ-
based refinement of both ΔdD,Σ and ΔdD,GMax for L′ as well as the
Min/Clβ-based refinement of any merging operator satisfies (IC4).

Remark 1. Observe that the distance which is used in distance-
based operators matters with respect to the preservation of (IC4), as
well as for fairness. Indeed, while the Clβ-refinement of ΔdD,GMax

is fair, and therefore satisfies (IC4), the Clβ-refinement of Δd,GMax

where d is an arbitrary non-drastic counting distance violates postu-
late (IC4) in LHorn and LKrom , and therefore is not fair.

For all refinements considered so far we know whether (IC4) is
preserved or not, with one single exception: the Clβ-refinement of
Δd,Σ where d is an arbitrary non-drastic counting distance. In this
case we get a partial positive result.

Proposition 8. Let Δ be a merging operator with Δ = Δd,Σ, where
d is an arbitrary counting distance that satisfies the triangular in-
equality. Then the closure-based refined operator ΔClβ satisfies pos-
tulate (IC4) in any characterizable fragment.

Remark 2. The above proposition together with Proposition 5 shows
that the aggregation function that is used in distance-based operators
matters with respect to the preservation of the postulate (IC4).

Interestingly Proposition 8 (recall that the Hamming distance sat-
isfies the triangular inequality) together with the following proposi-
tion show that fairness, which is a sufficient condition for preserving
(IC4) is not a necessary one.

Proposition 9. The Clβ-refinement of ΔdH ,Σ is not fair in LHorn

and in LKrom .

It turns out that our refined operators have a similar behavior with
respect to postulates (IC5) & (IC7) as well as (IC6) & (IC8).
Therefore we will deal with the remaining postulates in pairs. In fact
the Min-based refinement satisfies (IC5) and (IC7), whereas the re-
fined operators ΔClβ and ΔMin/Clβ violate these two postulates.

Proposition 10. Let Δ be a merging operator satisfying postulates
(IC5) and (IC6) (resp. (IC7) and (IC8)), and L′ ⊆ L a charac-
terizable fragment. Then the refined operator ΔMin for L′ satisfies
(IC5) (resp. (IC7)) in L′ as well.

Proposition 11. Let Δ be a merging operator with Δ ∈
{Δd,Σ,Δd,GMax}, where d is an arbitrary counting distance. Then
the refined operators ΔClβ and ΔMin/Clβ violate postulates (IC5)
and (IC7) in LHorn and in LKrom .

Proof. We give the proof for ΔClβ with Δ = Δd,Σ where d is asso-
ciated with a function g (see Definition 3). The given examples also
apply to GMax and for the refinement ΔMin/Clβ .

(IC5): Let β ∈ {∧,maj3}. Consider E1 = {K1,K2,K3}, E2 =
{K4} and μ with Mod(K1) = {{a}, {a, b}, {a, c}}, Mod(K2) =
{{b}, {a, b}, {b, c}}, Mod(K3) = {{c}, {a, c}, {b, c}},
Mod(K4) = {∅, {b}}, and Mod(μ) = {∅, {a}, {b}, {c}}.

K1 K2 K3 K4 E1 E1 � E2

∅ g(1) g(1) g(1) 0 3g(1) 3g(1)
{a} 0 g(1) g(1) g(1) 2g(1) 3g(1)
{b} g(1) 0 g(1) 0 2g(1) 2g(1)
{c} g(1) g(1) 0 g(1) 2g(1) 3g(1)

Since g(1) > 0 by definition of a counting distance, we have
Mod(Δ

Clβ
μ (E1)) = {∅, {a}, {b}, {c}}, Mod(Δ

Clβ
μ (E2)) =

{∅, {b}}, and Mod(Δ
Clβ
μ (E1 � E2)) = {{b}}, violating (IC5).

(IC7): For LHorn , consider E = {K1,K2,K3} with
Mod(K1) = {{a}}, Mod(K2) = {{b}}, Mod(K3) = {{a, b}},
and assume Mod(μ1) = {∅, {a}, {b}} and Mod(μ2) = {∅, {a}}.

K1 K2 K3 E

∅ g(1) g(1) g(2) 2g(1) + g(2)
{a} 0 g(2) g(1) g(1) + g(2)
{b} g(2) 0 g(1) g(1) + g(2)

We have Mod(Δμ1(E)) = {{a}, {b}}, thus Mod(ΔCl∧
μ1

(E)) =
{∅, {a}, {b}}. Therefore, Mod(ΔCl∧

μ1
(E) ∧ μ2) = {∅, {a}},

whereas Mod(ΔCl∧
μ1∧μ2

(E)) = {{a}}, violating (IC7).
For LKrom let E = {K1,K2,K3,K4,K5}, μ1 and μ2 with

Mod(K1) = {{a}}, Mod(K2) = {{b}}, Mod(K3) = {{c}},
Mod(K4) = {{a, b}, {a, c}}, Mod(K5) = {{a, b}, {b, c}},
Mod(μ1) = {∅, {a}, {b}, {c}}, and Mod(μ2) = {∅, {a}}.

K1 K2 K3 K4 K5 E

∅ g(1) g(1) g(1) g(2) g(2) 2g(2) + 3g(1)
{a} 0 g(2) g(2) g(1) g(1) 2g(2) + 2g(1)
{b} g(2) 0 g(2) g(1) g(1) 2g(2) + 2g(1)
{c} g(2) g(2) 0 g(1) g(1) 2g(2) + 2g(1)

We have Mod(Δ
Clmaj3
μ1 (E)) = {∅, {a}, {b}, {c}}, thus

Mod(Δ
Clmaj3
μ1 (E) ∧ μ2) = {∅, {a}}, and Mod(Δ

Clmaj3
μ1∧μ2

(E)) =
{{a}}. This violates postulate (IC7).
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Actually in the Horn fragment the negative results of the above
proposition can be extended to any fair refinement.

Proposition 12. Let Δ be a merging operator with Δ ∈
{Δd,Σ,Δd,GMax}, where d is an arbitrary counting distance. Then
any fair refined operator Δ∗ violates (IC5) and (IC7) in LHorn .

We leave it as an open question whether this proposition can be ex-
tended to Krom. For the two remaining postulates, (IC6) and (IC8),
the situation is even worse, since any refinement of the two kinds of
operators we considered violates them in LHorn and in LKrom .

Proposition 13. Let Δ be a merging operator with Δ ∈
{Δd,Σ,Δd,GMax}, where d is an arbitrary counting distance. Then
any refined operator Δ� violates postulates (IC6) and (IC8) in
LHorn and in LKrom .

Proof. As an example we give the proof for (IC6) in LHorn for
Δd,GMax. Since LHorn is an ∧-fragment, there is an ∧-mapping
f such that Δ� = Δf and we have f(M,X ) ⊆ Cl∧(M) with
Cl∧(f(M,X )) = f(M,X ). Let us consider E1 = {K1,K2,K3}
and μ with Mod(K1) = {{a}, {a, b}}, Mod(K2) = {{b}, {a, b}},
Mod(K3) = {∅, {a}, {b}} and Mod(μ) = {∅, {a}, {b}, {a, b}}.

K1 K2 K3 E1

∅ g(1) g(1) 0 (g(1), g(1), 0)
{a} 0 g(1) 0 (g(1), 0, 0)
{b} g(1) 0 0 (g(1), 0, 0)
{a, b} 0 0 g(1) (g(1), 0, 0)

We have M = Mod(Δμ(E1)) = {{a}, {b}, {a, b}}. Let us con-
sider the possibilities for Mod(Δ�

μ(E1)) = f(M,Mod(E1)). If
∅ ∈ f(M,Mod(E1)), then let E2 = {K4} with K4 in LHorn

be such that Mod(K4) = {∅}. Thus, Mod(Δ�
μ(E2)) = {∅}

and Mod(Δ�
μ(E1) ∧ Δ�

μ(E2)) = {∅}. Moreover, Mod(Δμ(E1 �
E2)) = {∅, {a}, {b}} or {∅, {a}, {b}, {a, b}} depending on
whether g(1) < g(2) or g(1) = g(2). Since both sets are closed
under intersection, we have Mod(Δ�

μ(E1 �E2)) = Mod(Δμ(E1 �
E2)). Thus Mod(Δ�

μ(E1 � E2)) 
⊆ {∅} and (IC6) does not hold.
Otherwise, f(M,Mod(E1)) ⊆ {{a}, {b}, {a, b}}. By sym-

metry assume w.l.o.g. that f(M,Mod(E1)) ⊆ {{a, b}, {a}}
(note that {{a}, {b}} ⊆ f(M,Mod(E1)) would imply ∅ ∈
f(M,Mod(E1))). If f(M,Mod(E1)) = {{a}} or {{a, b}},
then let E2 = {K1}. Then, Mod(Δμ(E2)) = {{a}, {a, b}} =
Mod(Δ�

μ(E2)), and Mod(Δ�
μ(E1) ∧ Δ�

μ(E2)) = {{a}} or
{{a, b}}. Furthermore, Mod(Δμ(E1 � E2)) = {{a}, {a, b}} =
Mod(Δ�

μ(E1 � E2)), thus violating (IC6). If f(M,Mod(E1)) =
{{a, b}, {a}}, then let E2 = {K2}. Then, Mod(Δμ(E2)) =
{{b}, {a, b}} = Mod(Δ�

μ(E2)), and Mod(Δ�
μ(E1) ∧Δ�

μ(E2)) =
{{a, b}}. Furthermore, Mod(Δμ(E1 � E2)) = {{b}, {a, b}} =
Mod(Δ�

μ(E1 � E2)), and thus (IC6) does not hold.

5 Conclusion

We have investigated to which extent known merging operators can
be refined to work within fragments of propositional logic. Com-
pared to revision, this task is more involved since merging operators
have many parameters that have to be taken into account.

We have first defined desired properties any refined merging op-
erator should satisfy and provided a characterization of all refined
merging operators. We have shown that the refined merging oper-
ators preserve the basic postulates, namely (IC0)–(IC3). The sit-
uation is more complex for the other postulates. For the postulate

(IC4) we have provided a sufficient condition for its preservation
by a refinement (fairness). For the other postulates, we have focused
on two representative families of distance-based merging operators
that satisfy the postulates (IC0)–(IC8). For these two families the
preservation of (IC5) and (IC7) depends on the used refinement and
it would be interesting to obtain a necessary and sufficient condition
for this. In contrast, there is no hope for such a condition for (IC6)
and (IC8), since we have shown that any refinement of merging op-
erators belonging to these families violates these postulates in LHorn

and LKrom .
An interesting issue is whether the postulate (IC4) is compatible

with (IC5) and (IC7) for some refinements and whether this can
depend on the fragment under consideration.
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