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Abstract. A well-studied phenomenon in network theory are opti-
mal schedules to distribute information by one-to-one communica-
tion between nodes. One can take these communicative actions to be
‘telephone calls’, and this process of spreading information is known
as gossiping [4]. It is typical to assume a global scheduler who sim-
ply executes a possibly non-deterministic protocol. Such a protocol
can be seen as consisting of a sequence of instructions “first, agent
a calls b, then c, next, d calls b . . . ”. We investigate epistemic gossip
protocols, where an agent a will call another agent not because it is so
instructed but based on its knowledge or ignorance of the factual in-
formation that is distributed over the network. Such protocols there-
fore don’t need a central schedular, but they come at a cost: they may
take longer to terminate than non-epistemic, globally scheduled, pro-
tocols. We describe various epistemic protocols, we give their logical
properties, and we model them in a number of ways.

1 Introduction

Communication protocols have the aim to share knowledge between
nodes in a pre-described way. Consider the following scenario.

Six friends each know a secret. They can call each other by
phone. In each call they exchange all the secrets they know.
How many calls are needed for everyone to know all secrets?3

Let us generalise this to the case of n ≥ 2 friends,4 and focus on
protocols that are sufficient (in the sense that they spread all secrets).
If n = 2, the two friends a and b need to make only one phone call,
which we denote by ab (‘a calls b’). For n = 3, the call sequence
ab, bc, ca will do. Let us look at a protocol for n ≥ 4 friends.

Protocol 1 (n friends) Choose four friends from the set of friends
A, say a, b, c, d, and one of those four, say a. First, a makes n − 4
calls to all friends A \ {a, b, c, d}. Then, the calls ab; cd; ac; bd are
made. Finally a makes another call to all friends from A\{a, b, c, d}.

This adds up to (n− 4) + 4+ (n− 4) = 2n− 4 calls. For n = 6
we get 2n− 4 = 8 calls. An execution sequence for n = 6 is

ae; af ; ab; cd; ac; bd; ae; af (1)

After the protocol, all friends indeed know all secrets. One can show
that less than 2n− 4 calls is insufficient to distribute all secrets.

Another protocol is obtained by imagining the agents lined up
along a round-table, such that, starting with agent a1, each agent
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passes on its secrets to its neighbour, until we have almost come full
circle twice (after n− 1 calls, both an and an−1 know all secrets, it
takes only n−2 calls to pass those on to a1, a2, . . . an−2). This gives
rise to 2n− 3 calls, only one more than the minimum of 2n− 4.

a1a2; a2a3; . . . ; an−1an; ana1; a1a2, a2a3; . . . ; an−2an−1 (2)

In network theory protocols have been investigated widely in the
1970s and 1980s. Their focus are optimal schedules to distribute in-
formation by one-to-one communication between nodes, which has
been known as gossiping. An overview study is [4]. The minimum
of 2n− 4 for Protocol 1 is presented in (e.g.) [6] and later in [5].

Protocol 1 and also the round-table protocol assume that the
friends can coordinate their actions before making any calls. This
would be natural for instance if they are a subset of a cohort of stu-
dents which has common knowledge that some specific exam results
will be made available to each of them individually (so friend’s a se-
cret is either ‘a passed’ or ‘a failed’). But often such co-ordination is
not possible. Suppose all students of the cohort our friends are part of,
receive an unexpected invitation for a party. The friends may be cu-
rious to find out about each other whether they will accept, in which
case they will have to make phone calls based on the knowledge, or
better ignorance, they have about the secrets of others. Since in such
a distributed protocol several agents may decide to initiate a call at
the same time, we assume the presence of an arbiter who breaks a
tie in such cases. Let us now consider such an epistemic protocol: an
agent calls another agent depending on its knowledge (or ignorance)
only, and choices are random.

Protocol 2 As long as not all agents know all secrets, choose agents
a, b ∈ A such that a does not know b’s secret, and let a call b.

It is easy to see that this protocol will terminate and achieves the epis-
temic goal that everybody knows every secret. No call sequence ob-
tained from Protocol 1 can be obtained by Protocol 2: in the last four
calls from Protocol 1, a contacts friends of which she already knows
the secret. Protocol 2 also allows for longer execution sequences than
Protocol 1, e.g.,

a1a2; a1a3; . . . ; a1an; a2a3; . . . ; a2an; a3a4; . . . ; an−1an (3)

This sequence consists of (n−1)+(n−2)+ · · ·+1 = n(n−1)/2
calls! It is in fact the longest possible sequence. There are many
such epistemic protocols, of which we will present some in Sec-
tion 3. First, we formally introduce the logic and semantics to de-
scribe knowledge of agents about secrets in networks, and to describe
protocols (Section 2). In Section 4 we give a glimpse of many possi-
ble extensions.

2 Logical dynamics of gossip

Let a finite set of n agents A = {a, b, . . . , } and a corresponding set
of secrets (propositional atoms) P = {A,B, . . . } be given. Upper
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case letters (e.g., A) denote the secrets of the agents denoted by the
corresponding lower case letters (e.g., a).

Definition 1 (Language) We consider three types μ ∈ {−, 0,+} of
phone calls abμ (see below Definition 11). Define LK as

LK � ϕ ::= A | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [π]ϕ
π ::= ?ϕ | abμ | skip | (π ;π) | (π ∪ π) | π∗

where a �= b ∈ A, and A ∈ P. We also consider the language
LKw ⊆ LK where the atomic formulas are of the form KwaB,
meaning: ‘a knows b’s secret’, or ‘a knows whether B’.

Disjunction and implication are defined as usual. We will omit truth
definitions for negation and conjunction. The construct [abμ]ϕ stands
for ‘after a call of type μ between agents a and b, ϕ (is true)’. We let
abμ and baμ denote the same action. For (?ϕ ;π)∗ ; ?¬ϕ we may
write ‘while ϕ do π’. Epistemic protocols will be defined as such
programs π but with additional constraints. Informally, a protocol is
a program that intends to get all agents to know all secrets.

Definition 2 (Epistemic model) An epistemic model M is a tuple
M = (S,∼, V ) such that

• S is a non-empty set of possible worlds,
• ∼ : A→ P(S×S) assigns an equivalence relation to each agent,
• V : S → P→ {0, 1} is a valuation for each s ∈ S.

If M = (S,∼, V ), rather than s ∈ S, we will also write s ∈M . For
∼ (a) we write ∼a, and for V (s) we write Vs. A pointed epistemic
model is a pair (M, s) where s ∈M . We also consider multi-pointed
epistemic models (M,S′), where S′ ⊆ S.

Epistemic models are also known as S5-models, and the S5 validities
are well-known [3]. The scenarios we envisage will only use some
specific S5-models. First, given some Q ⊆ P, let us define s ≡Q t
as [Vs(A) = Vt(A) for all A ∈ Q].

Definition 3 (Gossip situation) An epistemic model (S,∼, V ) is a
gossip situation if S = {s | s ∈ {0, 1}|P|} (the domain consists of
all valuations), and for every a ∈ A, ∼a equals ≡Q for some Q ⊆ P
with A ∈ Q. The initial (respectively terminal gossip) situation is the
situation in which, for all agents a, Q = {A} (respectively, Q = P).

Definition 4 (Gossip model) A gossip model is a pair G = (S,≈),
where S is a set of gossip situations and ≈ assigns to each agent an
equivalence relation ≈a on S satisfying, for all M = (S,∼M , V )
and N = (T,∼N ,W ):

M ≈a N iff ∃Q : ∼M
a = ≡M

Q and ≡N
Q = ∼N

a (4)

A pointed gossip model is a pair (G,M) = ((S,≈),M), where
M ∈ G. The initial gossip model is the (singleton) gossip model
consisting of the initial gossip situation.

So a gossip situation encodes that for each a there is a Q such that
agent a knows exactly the secrets in Q. A gossip model allows agents
to be uncertain which gossip situation is the actual one.

Proposition 5 A gossip model is an epistemic model.

Proof Each gossip model G gives rise to an epistemic model
E(G) = (R,∼, X) where

• R = {sM |M = (S,∼, V ) ∈ S and s ∈ S};
• sM ∼a tN with M = (S,∼M , V ), N = (T,∼N , U) iff there are

vM and uN such that Vv = Uu, s ∼M
a v, t ∼N

a u, and M ≈a N ;
• XsM = Vs.

To demonstrate that E(G) is an S5 model one needs to show that∼a

is an equivalence relation: we leave the details to the reader. �

The pointed gossip model (G,M) corresponds to the multi-pointed
epistemic model (E(G), S), where S is the domain of M . We write
G for the class of gossip models, and G |= ϕ for validities on that
class.

Definition 6 (Static operators of LK on epistemic models) Let
M = (S,∼, V ) be an epistemic model. We inductively define the
interpretation of a formula ϕ ∈ LK on a state s ∈M .

M, s |= A iff Vs(A) = 1
M, s |= Kaϕ iff M, t |= ϕ for every t such that s ∼a t

KwaB abbreviates KaB ∨Ka¬B. If M, s |= ϕ for all s ∈ T ⊆ S,
we write M,T |= ϕ. M,S |= ϕ is also written M |= ϕ: ‘ϕ is valid
on M ’, and if M |= ϕ for all M , we write |= ϕ, for ‘ϕ is valid’.

Truth in a gossip situation is global (the proof is by induction on ϕ):

Proposition 7 If M is a gossip situation and ϕ ∈ LKw , then M |=
ϕ or M |= ¬ϕ.

Definition 8 (Static operators of LKw on gossip models) Let
(G,M) be a pointed gossip model:

G,M |=g KwaB iff M |= KwaB
G,M |=g Kaψ iff G,N |=g ψ for every N s.t. M ≈a N

Proposition 9 Let (G,M) be a gossip model and ϕ ∈ LKw . Then

G,M |= ϕ iff E(G), S |= ϕ

where E(G) is as in Proposition 5 and S is the domain of M .

To help sharpen the reader’s intuition, we list some elementary va-
lidities on gossip situations.

Proposition 10 Let M = (S,∼, V ) be a gossip situation, with
∼a = ≡Q, and let ψ ∈ LKw . Then:

1. M |= Kaψ → KbKaψ
2. M |= KwaB iff B ∈ Q

In gossip situations, all knowledge is public (item 1), and the secrets
known by a are completely determined by ∼a. As a consequence
of this, for the full language LK , we have for instance E(G), S |=
Ka(B∨C)→ (KaB∨KaC), where S is the domain of M : agents
know ‘full’ secrets. Note that this is not an S5-validity: our models
provide a conservative extension of S5.

A gossip situation M is a description of who knows which secret.
In a gossip situation, if ∼a equals ≡Q for Q ⊆ P, this means that
agent a knows exactly the value of the secrets in Q (as in item 2 of
Proposition 10). An alternative way to represent a gossip situation
M is by a function fM : A → P(P) where fM (a) denotes the
secrets that are known by agent a. So: M |= KwaD iff D ∈ fM (a).
We may represent such a function as a list: AB.ABC.ABC.D for
instance is the function f where a knows the secrets A and B, b
knows A, B and C, etc.
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Figure 1. The result of a call between a and b. The actual gossip situation
is AB.AB.C.D.

We also can describe gossip models similarly: they can be repre-
sented as F = (F,≈) where F is a set of functions A → P(P) and
≈a an equivalence relation for every agent a, defined by f ≈a g iff
f(a) = g(a). An advantage of this functional representation is its
succinctness: Figure 1 gives an example.

We now proceed to define the interpretation of calls between two
agents a and b, and of the interpretation of protocols consisting of
such calls. We first consider calls, and then, protocols. We distin-
guish three kinds of calls, ab− (non-epistemic, synchronous), ab0

(epistemic, synchronous) and ab+ (epistemic, asynchronous). Given
some such call, the agents a and b are the callers and all other agents
are the non-callers.

The ab− call models a telephone call in the ‘traditional’ network
systems setting of gossiping protocols: it is common knowledge be-
tween all agents that a and b are making a call, but the non-callers
may not know the value of the secrets the callers exchange. We could
say that all agents are sitting in a circle round a table, so the non-
callers can observe the callers, but we imagine the callers to talk
softly, so that the non-callers cannot hear what the callers say. They
only know that the callers exchange all secrets they know.

The ab0 call models a telephone call between a and b where the
non-callers may not know who are making a call. But they know that
a call is made. (The system is synchronized.) For example, given four
agents a, b, c, d, when a and b are making a call, then c considers it
possible that the call was between a and d, or between b and d; c only
knows that it was not involved in the call itself.

The ab+ call is like ab0 but with the additional option that the
non-callers consider it possible that no call took place at all (the skip
action). This is the standard way to model asynchronous communi-
cation with S5-preserving model transformations.

Definition 11 (Call in a gossip situation)

Let M = (S,∼, V ) be a gossip situation.

M |= [abμ]ψ iff Mab |= ψ
M |= [skip]ψ iff M |= ψ

where Mab = (S,∼′, V ) such that ∼′a = ∼′b = ∼a ∩ ∼b, and for
all c �= a, b, ∼′c = ∼c.

The action of calling has no precondition. Two agents always can
make a call. Their distributed factual knowledge thus becomes shared
between the two. This is the intersection of ∼a and ∼b in the defi-
nition. The mode μ of a call is irrelevant for its interpretation in a
gossip situation. The skip action has no informative or other conse-
quences.

Definition 12 (Semantics of calls in a gossip model) Let (G,M)
be given, where G = (S,≈) and M ∈ S. We define [[skip]] =
{((G,M), (G,M))} and, for the types of call ab�, with � ∈
{−, 0,+}:

[[abμ]] = {((G,M), (Gcallμ,Mab))}
where (for all modes μ) Gcallμ = (Sμ,≈μ), such that

S− = {Nab | N ∈ S}
S0 = {Ncd | N ∈ S and c �= d ∈ A}
S+ = S0 ∪ {M}

and (see Definition (4)) for any N,N ′ ∈ Sμ: N ≈μ
a N ′ iff (there is

a Q ⊆ P such that ∼N
a = ≡N

Q and ≡N′
Q = ∼N′

a ). For the actions
α ∈ {skip, call−, call0, call+}, we then define G,M |= [α]ϕ iff for
all ((G,M), (G′,M ′)) ∈ [[α]], (G′,M ′) |= ϕ.

As a result of a call ab−, for each existing gossip situation in a
gossip model we get exactly one new gossip situation, namely the
one in which a and b have exchanged their information. A call ab0

has as a result that we have to consider the execution of any call be-
tween two agents in every gossip situation, not only the call between
a and b in the actual gossip situation M . Given n agents, we thus get(
n
2

)
= n(n − 1)/2 copies of the gossip model before the call, each

of those models being the result of one particular call between two
agents. For ab+ we also need to take the gossip situation in which
nothing happened into account. Given four agents a, b, c, d, the re-
sult of the call ab0 is given in Figure 1.

Proposition 13 The execution of ab− calls on the initial gossip
model preserves the property that it is common knowledge who
knows which secrets.

In other words, after a ab− call, consider an agent c and a secret D.
For every other agent e, agent c knows if agent e knows whether D.
This property obviously does not hold for ab0 calls.

Proposition 14 There is no common knowledge of information
growth after ab+ calls.

After an ab+ call, an agent c �= a, b considers it possible that no
call was made at all.

Proposition 15 Let a, b, c ∈ A, and D ∈ P. Let ϕ,ψ ∈ LKw,
and let ϕ contain no K operator in the scope of a negation. Let
μ, μ′ ∈ {−, 0,+}. Then

1. G |= [abμ]KwcD ↔ [abμ
′
]KwcD

2. G |= [ab0]ϕ→ [ab−]ϕ
3. G |= [ab+]ϕ→ [ab−]ϕ
4. G |= [ab−]ψ ↔ [ab0]ψ if |A| = 3.

The first item of this proposition says that the secrets one knows does
not depend on the type of call. None of the reversed implications of
2 and 3 of Proposition 15 is valid on gossip models. Also, Proposi-
tion 15 does not apply to general epistemic postconditions Kcψ; we
have for instance that [ab0]Kcψ → [ab−]Kcψ is not valid on gossip
models: take ψ = ¬KcKwbA.

The proposition below highlights some specific properties of each
of the basic call programs.

Proposition 16 Let a gossip model G = (S,≈) for at least four
agents a, b, c, d be given, and ψ ∈ LKw ; μ, the ‘mode’ of the call, is
a variable over {0,+,−}. Then:
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1. G |= KcKwbD → Kc[ab
μ]KwaD for μ ∈ {0,+,−};

2. G |= [abμ]Kc¬init only for μ ∈ {0,−};
3. G |= ¬KcKwaB → [abμ]¬KcKwaB only for μ ∈ {0,+};
4. G |= KcKwbD → [abμ]KcKwaD only for μ ∈ {−};
5. G |= init→ [abμ]¬Kc¬init only for μ ∈ {+}.
6. G |= init→ [abμ](Kc

∨
x �=y KwxY ∧¬∨

x �=y KcKwxY ) only
for μ ∈ {0};

where init is a designated atom denoting the initial situation.

Items 1 - 6 show that indeed, all modes of making calls are dif-
ferent. Loosely speaking, the first item says that any agent (c) knows
that any call between a and b brings about that both get to know each
other’s secrets. Contrast this to item 4: only for the mode μ = −,
agent c knows that the call happens and remembers its predicted ef-
fects. Item 2, which is only true for the modes 0 and −, says that
a call in the initial situation indeed brings something about: at least
some agent will have learned some new secret. Note that the fact that
at least one agent learns at least one secret given an arbitrary state
is not generally true: it may be that a call takes place between two
agents who are unable to tell each other anything new. As a conse-
quence of item 3, agent c can only know that a learned a new secret
as the consequence of the call when the call is made in −-mode, or
if c is involved in the call. Item 5 says that after an ab+-call, an out-
sider does not know anything has happened. Finally, item 6 tells us
that after an ab0-call in the initial situation, an outsider knows that
somebody learned something, but the outsider does not know who
learned something.

Proposition 17 Not every gossip model can be the result of a se-
quence of calls from the initial gossip model.

For instance, it is not possible to reach a gossip situation (or a gossip
model containing such a gossip situation) in which agent a knows
everybody’s secret, but all other agents only know their own secret.

Modelling calls as action models The logic that we introduced
is a dynamic epistemic logic [1], as it has epistemic modalities, that
are interpreted by accessibility relations in a given epistemic model,
and also dynamic epistemic modalities, that are interpreted as epis-
temic model transformers. (A link between dynamic epistemic logic
and gossiping was given in the thesis [7, Section 6.6], and in work
that followed from that.) A well-known dynamic epistemic logic is
action model logic (a.k.a. event model logic; see [1]). The different
call actions can be alternatively described as action models. This we
will now do. As a consequence, with some restrictions, our logic of
knowledge and gossip has a complete axiomatization. The restric-
tions are that: the translation requires action models with precondi-
tions such as ‘agent a knows that A is true and that B is false’, for-
mulas that are in LK but not in LKw , so that it is a translation from
a formula ϕ ∈ LKw with a dynamic [abμ] operator into a formula in
action model logic with (program-free) ψ ∈ LK , not LKw . Another
restriction is that we allow Kleene-* operations on programs, but that
the axiomatization is for the ∗-free fragment of programs. Apart from
a complete axiomatization with respect to the class of all (S5) mod-
els, one could also consider a complete axiomatization with respect
to the class of gossip models. This would e.g. contain axioms such
as A → KaA (all agents know their own secret), a matter we have
not resolved yet but consider to look into further.

The agents a and b calling each other exchange all the secrets they
know. So, they can distinguish calls wherein either of them knows
a different number of secrets. So, for each agent we need to list: (i)

the secrets that it knows to be true, (ii) the secrets that it knows to be
false, and (iii) the secrets it does not know. Those in i and ii are in
non-overlapping subsets and iii can be their complement.

Given the n secrets P, agent a may currently know that the secrets
in Q+

a ⊆ P are true and those in Q−a ⊆ P are false (and suppose
Q+

a ∪ Q−a = Qa), and be ignorant about the rest; whereas agent b
may currently know that the secrets in Q+

b ⊆ P are true and that
those in Q−b ⊆ P are false (and we let Q+

b ∪ Q−b = Qb). We now
define (IgaC = ¬KwaC):

δ(Q+
a ,Q

−
a ,Q

+
b ,Q

−
b ) ::=

∧
C∈Q+

a
KaC ∧∧

C∈Q−
a
Ka¬C∧∧

C∈P\Qa
IgaC∧∧

C∈Q+
b
KbC ∧

∧
C∈Q−

b
Kb¬C∧∧

C∈P\Qb
IgbC

This formula δ(Q+
a ,Q

−
a ,Q

+
b ,Q

−
b ) is a precondition of an action in

the domain of any of the action models we need for the translation.
We first define the action model for the call ab−, as it is easier. In

this case, all agents know that the call between a and b takes place.
They only do not know the value of the exchanged secrets.

Definition 18 (Action model for ab−) The action model Uab− con-
sists of a domain containing different actions for all preconditions of
type δ(Q+

a ,Q
−
a ,Q

+
b ,Q

−
b ). Agents other than a, b have the univer-

sal accessibility relation on this action model and agents a, b have
identity accessibility relation. (There is no designated point.)

Simplifications are possible, e.g., we may require that A ∈ Qa and
B ∈ Qb; but this does not simplify matters greatly: such a simpli-
fied action model Uab−

simp would have the same update effect on gossip
models. The corresponding action model is very large, as there are
O(24n) different such preconditions δ. The action model satisfies
that all actions are mutually exclusive and that the union of all pre-
conditions is the trivial formula. So always exactly one action fires,
and the result is a refinement of the gossip model (no states are elim-
inated or duplicated, it is merely the case that the accessibility rela-
tions for the agents a and b are more refined).

The reduction axiom for knowledge after update, associated with
this action model Uab−, can be computed from the reduction axiom
[U, s]Kaϕ↔ (pre(s)→ ∧

s∼at
Ka[U, t]ϕ), and taking into account

that [U]ϕ↔ ∧
s∈U[U, s]ϕ. We get

Definition 19 (Axioms for action model Uab−)

[Uab−]Kcϕ ↔ Kc[U
ab−]ϕ for c �= a, b

[Uab−]Kaϕ ↔ ∧
s∈Uab−(pre(s)→ Ka[U

ab−, s]ϕ)
[Uab−]Kbϕ ↔ ∧

s∈Uab−(pre(s)→ Kb[U
ab−, s]ϕ)

where pre(s) for the action s associated with δ(Q+
a ,Q

−
a ,Q

+
b ,Q

−
b ) is

just that formula.

Definition 20 (Action model for ab0 and ab+) For call ab0, we get(
n
2

)
= n(n − 1)/2 copies of the action model for ab−. Let us

consider events (s, ab) instead of s, with the accessibility relation
between (s, ab) and (t, ab) as for s and t in Uab−, and further
(s, ab) ∼e (t, cd) if e �= a, b, c, d. The point of this action model for
call ab is the pair (s, ab). For the call ab+, we merely need to add
another ‘no call happens’ alternative to the action model with pre-
condition true, again indistinguishable from a call ab by any agent
other than a and b.

Similarly to the case for ab−, we can compute corresponding re-
duction axioms. This paves the way for a completeness result by stan-
dard reduction techniques:
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Proposition 21 The logics with call actions ab−, ab0, ab+ and skip
have complete axiomatizations.

From now on, we consider calls ab0 only, written simply as ab.
Our definitions equally apply to protocols with ab− and ab+ calls—
the adaptations are minor.

Protocols are programs satisfying certain additional constraints,
and that model (informally) ways to distribute all secrets over all
agents. First, the semantics of complex programs.

Definition 22 (Interpreting complex programs) The interpreta-
tion of calls on pointed gossip models (G,M) of Definition 12 is
lifted to arbitrary programs π in a standard way, where again we
take into account that for all ϕ ∈ LKw , either ϕ or ¬ϕ is a model
validity on a gossip situation: M |= [π]ψ iff for all M ′ such that
M [[π]]M ′, M ′ |= ψ.

[[?ϕ]] = {((G,M)(G,M))} iff G,M |= ϕ
[[?ϕ]] = ∅ iff G,M |= ¬ϕ
[[π;π′]] = [[π]] · [[π′]]
[[π ∪ π′]] = [[π]] ∪ [[π′]]
[[π∗]] = [[π]]∗

3 Epistemic protocols for gossip

Our epistemic protocols should be seen on a par with knowledge pro-
grams [3] and with epistemic planning [2]. Every agent has its own
program where the actions chosen by the agent are conditional on
what the agent knows. (An agent also knows its own ignorance.) We
assume that an individual agent program of agent a specifies under
which conditions a would like to make a call, and to what kind of
partner. In case conditions for different agents apply, an arbiter will
choose whose request is granted.

Protocol 1 is not an epistemic protocol: the agents appearing in the
protocol are names and not variables, and the actions are selected
independently of what an agent knows. Take the case for n = 6:
although the first three calls could result from an epistemic protocol,
in the next step, c has to call d. But there is no way for c to choose
his partner d: how would c know that d has been idle from the start?

So we assume sets of variables {x, y, z, . . . } and {X,Y, Z, . . . }
over agents and secrets. We consider a language LΠ for protocols
which is obtained from Definition 1 by replacing A by X , a by x
and b by y. Define the free variables FV (X) = {x}, FV (Kxϕ) =
{x} ∪ FV (ϕ), and FV ([xy]ϕ) = {x, y} ∪ FV (ϕ). Moreover,
FV (¬ϕ) = FV (ϕ) and FV (ϕ1 ∧ ϕ2) = FV (ϕ1) ∪ FV (ϕ2).
We also allow the following constructs in the language, with the as-
sociated free variables for them:

FV (
∧

z∈A
ϕ) = FV (

∨

z∈A
ϕ) = FV (∪z∈Aϕ) = FV (ϕ) \ {z}

We say that ψ is about x and y, and write ψ(x, y) if FV (ψ) =
{x, y}. As an example, take ψ(x, y) = Kx

∨
z∈A(KwyZ ∧

¬KwxZ) (x knows that y knows a secret that x does not know).

Definition 23 (Epistemic protocol) To define an epistemic protocol
Π, we assume ψ(x, y) to be a formula about x and y. We then define
for every Π a calling condition (for x to call y) cc(x, y,Π) as

cc(x, y,Π) = Kxψ(x, y)

An epistemic gossip protocol Π is then a program of the form

while
∨

x,y∈A
cc(x, y,Π) do

⋃

x,y∈A
(?cc(x, y,Π) ;xy) (5)

In words: as long as there are two agents x and y for which the con-
dition is true, choose such a pair and let them make the call. Less
restrictive definitions of protocols are definitely plausible: the termi-
nation condition might be different from the calling condition, and
the calling condition might be different for different agents, for ex-
ample. Since (Kxψ1 ∨Kxψ2) is equivalent to Kx(Kxψ1 ∨Kxψ2),
our definition does allow for test which are based on cases.

Definition 24 (Extension and situation sequences of a protocol)

The extension Σ(Π) of a protocol Π is the set of its execution
sequences of calls. The gossip situation sequences GSS(Π) are all
sequences of gossip situations it generates.

If protocols have the same extension, they obviously have the
same meaning and situation sequences. But protocols may have the
situation sequences and still have different extensions: Obviously
the two call sequences ab; ac; ab and ab; ac; bc are different, yet
they generate the same gossip situation sequences, i.e. A.B.C →
AB.AB.C → ABC.AB.ABC → ABC.ABC.ABC.

We now present some examples. Since a protocol is completely de-
termined by its condition cc(x, y,Π), we only give those conditions
for the protocols here. Obviously, there is a connection between the
logical strength of this condition for Π and the set of its extension:

Proposition 25 For any protocols Π and Π′,

|= cc(x, y,Π)→ cc(x, y,Π′) implies Σ(Π) ⊆ Σ(Π′)

In order to make a given protocol common knowledge to all
agents, we need to slightly adjust the semantics of calls, that is, for
each protocol Π, we have to replace S0 of Definition 12 by

S0
Π = {Ncd | N ∈ S & cd ∈ Π(N)} (6)

where Π(N) is the set of calls that are enabled by the protocol Π
in N . Syntactically, we need to restrict the language: LK(Π) is ob-
tained by adapting the object language LK in such a way, that the
only program π that occurs is the program of the form (5).

Protocol 3 (Learn New Secrets (LNS))

cc(x, y,Π3) = Kx¬KwxY

Protocol 3 is the same as Protocol 2. The condition for x to call y
in Π3 in words is simple: x calls any agent whose secret he yet does
not know. The minimum length of a call sequence for this protocol is
2n − 4 and the maximum length is n(n − 1)/2. For the minimum,
consider the following sequence, which is a variant of Protocol 1: fix
four different agents a, b, c, d from A. First, a makes n − 4 calls to
all A \ {a, b, c, d}. Then, the calls ab; cd; ac; bd are made. Finally
all agents from A \ {a, b, c, d} call agent b. For the maximum, the
sequence that constitutes (3) is an example.

Protocol 4 (Known Information Growth (KIG))

cc(x, y,Π4) = Kx(
∨

z∈A
KwxZ ∇ KwyZ)

Here, ∇ denotes exclusive or. In order for x to call y, condition
cc(x, y,Π4) requires that x should know that some secret is cur-
rently known by only one of x and y: So, x will call y if x knows this
call will produce new knowledge. Contrast this with cc(x, y,Π4.dr):
under the latter, x is allowed to call y if there is some secret Z of
which x knows that only one of x and y knows it. The condition
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cc(x, y,Π4) is a knowledge de dicto requirement: let us show that
our language also allows for a knowledge de re condition:

cc(x, y,Π4.dr) = Kx

∨

z∈A
Kx(KwxZ ∇ KwyZ)

Note that this condition is equivalent to∨
z∈A Kx(KwxZ ∇ KwyZ). To appreciate the difference be-

tween the two KIG protocols, suppose we have four agents and
a call sequence starting with σ = ab; bc; cd. After this sequence,
cc(a, b,Π4) holds (a knows he was not involved in the last two calls,
so b must have learned something new), but cc(a, b,Π4.dr) does not
(a does not know what b has learned). However, after σ; bd, agent a
does know that b must have learned C, and so now both cc(a, b,Π4)
and cc(a, b,Π4.dr) are true. This also demonstrates a difference
between the LNS and the KIG protocols: the latter two protocols
allow for two agents a and b to call each other more than once in a
sequence, the former does not.

On the one hand, the condition for KIG (unless explicitly speci-
fied, we assume de dicto versions of protocols) assumes a coopera-
tive agent x: even if he knows that only y will benefit from the call, x
will make it. However, on the other hand those conditions may look
rather strong: under certain circumstances, it may be reasonable for x
to call y even if x is not sure this will result in growth of information.
Let us write K̂ϕ = ¬Kaϕ ∧ ¬Ka¬ϕ, i.e., for a, ϕ is an epistemic
possibility. In standard epistemic logic, KaK̂aψ ↔ K̂aψ. We now
define the two final epistemic protocols.

Protocol 5 (Possible Information Growth (PIG))

cc(x, y,Π5) = KxK̂x(
∨

z∈A
KwxZ ∇ KwyZ)

cc(x, y,Π5.dr) = Kx

∨

z∈A
KxK̂x(KwxZ ∇ KwyZ)

In words, x is allowed to call y, if, according to cc(x, y,Π5), x con-
siders it possible that some secret becomes shared knowledge by such
a call. (Π5.dr is the de re variant: note that cc(x, y,Π5.dr) is equiva-
lent to

∨
z∈A K̂x(KwxZ ∇ KwyZ)).

Notice that Π5.dr (and, therefore Π5, see Proposition 26) may
loop and therefore termination is not guaranteed! For example, for
four agents, consider the following infinite sequence σ ∈ Σ(Π5.dr):
σ = ab; cd; ab; cd; ab; . . . . After every even round (i.e., after every
call cd) in σ, we have KaK̂a(KwaC∇KwbC), i.e., a considers it
possible that b has learned C, while C is unknown to a, namely if
the second call were bc. Therefore, after ab; cd, ab can be chosen
according to the protocol.

Unlike the PIG protocols, both KIG protocols terminate, as is ar-
gued as follows. Consider the set S = {(a,B) | ¬KwaB}. Initially,
|S |= n(n− 1). The calling condition for the KIG protocols implies
that S �= ∅, and, moreover, every round of the protocol removes at
least one member from S.

Proposition 26 Let Π1 denote Protocol 1:

1. Σ(Π3) � Σ(Π4.dr) � Σ(Π4) � Σ(Π5.dr) � Σ(Π5)
2. Σ(Π1) �⊆ Σ(Π3) and Σ(Π1) � Σ(Π5.dr)

Protocol 3 and the protocols for KIG are different. Consider the
call sequence σ = ab; bc; bd; cd. Then σ; ab is not the start of a
sequence in Σ(Π3) (two agents never call each other twice). But it
is a start under KIG: after σ, we have KaKwbD (since a was not
involved in the last three calls, he knows that b has learned D).

Proposition 27 Let Π =s Π′ denote that the shortest sequence in
Σ(Π) has the same length as the shortest sequence in Σ(Π′). Then:

Π1 =s Π3 =s Π4 =s Π5

Let the expected execution length EL(Π) be the average length of
σ ∈ Σ(Π) if this set is finite, and∞ otherwise. Let Π <e Π′ denote
that either EL(Π) < EL(Π′) ∈ � , or EL(Π) �=∞ = EL(Π′).

Π1 <e Π3 and Π4 <e Π5

The following can be readily checked by hand:

Proposition 28 For LNS and three agents, there are 24 different call
sequences, all of length 3, and 6 different gossip situation sequences.
For KIG (de dicto), the numbers are 96 and 6, respectively. The LNS
protocol for four agents generates 624 different call sequences.

Proposition 29 For every execution call sequence of Protocol 5
there is an execution sequence of Protocol 3 with the same mean-
ing (i.e., inducing same information transitions, see Definition 24).

4 Conclusion

We made a first step in proposing and analysing epistemic gossip
protocols, where an agent will call another agent based on its current
knowledge. Such protocols may take longer to terminate than non-
epistemic, globally scheduled, protocols. We described various such
protocols, we gave some logical properties, and we modelled them
in action model logic.

Concerning further research, we conjecture and wish to prove that
the shortest execution length cannot be guaranteed by any epistemic
protocol. Moreover, for a number of epistemic protocols, we wish
to make an exhaustive analysis of execution lengths and to have a
tool that can help us demonstrate some basic facts for small groups
of agents. We intend to develop epistemic gossip protocols for paral-
lel calls, and also, to investigate epistemic broadcast protocols (here,
one agent communicates all his secrets to all others). Other chal-
lenging questions involve a network structure for the communica-
tion, which may be known (or not) to the agents. It is interesting to
drop the assumption of uniformity of protocols, and address strategic
issues, for example: can an agent ensure he is the first to know all
secrets, or, for that matter, not the last?
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