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Abstract. Ontology-based data access (OBDA) is a new paradigm
aiming at accessing and managing data by means of an ontology,
i.e., a conceptual representation of the domain of interest in the un-
derlying information system. In the last years, this new paradigm has
been used for providing users with suitable mechanisms for querying
the data residing at the information system sources. Most of the re-
search has been concentrating on making query answering efficient.
However, query answering is not the only service that an OBDA
system must provide. Another crucial service is consistency check-
ing. Current approaches to this problem involves executing expensive
queries at run-time. In this paper we address a fundamental problem
for OBDA system: given an OBDA specification, can we avoid the
consistency check on the whole OBDA system (global consistency
check), and rely instead on the constraint checking carried out by the
DBMS on the data source (local consistency checking)? We present
algorithms and complexity analysis for this problem, showing that it
can be solved efficiently for a class of OBDA systems that is very
relevant in practice.

1 Introduction

Ontology-based data access (OBDA) is a new paradigm aiming at ac-
cessing and managing the data of an information system by means of
an ontology [16]. An OBDA system is constituted by an OBDA spec-
ification, representing the intensional level of the system, and a data
source (or, a collection of data sources), representing its extensional
level. In turn, the OBDA specification is composed of three elements,
namely the ontology, the data source schema, and the mapping be-
tween the source schema and the ontology. The ontology provides
a conceptual representation of the domain of interest, independently
from how the individual objects of the domain are structured in the
the data sources. The mapping is a set of assertions that specify how
the data at the sources can be aggregated in order to form the in-
stances of the concepts and the relationships in the ontology.

Depending on the process defining the OBDA specification, there
are two types of OBDA systems, that we call simple and compos-
ite. A simple OBDA system models a top-down scenario in which
the information system is designed starting from the ontology, and
the data sources are defined with the goal of providing correct data
structures for storing the instances of concepts and roles in the ontol-
ogy. A composite OBDA system is built using a bottom-up approach,
where the ontology is linked to a set of pre-existing and autonomous
data sources, so as to improve the access to the data by the users,
who can greatly benefit by an abstract representation of the infor-
mation system. In both cases, the data sources are usually managed

by a data management system. In particular, in this paper we will
assume the common situation where data at the sources are stored
in a relational database managed by a Data Base Management Sys-
tem (DBMS). In this scenario, the DBMS is responsible of carrying
out the task of enforcing consistency of data with respect to a set of
integrity constraints, expressed over the source schema.

In the last years, this new paradigm has been adopted for designing
innovative mechanisms allowing the users to query the information
system through the ontology [18, 19, 7, 14, 5, 4]. There has been a
large body of scientific papers addressing the following fundamen-
tal problem: can we answer queries posed to the ontology efficiently,
at least efficiently with respect to the size of data at the source? A
fundamental result in this sense has been provided in [9], where it is
shown that there is a class of languages, namely the DL-Lite family
of Description Logics, that allows for first-order rewriting of (unions
of) conjunctive queries. More precisely, given a (union) of conjunc-
tive query expressed over the ontology, one can always compute a
first-order perfect rewriting of the query, i.e., an SQL query over the
source schema, such that the evaluation of this query over the source
data yields exactly the certain answers to the original ontology query.
Starting with this results, much research has concentrated on improv-
ing the size and the form of the rewriting has produced many inter-
esting results, and is still very active. The ultimate goal is to design
sophisticated algorithms for devising efficient query answering sys-
tems that can be applied in real world applications, where the size of
both the ontology and the source data can be very large.

However, query answering is not the only service that an OBDA
system must provide. Another crucial service is consistency check-
ing. Indeed, if the whole system is inconsistent, classical query an-
swering becomes meaningless, and we have to either discard the data
at the sources, or to resort to more sophisticated strategies (i.e., in-
consistency tolerant query answering) in order to extract useful infor-
mation from the data. Currently, in OBDA systems based on DL-Lite,
consistency checking is realized by resorting to query rewriting:
more precisely, checking consistency involves computing the certain
answers to a specific union of conjunctive query computed on the ba-
sis of the axioms in the ontology. Although acceptable, this method is
not ideal. Indeed, on one hand, the query usually involves the explo-
ration of a very large portion of source data, and on the other hand,
its cost grows with the number of axioms in the ontology, and can
constitute a bottleneck in the use of the system. Indeed we observe
that, in principle, global consistency checking should be carried out
whenever data at the sources change.

In this paper we address a fundamental problem for OBDA sys-
tem: given an OBDA specification, can we avoid the consistency
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check on the whole OBDA system, and rely instead on the constraint
enforcement carried out by the DBMS on the data source (local con-
sistency checking) in order to ensure global consistency? Note that,
if the answer is positive, we can indeed avoid to reason on the whole
system for carrying out the consistency checking at run time: when-
ever the DBMS accepts a database at the source, we know that its
data are consistent with the OBDA system. In other words, we know
that we can reduce global consistency to local consistency.

In the next sections, we present the first study of this issue, and
provide the following contributions. We present a formal framework
for characterizing the relation among global and local consistency in
OBDA system (section 3). We actually split the relation in two parts,
i.e. protection and faithfulness. Note that faithfulness and protection
are discussed also in [10], but with the goal of studying methods
for characterizing the quality of data sources. For both the notions,
we present checking algorithms and complexity results in the case
of OBDA specified using DL-LiteR, GLAV mappings, and relational
schema with keys, foreign keys and denial constraints (Section 5).
We also show technical results at the basis of those algorithms: in par-
ticular we illustrate two relevant tasks for reasoning over an OBDA
system whose data layer is constituted by a database with incomplete
information (Section 4).

Sections 2 and 6 complete the paper. The former presents prelim-
inary notions concerning relational databases, Description Logics,
and OBDA systems. The latter concludes the paper by illustrating
future directions of our work.

2 Preliminaries

In this section we present some preliminary notions on databases and
ontologies that are at the basis of the OBDA approach, and we illus-
trate what is an OBDA system.

Databases. We consider relational databases, and refer to [1] for a
more detailed account of databases. A schema S is a pair 〈ΣS , CS〉,
where ΣS is the alphabet of S, and CS is the set of integrity
constraints (or simply constraints) of S, which are rules that each
database conforming to the schema must obey. A database for S, or
simply a ΣS -database, is a finite set of ground atoms over the predi-
cates in ΣS and the constants in an alphabet Γ (constants are subject
to the unique name assumption). A ΣS -database D is legal for S,
written D |= S, if satisfies all the integrity constraints in CS , written
D |= CS .

Given r/t ∈ ΣS , a relation symbol in S of arity t, we call attribute
of r an integer ranging from 1 to the t. Further, if r(c) is a ground
atom, and A is a set of attributes for r, then we denote by c[A] the
projection of r onto the attributes in A. In general, constraints in
S are expressed as first-order logic (FOL) sentences, or subclasses
thereof.

In this paper, we will focus on sets of constraints CS constituted by
three parts: a set CkS of single key dependencies, a set CfS of foreign
key dependencies, and a set CdS of denial constraints.

A key dependency (KD for short) has the form key(r) = A, where
r is a relation symbol in ΣS and A is a sequence of attributes for r.
A set of KDs is a set of single key dependencies if it contains at most
one KD for each relation. A database D satisfies a KD key(r) = A
if, for each pair of tuples r(c), r(c′) ∈ D, if c[A] = c′[A] then
c = c′.

An inclusion dependency (ID for short) has the form r[A] ⊆ s[B],
where A and B are sets of attributes for the relations r and s respec-
tively. A database D satisfies an ID r[A] ⊆ s[B] if, for each ground
atom of the form r(c) ∈ D, there exists a ground atom of the form

s(c′) such that c[A] = c′[B]. Given a set Ck of KDs, a set Cf of
IDs is a set of foreign keys (FDs for short) for Ck if, for each ID in
Cf of the form r[A] ⊆ s[B] and for each KD in Ck of the form
key(s) = C, we have that B ⊆ C.

A denial constraint (DC for short) has the form β = ∃�x.Φ(�x) →
⊥. A database D satisfies a DC if ∃�x.Φ(�x) doesn’t hold in D.

Sets of constraints containing KDs and FDs have the notably prop-
erty of conjunctive query answering finite controllability (see [20]),
i.e. given a database D, a conjunctive query q and a set C of KDs and
FDs, the answers to q that are true in all the models of D∪I coincide
with the answers over the finite models only. Also, in [6], the authors
present a technique for computing the certain answers to conjunctive
queries over a knowledge base constituted by a database and a set
C of KDs and FDs. Such certain answers are the tuples that are the
answers to a conjunctive query q in every finite databases extending
D, and satisfying all the constraints in C. In particular, the authors
show that the certain answers to q can be computed simply by first
computing a new queryRC(q), called the perfect rewritingRC(q) of
q with respect to C, and then evaluating such query over the database
D.

Description Logic Ontologies. An ontology is a conceptualization
of a domain of interest expressed in terms of a formal language. Here,
we consider logic-based languages, and, more specifically, Descrip-
tion Logics (DLs) [3]. Generally speaking, a knowledge base ex-
pressed in a DL is a pair 〈T ,A〉 where the TBox T is the ontology,
i.e., a set of axioms specifying universal properties of the concepts
and the roles that are relevant in the domain, and the ABoxA contains
axioms specifying the instances of concepts and roles.

In this paper we focus on ontologies written in the DL-LiteR [8,
17] formalism, a member of the DL-Lite family1 of tractable De-
scription Logics (DLs). We provide only a short account of DL-LiteR
here.

The syntax of concept, role and attribute expressions in DL-LiteR
over an alphabet ΣT is specified by means of the following grammar
(where A,P, U are atomic concepts, roles, and attributes, respec-
tively, and T1, . . . , Tn are unbounded pairwise disjoint predefined
value-domains):

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→ T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

A DL-LiteR TBox T over an alphabet ΣT is constituted by:
• the set T + of “positive” inclusion assertions between concepts,

roles and attributes (e.g., A 
 ∃P−);
• the set T − of “negative” assertions, i.e. disjointness assertions be-

tween concepts, roles and attributes (e.g., A 
 ¬∃P );
Note that checking DL-LiteR-KB for satisfiability, i.e., checking if

Mod(〈T ,A〉) = { I | I is an interpretation for ΣT such that I |=
T } is non-empty, can be done in AC0 with respect to A and in
PTIME with respect to T .

Ontology-based Data Access. An OBDA system is constituted by
an OBDA specification, the intensional level of the system, and a
database, representing the data stored in the sources, i.e., the exten-
sional level of the system.

An OBDA specification provides the characteristics of the three
basic components of the system, as specified by the following defini-
tion.
1 Not to be confused with the set of DLs studied in [2], which form the

DL-Litebool family.
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Definition 1 An OBDA specification B is a triple 〈T ,M,S〉, where
• T is a TBox, called the ontology of B, with alphabet ΣT ;
• S = 〈ΣS , CS〉 is a database schema, called the source schema of
B;

• M is a finite set of mapping assertions [12, 15]. between S and T ,
called the mapping of B, where each mapping assertion is of the
form ∀�xφ(�x) → ∃�yψ(�x, �y), where φ(�x) is a conjunctive query
over ΣS with free variables �x, and ψ(�x, �y) is a conjunctive query
over the alphabet ΣT with free variables �x ∪ �y.

As we said before, when we pair an OBDA specification B =
〈T ,M,S〉 with a ΣS -database D, we obtain an OBDA system. We
define the semantics of an OBDA system by specifying which are
the models of B relative to D, denoted by ModD(B). Intuitively, if
D is not legal with respect to S, such models form the empty set.
Otherwise, such models are the interpretations I for ΣT that satisfy
T , and such that the pair (D, I) satisfy all mapping assertions inM,
written (D, I) |=M.

Definition 2 Let B = 〈T ,M,S〉 be an OBDA specification, and let
D be a ΣS -database. Then ModD(B) = { I | I |= T , (D, I) |=
M, and D |= CS }.

Checking whether an OBDA system constituted by B and D is
satisfiable amounts to checking whether ModD(B) �= ∅. In practice,
the system is managed by suitable software components including a
database management system ensuring that D |= CS . This means
that the system managing the data source already filters out those
databases D such that D �|= CS . Thus, in general, the only thing that
remains to be done is to check whether ModD(〈T ,M, 〈Σ, ∅〉〉 = ∅,
i.e., whether there exists an interpretation I for ΣT that satisfies T ,
and such that the pair (D, I) satisfies all mapping assertions inM.

Besides checking consistency, another crucial task to be carried
out in an OBDA system is query answering, which amounts to com-
pute the certain answers of a union of conjunctive query. Informally,
a certain answer of a query posed to a system constituted by an
OBDA specification B = 〈T ,M,S〉, and a ΣS -database D is a tu-
ple that is an answer to the query in all the models ModD(B). The re-
sults in [9] and [11] show that the certain answers to a query q posed
to the OBDA specification B = 〈T ,M,S〉 and the ΣS -database D
can be computed by first computing the ontology rewritingRT (q) of
q with respect to T (with the algorithm in [9]), then computing the
mapping rewritingRT (R(T (q)), denoted byRT ,M(q), and finally
by evaluating the query RT ,M(q), which is a union of conjunctive
query over ΣS , on the database D.

3 Framework for global and local consistency

In this section, we introduce the notions we use for characterizing
global consistency and local consistency in OBDA.

We start with the formal definition of these two notions. What we
formalize here is the simple idea that, given an OBDA specification
B = 〈T ,M, 〈ΣS , CS〉〉, and a ΣS -database D, local consistency
refers to the relationship between D and CS , while global consistency
focuses on the relationship between D, T and M, independently of
CS .

Definition 3 Let B = 〈T ,M, 〈ΣS , CS〉〉 be an OBDA specification,
and let D be a ΣS -database. Then the OBDA system constituted by
B and D is said to be locally consistent if D |= CS , whereas is said
to be globally consistent if ModD(〈T ,M, 〈ΣS , ∅〉〉) �= ∅,

The above definition captures the idea that, while the domain
ontology T forms the intensional level of the whole system, the
database D together with M determines its extensional level. The
schema S is simply the structure designed for accommodating the
data stored at the source, but it does not really contribute to the
semantics of the OBDA system. So, the global consistency of the
OBDA system does not depend on ΣS , and checking global con-
sistency is indeed different from checking satisfiability of B and D,
which amounts to check whether ModD(〈T ,M, 〈ΣS , Cs〉〉) �= ∅.
On the other hand, local consistency merely means that the database
D is legal with respect to the source schema S, i.e., it satisfies all of
its constraints CS .

Given the above definition, it is immediate to formalize the
condition under which global consistency can be reduced to lo-
cal consistency: global consistency of B and D can be re-
duced to local consistency exactly when, for all ΣS -databases D,
ModD(〈T ,M, 〈ΣS , ∅〉〉) �= ∅ is equivalent to D |= CS . In the fol-
lowing, we actually split this notion in two parts, corresponding to
the two parts of the equivalence, and we call such parts protection
and faithfulness, respectively.

Definition 4 Let B = 〈T ,M,S〉 be an OBDA specification, where
S = 〈ΣS , CS〉. Then, S is said to protect T and M from inconsis-
tency, or simply protect B from inconsistency, if for all ΣS -database
D such that ModD(〈T ,M, 〈ΣS , ∅〉〉) = ∅, we have that D �|= CS .

Intuitively, the schema S protects B from inconsistency when-
ever its constraints block every database which would break global
consistency. Figure 1 illustrates the notion of protection pictori-
ally. The area shown in the figure represents all the possible ΣS -
databases. The source schema protects B from inconsistency ex-
actly when it ensures that the bottom-right quadrant corresponding
to ModD(〈T ,M, 〈ΣS , ∅〉〉) = ∅ and D |= CS is empty.

Figure 1. Protection

Definition 5 Let B = 〈T ,M,S〉 be an OBDA specification, where
S = 〈ΣS , CS〉. Then, S is said to be faithful to T and M in
B, or simply faithful to B, if for all ΣS -database D such that
ModD(〈T ,M, 〈ΣS , ∅〉〉) �= ∅, we have that D |= CS .

Intuitively, the schema S is faithful to B if it does not constrain
the source in such a way to filter out data that would not cause the
OBDA system to fall into inconsistency, i.e., if everyΣS -database D
that does not cause any inconsistencies to T andM, does not violate
any constraint of S.

Figure 2 illustrates the notion of faithfulness pictorially.
The source schema protects B from inconsistency exactly
when it ensures that the top-left quadrant corresponding to
ModD(〈T ,M, 〈ΣS , ∅〉〉) �= ∅ and D �|= CS is empty.
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Figure 2. Faithfulness

We observe that faithfulness is indeed an interesting property. It
formalizes the condition under which the semantics of the OBDA
system does not depend on the constraints in CS , as stated in the
following theorem.

Theorem 1 Let B = 〈T ,M,S〉 be an OBDA specification,
where S = 〈ΣS , CS〉. Then S is faithful to B if and only if
ModD(〈T ,M, 〈ΣS , CS〉〉) =ModD(〈T ,M, 〈ΣS , ∅〉〉).

Figure 3 combines the two notions of protection and faithfulness,
and illustrates the idea that global consistency can be reduced to lo-
cal consistency exactly when both the top-left and the bottom-right
quadrants are empty.

Figure 3. Faithfulness and protection

The two notions of protection and faithfulness give raise to two
decision problems, that we are going to study in the rest of the paper.

Definition 6 Given an OBDA specification B = 〈T ,M,S〉, the fol-
lowing are decision problems.
• Protection: check whether S protects B.
• Faithfulness: check whether S is faithful to B.

In the rest of the paper, we present techniques for the two decision
problems. For both faithfulness and protection, we will face the prob-
lem of checking whether an incomplete database is consistent with
respect to a portion of OBDA specification. We address this issue in
the next section.

4 OBDA over incomplete databases

Existing works on OBDA concentrate on the case where the data
source is a traditional database, without incomplete information. In
this section we consider the case where the database at the exten-
sional level has incomplete information [13]. More precisely, we first
provide the formal definition of the notion of database with incom-
plete information that we use, and then we address two specific tasks
that are relevant in OBDA systems whose database is incomplete.
The results presented in this section will be used in Section 5, where
we present the techniques for checking protection and faithfulness.

Definition 7 Let S = 〈ΣS , CS〉 be a schema, and let V be an al-
phabet of variables. An incomplete ΣS -database is a ΣS -database
where variables from V can appear in the arguments of relations.

Intuitively, an incomplete database F represents all the (complete)
databases that are subsets of the set of facts obtained by choosing a
set of constants, and then instantiating the variables of F with such
constants. Formally, we say that a (complete) ΣS -database database
D is an instance of an incomplete ΣS -database F , written D � F ,
if there is a homomorphism from F to D, i.e., a function h from the
constants in ΣS and the variables in V to the constants of ΣS such
that (i) h(c) = c for each constant c; (ii) R(t1, . . . , tn) is in F if
and only if R(h(t1), . . . , h(tn)) is in D.

The semantics of an OBDA specification with respect to an incom-
plete database can be given by resorting to the traditional semantics
of the OBDA specification, as follows.

Definition 8 Let B = 〈T ,M,S〉 be an OBDA specification, and let
F be an incomplete ΣS -database. Then ModF (B) = { I | there
exists a ΣS -databases D such that D � F , and ModD(B) �= ∅ }.

In principle, it would be interesting to study various reason-
ing tasks, such as query answering, for OBDA systems constituted
by an OBDA specification and an incomplete database. However,
such investigation is outside the scope of this paper. Rather, as we
said before, in this paper we are interested in two types of tasks:
(i) checking consistency of an incomplete database with the con-
straints CS , (ii) checking consistency of an OBDA specification
B = 〈T ,M, 〈ΣS , ∅〉〉 with respect to an incomplete database F .

Consistency with respect to a set of constraints. The first task can
be defined formally as follows: given a source schema 〈ΣS , CS〉,
where CS is a set of keys, foreign keys, and denials, and a ΣS -
database with incomplete information F , we want to decide whether
there exists a complete ΣS -database D such that D |= CS and
D � F . The solution we present extends the techniques proposed
in [6], in order to take into account denial constraints. To present out
solution, we now introduce four notions.

The first ingredient of our solution is the notion of chase of F
with respect to the key dependencies CkS in CS . This is just the tra-
ditional chase that repeatedly applies the following rule to an in-
complete database T , starting from F : if key(R) = {i1, . . . , in}
is in CkS , and T contains the facts R(x1, . . . , xm), R(y1, . . . , ym)
where for every i ∈ {i1, . . . , in}, xi = yi, then the rule makes the
two atoms R(x1, . . . , xm), R(y1, . . . , ym) equal in T . Intuitively,
the chase rule simply “repairs” a key dependency in T , by suitably
equating variables. The second notion refers to the trivial task of ob-
taining a complete database (database with constants) F(T ) from
an incomplete database T : we do so simply by choosing one con-
stant for every variable in T in such a way that different constants
are chosen for different variables, and then substituting every vari-
able with the corresponding constant. The third ingredient is the no-
tion of violation query associated to a denial in CdS . Given a denial
β = ∃�x.Φ(�x) → ⊥, we define the violation query V(β) associated
to β as the conjunctive query ∃�x.Φ(�x). Intuitively, this is the query
that evaluates to true over a database D exactly when such database
violates the denial. Finally, the fourth notion that we introduce here
is the notion of perfect rewriting of a violation query associated to
a denial. Given a denial β ∈ CdS , the perfect rewriting of V(β) with
respect to CfS is the query RCfS (V(β)) obtained by applying the al-

gorithm IdRewrite presented in [6] to the query V(β) using the
foreign key in CfS as inclusion dependencies. From the properties of
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this algorithm, we can conclude that a violation of β exists in all
complete databases in { D | D � F } if and only if RCfS (V(β))
evaluates to true over F(chaseCkS (F )).

Theorem 2 Let F be a ΣS -database with incomplete information,
and let CS be a set of keys, foreign keys and denials. Then F is con-
sistent with CS if and only if the following two conditions hold:
1. chaseCkS

(F ) does not fail, and

2. for no β ∈ CdS we have that RCfS (V(β)) evaluates to true over

F(chaseCkS (F )).

From the above theorem, it is immediate to derive an algorithm for
our task. From the correctness of the above algorithm, we can then
derive the following result.

Theorem 3 Checking whether F is consistent with CS can be done
in PTIME with respect to F , CfS , and CfS , and in NP with respect to
CdS .

Consistency with respect to an OBDA specification. The second
task consists of checking consistency of an incomplete database
F with respect to the ontology T and the mapping M of an
OBDA specification B = 〈T ,M, 〈ΣS , ∅〉〉, i.e., checking whether
ModF (B) �= ∅. Note that, here, we are not considering the con-
straints of S. The following theorem presents the fundamental result
for this problem.

Theorem 4 ModF (〈T ,M, 〈ΣS , ∅〉〉) = ∅ if and only if there ex-
ists α ∈ T − such that the certain answers of V(α) with respect to
〈T ,M, 〈ΣS , ∅〉〉 and F(F ) is false.

The above theorem directly suggests the following algorithm for
checking whether ModF (〈T ,M, 〈ΣS , ∅〉〉) �= ∅:

1. build a complete ΣS -database F(F ) from the incomplete ΣS -
database F ;

2. check whether for all α ∈ T −, we have that the answer to
RT ,M(V(α)) over F(F ) is false.

From the correctness of the above algorithm, we can then derive
the following result.

Theorem 5 Checking whether ModF (〈T ,M, 〈ΣS , ∅〉〉) �= ∅ can
be done in PTIME with respect to T and F , and in NP with respect
toM.

5 Techniques for protection and faithfulness

In this section we present techniques for the two problems introduced
in Section 3, namely protection and faithfulness. We start by intro-
ducing some preliminary notions that we use in the technical devel-
opment.

The first notion concerns with the idea of expressing violations
of constraints in CS , as well as negative axioms in T , by means of
a suitable conjunctive query, called violation query. To this aim, we
extend the function V defined in the previous section as follows.

Definition 9 Let B = 〈T ,M, 〈ΣS , CS〉〉 be an OBDA specification.
Then V(β) is defined as follows:
• if β ∈ CS is a key dependency of the form key(R) =
{i1, ..., in}, then V(β) is the query constituted by two atoms
R(v1, . . . , vk), R(w1, . . . , wk), where vj = wj if j ∈
{i1, ..., in}, and vj �= wj) otherwise.

• if β ∈ CS is an inclusion dependency of the form r[i, ..., j] ⊆
s[n, ..., t] and r/k ∈ ΣS and s/p ∈ ΣS , then V(β) is the query
∃�x.r(x1, .., xk)

• if β ∈ CS is a denial assertion of the form ∃�x.Φ(�x) → ⊥, then
V(β) is the query defined in the previous section, i.e., ∃�x.Φ(�x)

• if β ∈ T is a negative inclusion assertion of the form A 
 ¬B
(resp., R 
 ¬Q), then V(β) = A(x) ∧ B(x) (resp., R(x, y) ∧
Q(x, y).

We call trivial an inclusion dependency of the form r[A] ⊆ r[A],
i.e. whenever the inclusion is trivially satisfied. We remind the reader
that, given an incomplete database F , F(F ) denotes the complete
database obtained from F by substituting the variables in F with con-
stants. The next lemma shows that the incomplete databaseF(V(β))
really captures the violations to β.

Lemma 1 Let B = 〈T ,M, 〈ΣS , CS〉〉 be an OBDA specification,
β1 ∈ CS , β2 ∈ T −, let D be aΣS -database, and I an interpretation
for β2. If D �|= β1, then D is an instance ofF(V(β)), and if I �|= β2,
then I |= V(β2).

We start our analysis of protection by noticing that, being T a
DL-LiteR ontology, we can reformulate, without loss of generality,
protection into a single axiom basis. We now define the notion of
S protecting B = 〈T ,M,S〉 from α-inconsistencies, where α is
a single negative inclusion in the ontology, and show that in order
to capture protection of the whole S, we can rely on this axiom-by-
axiom definition.

Definition 10 Let B = 〈T ,M,S〉 be an OBDA specification,
and α a negative inclusion assertion in T −. Then S protects B
from α-inconsistencies if for all ΣS -database D, if ModD(〈T + ∪
{α},M, 〈ΣS , ∅〉〉) = ∅, then D �|= CS .

Lemma 2 Let B = 〈T ,M,S〉 be an OBDA specification. Then S
protects B if and only if for all α ∈ T −, we have that S protects B
from α-inconsistencies.

Lemma 2 suggests that, for checking whether S does not protect
B, we can just look for a counterexample, i.e., a ΣS -database D and
an α ∈ T − such that ModD(〈T + ∪ {α},M, 〈ΣS , ∅〉〉) = ∅, and
D |= CS . Being T a DL-LiteR ontology, this means that we can
restrict our attention to those D such that D |= RT ,M(V(α)). By
exploiting this property, the next theorem shows that, in searching for
a counterexample, we need to take into account just a finite number
of ΣS -databases.

Theorem 6 Let B = 〈T ,M,S〉 be an OBDA specification, and α
a negative inclusion assertion in T . Then S does not protect B from
α-inconsistencies if and only if for at least one q ∈ RT ,M(V(α))),
we have that F(q) is consistent with S.

Proof. (Sketch) If-part Let q ∈ RT ,M(V(α))) be such that F(q)
is consistent with S. Because of the constraints in S, we can assume
that there exists D, a finite model for F (q) ∪ S. Clearly, D is a
model for the wholeRT ,M(V(α)). Since T is a DL-LiteR ontology,
ModD(〈T + ∪ {α},M, 〈ΣS , ∅〉〉) = ∅, and D is legal with respect
to CS , we conclude that S does not protect B from α-inconsistencies.

Only-if-part Assume S does not protect B from α-inconsistencies.
Then for at least one database D we have that ModD(〈T + ∪
{α},M, 〈ΣS , ∅〉〉) = ∅ but D |= CS . Since T is an DL-LiteR TBox,
the violation of α can be represented byRT ,M(V(α)) over ΣS . Let
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q ∈ RT ,M(V(α)) be one of the conjunctive queries evaluating true
over D. This means that D is a model for CS ∪{q}, and therefore, by
the definition of F , D |= F(q)∪CS too, thus proving that F(q)∪S
admits a finite model.

Note that Theorem 6 directly provides us with an algorithm for
checking protection in OBDA specifications. From the correctness
of this algorithm we get the following result.

Theorem 7 Protection can be solved in PTIME with respect to T
andM, and in NP with respect to S.

We now turn our attention to faithfulness. We start by noticing that,
similarly to protection, we can recast the definition of faithfulness
into a single axiom basis.

Definition 11 Let B = 〈T ,M, 〈ΣS , CS〉〉 be an OBDA specifica-
tion, and β ∈ CS a constraint of S. Then β is faithful to B if for all
ΣS -database D, if ModD(〈T ,M, 〈ΣS , ∅〉〉) �= ∅, then D |= β.

Lemma 3 Let B = 〈T ,M,S〉 be an OBDA specification. Then S
is not faithful to B if and only if for at least one β ∈ CS , β is not
faithful to B.

As lemma 3 points out, in order to look for counterexamples to
faithfulness, we can just focus on databases violating one of the β ∈
CS . By means of lemma 1, we can further restrict our attention toΣS -
databases coinciding with the instances of F(V(β)). This is what
next theorem proves.

Theorem 8 Let B = 〈T ,M, 〈ΣS , CS〉〉 be an OBDA specification
and let β ∈ CS be a non-trivial constraint of S. Then β is not faithful
to B if and only if we have that ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) �= ∅.

Proof. (Sketch) If-part. Suppose that, for the given β,
ModF(V (β))(〈T ,M, 〈ΣS , ∅〉〉) = ∅ holds and β is not faithful
to B . Let D be a database such that ModD(〈T ,M, 〈ΣS , ∅〉〉) �=
∅, and D �|= β. Since D �|= β, β is not trivial, and D |=
V(β). By exploiting Lemma 1, we can show that this implies
that D is an instance of F(V(β)), and this in turn implies that
ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) �= ∅, which is a contradiction.

Only-if-part. Suppose that S is faithful to B with respect to
β-violations, and ModF(V(β))(〈T ,M, 〈ΣS , ∅〉〉) �= ∅. By con-
struction we have that, starting from F(V(β)) we can easily
build a ΣS -database D that is an instance of F(V(β)) such that
ModD(〈T ,M, 〈ΣS , ∅〉〉) �= ∅, and D �|= {β}, proving that S is
not faithful to B with respect to β-violations, and therefore leading
to a contradiction.

Lemma 3, and theorem 8 directly provides us with an algorithm
for checking faithfulness. From the correctness of this algorithm, we
can derive the following complexity result.

Theorem 9 Faithfulness can be solved in PTIME with respect to S
and T , and in NP with respect toM.

6 Conclusions and future work

We have presented a first study on the relationship between global
consistency and local consistency in OBDA. We have proposed a for-
mal framework for these two notions, and illustrated several results
for a significant class of OBDA systems.

We plan to continue our investigation along different directions.
For instance, we aim at considering the case of OBDA systems where

the source schema contains constraints that do not fall into the class
of constraints studied here, or where the DLs used for expressing
the ontology goes beyond DL-LiteR. Also, another issue that we just
started exploring is to check, given an ontology and a mapping to an
alphabet ΣS , whether there exists a set of constraints in a given class
that makes the schema both faithful and protecting with respect to the
OBDA specification. This would be a great tool to use in a scenario
where we have to design the database of the OBDA system in such a
way that specific formal quality criteria are satisfied.
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