
On the Efficient Implementation of
Social Abstract Argumentation

Marco Correia and Jorge Cruz and João Leite 1

Abstract. In this paper we present a novel iterative algorithm –
the Iterative Successive Substitution (ISS) – to efficiently approxi-
mate the models of debates structured according to Social Abstract
Argumentation [10]. Classical iterative algorithms such as the Itera-
tive Newton-Raphson (INR) and the Iterative Fixed-point (IFP) don’t
always converge and, when they do, usually take too long to be ef-
fective. We analytically prove convergence of ISS, and empirically
show that, even when INR and IFP converge, ISS always outper-
forms them, often by several orders of magnitude. The ISS is able
to approximate the models of complex debates with thousands of ar-
guments in well under a second, often in under one tenth of a sec-
ond, making it comfortably suitable for its purpose. Additionally, we
present a small modification to ISS that, with a negligible overhead,
takes advantage of the topological structure of certain debates to sig-
nificantly increase convergence times.

1 Introduction

Social Abstract Argumentation [10] extends Dung’s Abstract Argu-
mentation with votes, and was introduced to help structure online de-
bates and foment wide participation with different levels of engage-
ment: while some more eager participants – experts or enthusiasts –
would specify arguments and their attack relations, others, who sim-
ply want to follow the debate, but who nevertheless have an opinion
on what is happening and wish to express it and influence the out-
come, could do it by voting on arguments (and, according to some
extensions [6], also on attacks).

According to Social Abstract Argumentation, arguments and at-
tack relations that form a debate are arranged in a directed graph,
with each argument having associated a number of positive and neg-
ative votes. The semantics of Social Abstract Argumentation assigns
one or more models to debates – each of which indicating the social
strength of each argument, taking into account both the structure of
the argumentation graph and the votes – and is parameterized by a
set of operators that characterize how votes should be interpreted,
the effect of attacks, and how multiple attacks should be combined.

Whereas the semantics of Social Abstract Argumentation was de-
fined at a very general level and is, in fact, a family of semantics,
each specified by a specific set of operators, one particular instance
was studied in greater detail. It is specified by operators based on
the product T-norm and its dual, the probabilistic sum T-conorm, and
enjoys many desirable properties such as the fact that argument so-
cial strength is gradual, going beyond the classical true/accepted or
false/defeated and is limited by popular opinion where every vote
counts. Of key importance is the fact that, with this semantics, every

1 CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnolo-
gia, Universidade Nova de Lisboa, email: jleite@fct.unl.pt

debate has a model, and it is strongly believed – though a proof is
still missing (see conjecture 14 in [10]) – that this model is unique.

This semantics and equivalent/restricted variants have been inves-
tigated in [10, 6, 4, 7, 2]. However, an online debating system based
on Social Abstract Argumentation is yet to be deployed, and very lit-
tle has been investigated with respect to its implementation and com-
putational properties. One possible reason may be the complexity of
solving the highly non-linear system of equations that characterizes
the semantics. [10] discusses the possibility to use a classical iterative
fixed-point algorithm, but only for a very restricted class of debates
where, otherwise, it would not converge to the solution, thus not us-
able in general. Other classical algorithms used to solve systems of
non-linear equations run into difficulties because a) they often con-
verge to a solution outside the domain of the problem (e.g. assigning
negative social strengths to arguments, instead of values drawn from
[0, 1]) and b) are very inefficient due e.g. to the need to determine the
Jacobian of matrices, which may be prohibitive for large systems.
One such algorithms is the iterative Newton-Raphson which often
takes more than 5 min to approximate the solution of a debate with
5000 arguments and a reasonable number of attacks between them,
thus not usable in a wider scale.

Despite the inexistence of such wide scale online debates of the
kind envisioned by [10] to allow us to assess their size, our goal is to
be able to approximate the solution of a debate with 5000 arguments
and a reasonable number of attacks between them in under 1 sec.

In this paper, we present a novel iterative algorithm, dubbed Iter-
ative Successive Substitution, and investigate its properties, of which
we highlight:

• convergence to the (believed unique) solution to the debate;
• high efficiency, outperforming the other algorithms when they

converge, often by several orders of magnitude, and ability to ap-
proximate the models of complex debates with thousands of argu-
ments in well under a second, often in under one tenth of a second;

• ability to use the topological structure of the graph, with minimal
overhead, to significantly increase convergence times.

The remainder of the paper is structured as follows. In Section 2
we briefly review Social Abstract Argumentation. In Section 3 we
review the classical Iterative Fixed-point and Newton-Raphson algo-
rithms. In Section 4, we present the Iterative Successive Substitution
algorithm, prove it convergence and discuss its rate of convergence.
In Section 5 we compare our algorithm with the other two, and inves-
tigate its performance on a large number of debates with varying size
and complexity. In Section 6 we show how we can take advantage
of the topological structure of the debate with the Iterative Succes-
sive Substitution algorithm. In Section 7 we discuss the relevance and
significance of the algorithm beyond [10] and conclude.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-225

225

mailto:jleite@fct.unl.pt

2 Social Abstract Argumentation

In this section we recap Social Abstract Argumentation Framework
[10]. It is an extension of Dung’s AAF, composed of arguments and
an attack relation to which we add an assignment of votes to each
argument. In [6] this is extended to also allow votes on attacks. Here
we keep to the original version, but it is import an to stress that the
resulting system of equations that needs to be solved to determine
the semantics in [6] is of the same form as the one we present here,
so the algorithm also applies there.

Definition 1 (Social Abstract Argumentation Framework) A So-
cial Abstract Argumentation Framework (SAF) is a triple 〈A,R, V 〉
where A is a set of arguments, R ⊆ A×A is a binary attack relation
between arguments and V : A → N×N is a total function mapping
each argument to its number of positive and negative votes.

Notation 2 Let F = 〈A,R, V 〉 be a social abstract argumenta-
tion framework. We use AF , RF , and VF to denote, respectively,
the set of arguments (A), the attack relation (R), and the votes
(V) of F , nF to denote the number of arguments in AF , eF the
number of attacks in RF , and dF the density of the argumentation
graph, defined as the probability that (x1, x2) ∈ RF for two (dis-
tinct) nodes x1, x2, selected at random, i.e dF = eF /nF (nF − 1).
R−F (x) � {xi : (xi, x) ∈ RF } denotes the set of (direct) attack-
ers of argument x. Whenever unambiguous, we drop the subscript F
from AF , RF , VF , V +

F , V −F , R−F , nF , eF and dF .

The semantics is parameterised on a number of operators, encap-
sulated in the following notion of semantic framework.

Definition 3 (Semantic Framework) A social abstract argumenta-
tion semantic framework is a 5-tuple 〈L, τ,�,�,¬〉 where:

• L is a totally ordered set with top element � and bottom element
⊥, containing all possible valuations of an argument.

• τ : N × N → L is a vote aggregation function which produces a
valuation of an argument based on its votes.

• � : L × L → L is a binary algebraic operation on argument
valuations used to determine the valuation of an argument based
on its valuation given by the votes and how weak its attackers are;

• � : L × L → L is a binary algebraic operation on argument
valuations used to determine the valuation of a combined attack;

• ¬ : L → L is a unary algebraic operation on argument valuations
used to determine how weak an attack is.

We are now ready to define the semantics of SAFs.

Definition 4 (Social Model) Let F be a social abstract argumenta-
tion framework and S = 〈L, τ,�,�,¬〉 a semantic framework. A
total mapping M : A → L is a social model of F under semantics
S, or S-model of F , if

M (x) = τ (V (x)) � ¬ �
{
M (xi) : xi ∈ R− (x)

} ∀x ∈ A

where � {x1, x2, ..., xn} � ((x1 � x2) � ... � xn). We refer to
M (x) as the social strength, or value, of x in M , dropping the ref-
erence to M whenever unambiguous.

As mentioned before, one particular semantic framework received
greater attention because of its properties. It uses a simple vote ag-
gregation function and is based on the well known product T-norm
and probabilistic sum T-conorm. It was dubbed Simple Product Se-
mantics in [10] as is defined as follows:

Definition 5 (Simple Product Semantics) A simple product se-
mantic framework is S·ε = 〈[0, 1], τε,�,�,¬〉 where 1) x1 � x2 =
x1 · x2, 2) x1 � x2 = x1 + x2 − x1 · x2, 3) ¬x1 = 1 − x1 and 4)
for some ε > 0, τε

(
v+, v−

)
= v+

v++v−+ε

The meaning of ε is explained in [10] and, in practice, it should be
a sufficiently small value with no significant influence in result of the
voting aggregation function. Throughout the remainder of the paper,
S will always stand for the Simple Product Semantics.

Theorem 6 [10] Every social abstract argumentation framework F
has at least one S-model.

Conjecture 7 [10] Every social abstract argumentation framework
F has at most one S-model.

Proposition 8 Let F be a social abstract argumentation framework,
x ∈ AF such that τ (x) = 0, and F ′ be obtained from F by remov-
ing x and all attacks involving x. Let M be an S-model F . Then,
M (x) = 0. Additionally, M ′, obtained from M by restricting it to
AF \{x}, is a S-model F ′.

The relevance of the previous proposition is that we can ignore
arguments without positive votes.

The problem of finding a model according to the simple product
semantics can then be cast to the problem of finding a solution of a
nonlinear system where variables represent the arguments and equa-
tions encode their attacks, with the following generic form:

Definition 9 A Social Abstract Argumentation System is a square
nonlinear system with n variables {x1, . . . , xn} and n equations:

xi = τi
∏
j∈Ai

(1− xj) 1 ≤ i ≤ n (1)

where τi ∈]0, 1[and Ai ⊆ {1, . . . , n}.

3 Iterative Algorithms

Contrary to the linear case, systems of nonlinear equations cannot
be solved exactly using a finite number of elementary operations.
Instead, iterative algorithms are usually used to generate a sequence
(x(k))k∈N0 of approximate solutions. These algorithms start with
an initial guess x(0) and, to generate the approximating sequence,
follow an iteration scheme of the form x(k+1) = g(x(k)) where the
fixed-points for g are solutions x∗ of the nonlinear system.

The success of iterative algorithms depend on their convergence
properties. Given a domain of interest, an iterative method that con-
verges for any arbitrary initial guess is called globally convergent.
If convergence is only guaranteed when the initial approximation is
already close enough to the solution, the algorithm is called locally
convergent. In the case of Social Abstract Argumentation Systems
the domain of interest is]0, 1[n thus the iterative algorithm must con-
verge to a solution x∗ = (x∗1, . . . , x

∗
n) ∈]0, 1[n.

Even for converging iterations the approximating sequence will
never arrive at the exact solution after finitely many steps. Hence an
appropriate termination criterion must be defined to stop iterating if
a small enough approximation error is predicted. A commonly used
criterion is to stop iterating when the changes made by an iteration
are below some predefined tolerance:

‖x(k+1) − x(k)‖∞ = max
1≤i≤n

|x(k+1)
i − x

(k)
i | < tol (2)

M. Correia et al. / On the Efficient Implementation of Social Abstract Argumentation226

A comprehensive treatment of methods for solving nonlinear sys-
tems of equations with some recent developments on iterative meth-
ods can be found in [12, 1]. Next we present two locally convergent
iterative algorithms that can be used to solve Social Abstract Argu-
mentation Systems. In sect. 4 we propose a globally convergent al-
gorithm that outperforms both classical approaches.

In the classical Iterative Fixed-Point Algorithm (IFP) the iteration
scheme is directly obtained from the equations (1):

Algorithm 10 (IFP) The IFP algorithm uses the iteration rule:

x
(k+1)
i = τi

∏
j∈Ai

(
1− x

(k)
j

)
(3)

The IFP algorithm clearly satisfies the requirement that the fixed-
points for the iteration rule (3) are solutions of the nonlinear system
(1). However the algorithm is only locally convergent and often di-
verge, even for systems with a reduced number of variables.

The Newton-Raphson method is a classical approach to solve
square nonlinear systems of the form f(x) = 0 which requires the
computation of J(x), the Jacobian matrix of f : {J(x)}ij = ∂fi(x)

∂xj
.

The application of the Iterative Newton-Raphson Algorithm (INR)
to Social Abstract Argumentation Systems imply the reformulation
of the equations (1) into the required form:

Algorithm 11 (INR) The INR algorithm uses the iteration rule:

x(k+1) = x(k) − J(x(k))−1f(x(k)) (4)

with f(x) = (x1− τ1
∏

j∈A1

(1− xj) , . . . , xn− τn
∏

j∈An

(1− xj))
t.

The INR algorithm is expected to converge fast (quadratically),
provided that a sufficiently accurate initial guess is known and the
inverse of the Jacobian matrix exists. However the computation of
the Jacobian at each iteration may be prohibitive for large systems.

4 Iterative Successive Substitution Algorithm

To solve Social Abstract Argumentation Systems we propose the It-
erative Successive Substitutions Algorithm (ISS) which is an adapta-
tion of the Gauss-Seidel method for systems of nonlinear equations.

Algorithm 12 (ISS) The ISS algorithm uses the iteration rule:

x
(k+1)
i = τi

∏
j<i,j∈Ai

(
1− x

(k+1)
j

) ∏
j≥i,j∈Ai

(
1− x

(k)
j

)
(5)

From the initial guess x(0), elements of x(k+1) are computed sequen-
tially using forward substitution until the stoping criterion is attained.

4.1 Convergence

In the following we will prove that ISS will always converges to a
solution x∗ ∈]0, 1[n of system (1), independently of the initial
guess x(0) ∈]0, 1[n. Assuming the uniqueness conjecture, it will
always converge to the unique solution of the system in]0, 1[n.

Proposition 13 If variable xm converges to x∗m then system (1) con-
verges to the equivalent system:

xi =

{
x∗m, i = m

τ
′
i

∏
j∈A′i

(1− xj) , i �= m

with: A
′
i = Ai\{m}; τ

′
i = τi (1− x∗m) if m ∈ Ai or τi otherwise.

Proof. The new system is obtained by rewriting the right hand side
of all the variables xi attacked by xm updating both τi and Ai.

Proposition 14 If there is always at least one variable xm converg-
ing to x∗m then ISS converges to a solution x∗ ∈]0, 1[n.

Proof. According to prop. 13 if there is a variable converging, the
system converges to a system composed of: 1) a trivial equation
where this variable is fixed and; 2) a subsystem with one less vari-
able and one less equation. Omitting the trivial equations and start-
ing from the original n-system (with n variables and n equations)
the existence of a variable converging would make it converge to a
(n− 1)-system. Again, the existence of a variable converging within
this (n− 1)-system would make it converge to a (n− 2)-system. In
the limit, this would guarantee the convergence of the original system
to a system of n trivial equations of the form xi = x∗i .

In the following we prove that along the iterations of ISS there is
always at least one variable converging and so, according to prop. 14,
the algorithm converges to a solution.

Proposition 15 If ∃1≤i≤nAi = ∅ then variable xi converges to τi.

If there are no variables in the conditions of prop. 15 then there
must be a sequence of attacks between a subset of system variables
that define a cycle.

Definition 16 System (1) has a cycle characterized by the sequence
of m variables 〈xc1 , . . . , xcm〉 if cm ∈ Ac1 ∧ ∀1≤i<mci ∈ Aci+1 .

Proposition 17 If ∀1≤i≤nAi �= ∅ then system (1) must have a cycle.

Proof. Starting with i = 1 we can choose a member of Ai (it is
not empty) and repeat the process until we obtain an element already
visited (this is guaranteed because the total number of elements is
finite and the process can be indefinitely repeated).

Proposition 18 If system (1) has a cycle characterized by a se-
quence of m variables 〈xc1 , . . . , xcm〉 then all m variables con-
verge.

Proof. In the following we assume that there is a cycle character-
ized by the sequence of m variables 〈xc1 , . . . , xcm〉 and use function
p(ci) to denote the index of the variable that attacks variable xci in
the cycle: p(ci) = cm if i = 1 or ci−1 otherwise.

Let A
′
ci = Aci\{p(ci)} denote the set of all indexes of variables

that attack variable xci except the one in the cycle. Let P (k+1)
ci denote

the contributions of those attacks in the product of iteration rule (5):

P
(k+1)
ci =

j<ci∏
j∈A′ci

(
1− x

(k+1)
j

) j≥ci∏
j∈A′ci

(
1− x

(k)
j

)
If there is a cycle 〈xc1 , . . . , xcm〉 then for all 1 ≤ i ≤ m:

x(k+1)
ci =

⎧⎨
⎩

τci

(
1− x

(k)

p(ci)

)
P

(k+1)
ci , p(ci) > ci

τci

(
1− x

(k+1)

p(ci)

)
P

(k+1)
ci , p(ci) < ci

Let li = 1 if p(ci) > ci and 0 otherwise. The above simplifies to:

x(k+li)
ci = τciP

(k+li)
ci − τciP

(k+li)
ci x

(k)

p(ci)

Making lj1 =
∑j

i=1 li and l = lm1 and rewriting all the equations
from i = 1 up to m we obtain the generic formula:

x(k+l)
cm =

(
m∑
i=1

(−1)i+1
m∏

j=m−i+1

τcjP
(k+l

j
1)

cj

)

+

(
(−1)m

m∏
j=1

τcjP
(k+l

j
1)

cj

)
x(k)
cm (6)

M. Correia et al. / On the Efficient Implementation of Social Abstract Argumentation 227

To illustrate, consider the case where m = 2. After another l itera-
tions:

x(k+2l)
c2 = τc2P

(k+l+l21)
c2 − τc1P

(k+l+l11)
c1 τc2P

(k+l+l21)
c2

+ τc1P
(k+l+l11)
c1 τc2P

(k+l+l21)
c2 τc2P

(k+l21)
c2

− τc1P
(k+l+l11)
c1 τc2P

(k+l+l21)
c2 τc1P

(k+l11)
c1 τc2P

(k+l21)
c2

+ τc1P
(k+l+l11)
c1 τc2P

(k+l+l21)
c2 τc1P

(k+l11)
c1 τc2P

(k+l21)
c2 x(k)

c2

Notice that after every l iterations the product of the last term will
contain two additional factors (of the form τP) and the remaining is
a sum of alternate terms with two additional terms. When the num-
ber of iterations goes to infinity the last term converges to zero (all
factors are positive and smaller than one) and the other terms form
an alternating series that is guaranteed to converge accordingly to
the Leibniz criterion (it decreases monotonically and goes to 0 in the
limit). Since we made no assumptions about the initial values of the
variables, variable xc2 is necessarily converging.

In the simplest case where the only variables are x1 and x2 and
the cycle sequence is 〈x1, x2〉 with no attacks except those in the
cycle: x1 = τ1 (1− x2), x2 = τ2 (1− x1). In this case all P ’s are
1, τc1 = τ1, τc2 = τ2, l1 = 1, l2 = 0, l = 1:

x
(k+1)
2 = τ2 − τ1τ2 + τ1τ2x

(k)
2

x
(k+2)
2 = τ2 − τ1τ2 + τ1τ2τ2 − τ1τ2τ1τ2 + τ1τ2τ1τ2x

(k)
2

lim
n→∞

x
(n)
2 = lim

n→∞

(
n∑

k=0

τ2 (τ1τ2)
k −

n∑
k=0

τ1τ2 (τ1τ2)
k

)

+ lim
n→∞

(
n∏

k=0

(τ1τ2)
k

)
x
(0)
2

=
τ2

1− τ1τ2
− τ1τ2

1− τ1τ2
+ 0× x

(0)
2 =

τ2 − τ1τ2
1− τ1τ2

The obtained limit is exactly the solution in order to x2 of the system.
Moreover, for any cycle sequence with two variables, a similar proof
for the convergence of xc1 can be made by advancing one variable in
the cycle and considering the sequence 〈xc2 , xc1〉.

In the general case of a cycle sequence with m variables (6), after
every l iterations the product of the last term will contain m addi-
tional factors (of the form τP) and the remaining is a sum of alternate
terms with m additional terms. Similarly to the two variables case,
the convergence properties are guaranteed: the last product converge
to zero and the alternating series converge to the solution of xcm in-
dependently of the initial guess. Again, by advancing one by one the
variables in the sequence, similar proofs can be made for the conver-
gence of any variable in the cycle.

Theorem 19 (Global Convergence) ISS will always converge to a
solution of system (1) independently of the initial guess x(0) ∈]0, 1[n

Proof. Either ∃1≤i≤nAi = ∅ or ∀1≤i≤nAi �= ∅ are true. In the
first case, variable xi converges (prop. 15). In the second case, prop.
17 guarantees that system (1) must have at least one cycle whose
variables, accordingly to prop. 18, must converge. In either case there
is always some variable converging which, by prop. 14, is sufficient
to guarantee the algorithm convergence.

4.2 Convergence rate and time complexity

In this section, we provide an informal study of the convergence rate
of ISS. We will analyze the convergence rate with respect to each

variable that occurs in a cycle. Variables not occurring in any cycle
converge trivially in one iteration after the convergence of all the
variables that directly attack them (see prop. 13).

A formal definition for the convergence rate of a sequence of real
numbers can be stated as follows.

Definition 20 Consider a sequence of reals x(k) that converge to a
point x∗: lim

n→∞
x(k) = x∗ If positive constants λ and α exist with:

lim
n→∞

|x(n+1) − x∗|
|x(n) − x∗|α = λ

then the order of convergence is α with asymptotic error constant λ.

In the case where α = 1 and λ < 1 the convergence is said to be
linear and λ is called the rate of convergence.

When the iterative rule x(n+1) = g(x(n)) is continuous and differ-
entiable and converges to point x∗, the computation of its derivative
at the convergence point is a classical procedure to verify linear con-
vergency and assess its rate of convergence: If g

′
(x∗) �= 0 then there

is linear convergence and the rate of convergence is λ = |g′(x∗)|.
The above properties can be used to address the convergence rate

of a variable that occurs in a cycle and whose sequence of values are
obtained according to the iteration rule (6).

In particular this rate can be computed for the two variables sim-
plest case with no attacks outside the cycle: x(n+1)

2 = g(x
(n)
2) =

τ2−τ1τ2+τ1τ2x
(n)
2 and g

′
(x∗) = τ1τ2 proving linear convergence

(τ1τ2 �= 0) with convergence rate τ1τ2.
However for the general case (6) such exact computations are no

longer possible. Assuming that all P s are 1 (there are no attacks
outside the cycle) the absolute value of its derivative is the prod-
uct of all the τs of the variables in the cycle:

∏m
j=1 τcj . Because this

rule is repeated only after l iterations, the convergence rate should be
l

√∏m
j=1 τcj ≤ m

√∏m
j=1 τcj .

If the assumption of no attacks outside the cycle is dropped, the
derivatives cannot be computed as they depend on the P values. Nev-
ertheless we still can argue that asymptotically those values converge
and its contribution to the derivative is a positive multiplicative factor
smaller than one, decreasing the convergence rate.

For the overall system (1), we expect ISS algorithm to con-
verge linearly with worst case asymptotic convergence rate λ∗ =
max〈xc1

,...,xcm〉∈C m
√∏m

i=1 τci , where C is the set of all cycles in
the graph.

Theorem 21 (Time Complexity) ISS asymptotic time complexity is
in O (−e/ log λ∗).

Proof. Let εk = ‖x(k) − x∗‖∞. In the case of linear convergence
εk+1 ≈ λεk, and since λεk = λkε0, we have that εk+1 ≈ λkε0, so
k ≈ log

(
εk+1

ε0

)
log (λ)−1 ≈ −1/ log λ∗. Since computing (5) for

every xi, 1 ≤ i ≤ n requires exactly e steps (each edge in the graph
is considered once), the result follows.

5 Experimental Results

Since there are yet no large scale debates of the kind envisioned by
Social Abstract Argumentation, in order to assess the performance of
the various algorithms as a function of the network structure we gen-
erated a set of argumentation graphs consisting in graphs with uni-
formly distributed vertex degrees. This set partitions into 9 equally
sized subsets corresponding to a specific size and density interval

M. Correia et al. / On the Efficient Implementation of Social Abstract Argumentation228

combination. Each of these subsets consists of 1000 graphs gener-
ated at random with size and density uniformly distributed in the cor-
responding intervals, amounting to a total of 9000 graphs. Whereas
our initial goal was set to deal with 5000 arguments and a reason-
able number of attacks between them, we generated instances with
up to 10000 arguments and densities up to 1. Recall that a density
of 1 means a totally connected graph, although we can hardly ex-
pect that all arguments attack each other in a real debate. In fact,
argument graphs found in the literature or in argumentation web-
sites have small attack densities, often ≤ 0.1. It is expectable that
larger debates will have similar attack densities. The node weights τi
were randomly selected with uniform probability from the interval
]0, 1[. The initial guess for each variable was set to the correspond-
ing weight: x(0)

i = τi, which corresponds to its upper bound.
All algorithms were implemented in C++ and compiled with gcc

4.8. Experiments were performed on an Intel Core i7 CPU @ 2.4
GHz, running Linux 3.12. The tolerance that defines the termination
criterion was set to tol = 10−12. An algorithm is said to timeout
for a given benchmark if it does not converges to the solution with
tol = 10−12 after 300 seconds.2

5.1 ISS, INR, and IFP comparison

The results obtained from running the ISS, IFP, and INR algorithms
on the set of benchmarks are summarized in table 1.

solved number of times slower than ISS ISS timebest worst average
ISS 100% - - - 100%
INR 65% 1 57913 29 16%
IFP 32% 1 233 1.13 0.07%

Table 1. Performance of ISS, INR, and IFP algorithms.

The column “solved” indicates the percentage of graphs that each
algorithm was able to solve. It shows that INS and IFP timed out in a
significant number of benchmarks. This shows that in practice these
algorithms may diverge or have very slow convergence rates (recall
that INS and IFP lack theoretical global convergence guarantees).

The subsequent three columns – “best”, “worst”, “average” – in-
dicate the time ratio between each algorithm and ISS, at best, worst
and in the average case among all solved instances. For example, the
value 29 in the column “average” means that, on average, INR was
slower than ISS by a factor of 29. By comparing runtimes on the
fraction of benchmarks solved by these algorithms, we observe that
they were never faster than ISS – in fact they may be several orders of
magnitude slower. Furthermore, INR is clearly not competitive since
it is one order of magnitude slower than ISS on average.

To further characterize the benchmarks, we looked at the time
spent by ISS on these instances as a fraction of the total time taken
by ISS to solve all the instances (“ISS time” column). This shows the
hardness of those instances from the ISS point of view. In particular,
we see that IFP is only able to solve the very easy benchmarks, i.e.
the set of benchmarks where ISS spent 0.07% of the time, showing
that IFP does not scale, hence is not a viable alternative either.

5.2 ISS performance analysis

Figure 1 details the performance of the ISS algorithm as a function of
the size and density of the argumentation graph on the set of bench-
marks. Each chart in the figure plots runtime until convergence.

2 The implementation of the algorithms and the graphs are available at
http://centria.di.fct.unl.pt/˜jleite/iss_graphs.

0 2 4 6 8 10
0

5

10

15

tim
e
�s
�

0.1 � d � 1.

n ��1000�
0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

tim
e
�s
�

1000 � n � 10000

d

0 2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

tim
e
�s
�

0.01 � d � 0.1

n ��1000�
0.0 0.2 0.4 0.6 0.8 1.0

0.00
0.02
0.04
0.06
0.08
0.10

tim
e
�s
�

100 � n � 1000

d

0 2 4 6 8 10
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

tim
e
�s
�

0.001 � d � 0.01

n ��1000�
0.0 0.2 0.4 0.6 0.8 1.0

�1.0
�0.5

0.0
0.5
1.0

tim
e
�s
�

10 � n � 100

d

Figure 1. Performance of the ISS algorithm (yy) as function of the size (n)
and density (d) of the argumentation graph.

As expected, larger and more dense graphs lead to slower run-
times, while smaller and more sparse graphs are solved very quickly
(in particular, all graphs with less than 100 nodes are solved instan-
taneously). The nonlinear curves observed in the charts that plot run-
times as a function of the network size reflect the fact that the ISS
is quadratic in the number of nodes (thm. 21). Similarly, the linear
curves of the charts that plot runtimes as a function of the network
density are due to ISS being linear in the number of edges.

For the kinds of graphs that we expect to observe in online debate
forums, i.e. with d ≤ 0.1, the ISS algorithm performs within our
goal of solving instances with 5000 arguments in under 1 sec. For
equally large graphs, though with lower attack densities, we observe
extremely fast runtimes in the order of 0.1 sec. Note that largest run-
time observed was in the order of 15 seconds for fully connected
graphs with 10000 nodes, which is still quite remarkable.

6 Exploiting the Debate Structure

Whereas the graphs generated in the previous section have uniform
distributed vertex degrees, which often result in one strongly con-
nected component i.e. all arguments are involved in a cycle with ev-
ery other argument, this is not what is expected in reality. Even by
looking at small existing debates, we see that there are clusters of
strongly connected components (like mini debates to settle on some
claim) that are arranged as a tree. The system described in [2] even
goes further and restrict the debate to a tree of arguments, which is
adequate given the restricted domain of application, though too re-
strictive for large scale web debates.

In this section we improve the ISS algorithm to take advantage
of the topological structure of the debate, namely if the groups of
interconnected variables form a tree.

Algorithm 22 (ISSc) Let S =
(
S1, . . . , S|S|

)
denote the topologi-

cally ordered sequence of strongly connected components (sccs) of

M. Correia et al. / On the Efficient Implementation of Social Abstract Argumentation 229

http://centria.di.fct.unl.pt/~jleite/iss_graphs

the argumentation graph. For each 1 ≤ k ≤ |S|, call ISS for the
subsystem of equations (1) restricted to the xi where i ∈ Sk.

We can easily show that ISSc retains global convergence.

Theorem 23 (Global Convergence) ISSc always converges to a so-
lution of system (1) independently of the initial guess x(0) ∈]0, 1[n.

Proof. Since ∀i∈S1Ai ⊆ S1 then ISS converges for the system
∪i∈S1xi (thm.19). By prop.13 we are left with an equivalent but
smaller system (all variables xi : i ∈ S1 were replaced by x∗i).
The iteration of this process for all the remaining sccs guarantees the
convergence of the original system.

Furthermore, the time complexity is better (or equal if there is a
single scc) than with ISS.

Theorem 24 (Time Complexity) ISSc asymptotic time complexity
is in O (−c |S| / log λ∗), where c is the number of edges of the ssc
with the largest number of edges.

Proof. Finding a topologically ordered sequence of sccs in a directed
graph is in O (n+ e), and calling ISS on any scc of the graph is in
O (−c/ log λ∗).

Corollary 25 ISScis optimal when the graph is a tree.

Proof. If the argumentation graph is a tree then ISSc calls ISS
n times, with an accumulated cost of O (e). Note that factor
−1/ log λ∗ vanishes since there are no cycles in the graph.

ISSc ISSc�

0.1

1

10

100

0�102 102�103 103�104

size �n�

Figure 2. Average number of times
that ISSc and ISSc- are faster than ISS.

To assess the performance
ISSc on the average case,
we have solved all bench-
marks of section 6 and com-
pared the runtimes with those
obtained by ISS. Addition-
ally, to measure the cost of
the preprocessing phase (i.e.
finding the topologically or-
dered sequence of strongly
connected components) we
also considered the runtimes
obtained by algorithm ISSc

less the preprocessing time (denoted ISSc-). The results are summa-
rized in figure 2.3 Not only there is a substantial gain in using ISSc,
but the gain in practice is closer to the gain observed when ISSc- is
used, since the partition of the graph in the sccs can be done incre-
mentally as the debate progresses.

7 Conclusions

In this paper we presented the Iterative Successive Substitution (ISS)
to efficiently approximate the models of debates structured accord-
ing to Social Abstract Argumentation [10]. We have shown it to be
effective in the sense that, unlike other iterative algorithms, it always
converges, and efficient as it can quickly deal with systems with thou-
sands of arguments. Additionally, with a negligible overhead, it can
increase performance by taking advantage of the topological struc-
ture of the debate graphs.

The Iterative Successive Substitution algorithm opens up the pos-
sibility to effectively and efficiently develop an online debating

3 The band inside each box is the median, and the bottom and top of each box
correspond to the first and third quartiles. The lower and upper ends of the
whiskers mark the minimum and maximum of the data.

tool such as the one envisioned in [10]. But its significance goes
well beyond that. First, the semantics of Social Abstract Argumen-
tation can be employed in existing online argumentation systems,
such as argunet.org, debate.org, debategraph.org, agora.gatech.edu,
yourview.org.au cohere.open.ac.uk, among others, either to directly
assign meaning to the combination of the argumentation graph and
votes, which exist but are not taken into account in a combined way,
or by providing an effective way to extend their systems with votes.

Other systems such as MicroDebates [8] can also directly employ
this semantics and implementation, addressing one potential concern
with the fact that, in their current system, each debate has several
models which may be difficult to grasp by the common user. Systems
such as those described in [9] and [5], aimed at extracting arguments
and make sense of natural language debates could also benefit from
the combination of the graph structure and the numerical values asso-
ciated with the votes that the Iterative Successive Substitution makes
possible to use in practice. The application described in [2] can also
benefit from this algorithm by being able to drop the restriction to
have debates shaped as trees only.

Finally, other systems which are characterized by similar non-
linear systems of equations [3, 11] can benefit from this algorithm.

Our immediate future work draws on these observations, and will
focus on finding out exactly how relevant ISS is outside the realm
of Social Argumentation, develop an application for Social Abstract
Argumentation, and investigate the applicability in the context of the
above mentioned systems. All this appears to be very fruitful terrain.

ACKNOWLEDGEMENTS

We would like to thank Martin Aleksandrov for his help with some
preliminary experiments. João Leite was partially supported by FCT
under project ASPEN (PTDC/EIA-CCO/110921/2009).

REFERENCES

[1] I. K. Argyros and F. Szidarovszky, The Theory and Applications of It-
eration Methods, Systems Engineering, Taylor & Francis, 1993.

[2] P. Baroni, M. Romano, F. Toni, M. Aurisicchio, and G. Bertanza, ‘An
argumentation-based approach for automatic evaluation of design de-
bates’, in CLIMA XIV, volume 8143 of LNCS. Springer, (2013).

[3] H. Barringer, D. M. Gabbay, and J. Woods, ‘Temporal dynamics of sup-
port and attack networks: From argumentation to zoology’, in Mecha-
nizing Math. Reasoning, volume 2605 of LNCS. Springer, (2005).

[4] H. Barringer, D. M. Gabbay, and J. Woods, ‘Temporal, numerical and
meta-level dynamics in argumentation networks’, Argument & Compu-
tation, 3(2-3), 143–202, (2012).

[5] E. Cabrio and S. Villata, ‘A natural language bipolar argumentation
approach to support users in online debate interactions;’, Argument &
Computation, 4(3), 209–230, (2013).

[6] S. Egilmez, J. Martins, and J. Leite, ‘Extending social abstract argu-
mentation with votes on attacks’, in TAFA’13, volume 8306 of LNCS.
Springer, (2014).

[7] D. M. Gabbay, ‘Equational approach to argumentation networks’, Ar-
gument & Computation, 3(2-3), 87–142, (2012).

[8] S. Gabbriellini and P. Torroni, ‘Large scale agreements via microde-
bates’, in AT’12, volume 918 of CEUR Workshop Proceedings, (2012).

[9] K. Grosse, C. I. Chesñevar, and A. G. Maguitman, ‘An argument-based
approach to mining opinions from twitter’, in AT’12, volume 918 of
CEUR Workshop Proceedings, (2012).

[10] J. Leite and J. Martins, ‘Social abstract argumentation’, in IJCAI’11.
AAAI/IJCAI, (2011).

[11] N. Madrid and M. Ojeda-Aciego, ‘On the existence and unicity of sta-
ble models in normal residuated logic programs’, Int. J. of Computer
Mathematics, 89(3), 310–324, (2012).

[12] J. M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

M. Correia et al. / On the Efficient Implementation of Social Abstract Argumentation230

	Introduction
	Social Abstract Argumentation
	Iterative Algorithms
	Iterative Successive Substitution Algorithm
	Convergence
	Convergence rate and time complexity

	Experimental Results
	ISS, INR, and IFP comparison
	ISS performance analysis

	Exploiting the Debate Structure
	Conclusions

