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Abstract. Nash equilibrium (NE) is the best known solution con-
cept used in game theory. It is known that NE is particularly weak
even in zero-sum extensive-form games since it can prescribe irra-
tional actions to play that do not exploit mistakes made by an im-
perfect opponent. These issues are addressed by a number of refine-
ments of NE that strengthen the requirements for equilibrium strate-
gies. However, a thorough experimental analysis of practical perfor-
mance of the Nash equilibria refinement strategies is, to the best of
our knowledge, missing. This paper aims to fill this void and provides
the first broader experimental comparison of the quality of refined
Nash strategies in zero-sum extensive-form games. The experimen-
tal results suggest that (1) there is a significant difference between
the best and the worst NE strategy against imperfect opponents, (2)
the existing refinements outperform the worst NE strategy, (3) they
typically perform close to the best possible NE strategy, and (4) the
difference in performance of all compared refinements is very small.

1 Introduction

Game theory presents a widely used mathematical framework for
modeling interaction of self-interested agents. The algorithmic re-
sults in game theory have led to a number of real-world applications
(e.g., in security domain [15], in games like Poker [12], or in auctions
and trading agents [18]). Optimal strategies to play in a game are de-
scribed by a solution concept. Among all, Nash equilibrium (NE) is
the best known solution concept that prescribes the optimal behavior
of players under the assumption of rationality.

Due to the assumption of rationality, however, NE strategies can
be weak when used against opponents that make mistakes. In zero-
sum games, NE strategies guarantee at least the gain expected against
a perfectly rational opponent (value of the game), but they do not ex-
ploit the mistakes of the opponent. These situations arise in sequen-
tial games where we distinguish mistakes made by the opponent in
the past, or in the future, relative to the current state of the game. The
mistakes in the past occur when the game reaches a state that NE
player had not anticipated since it is preceeded by an irrational action
(e.g., unconditionally giving a gift to the NE player). NE strategies
do not force the player to further maximize the expected outcome in
such state, because the value of the game has already been reached.
Moreover, the NE player assumes that the opponent will not make a
mistake in the future, e.g., NE does not prefer an action leading to
opponent’s decision between winning and losing actions compared
to an action leading to decision between winning actions only.

To address these issues, a number of refinements of the Nash equi-
librium were introduced over the years posing further restrictions on
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strategies (see [17] for a comprehensive survey). The simplest re-
finement is the undominated NE, where the equilibrium strategies
cannot contain dominated strategies. Sequential equilibrium [5] uses
the notion of beliefs to choose actions optimal against mistakes of
opponents in the past. There are two separate groups of equilibra that
follow. First group focuses on optimality against both types of mis-
takes of the opponents. It contains quasi-perfect equilibrium [16] and
more restrictive normal-form proper equilibrium [9], which makes
further assumption about the conditional probabilities of these mis-
takes. Second group contains equilibria that are optimal against mis-
takes of both players. This group includes perfect equilibrium [13]
and proper equilibrium [11], where the latter again poses certain as-
sumptions on the conditional probabilities of the mistakes.

In all existing works, the reasoning behind the NE refinements
is presented on small, tailored examples in order to compactly and
properly describe the advantages of newly defined solution concepts.
The practical benefits of refinements in more realistic games are typ-
ically not analyzed. The exception is the work by Ganzfried et al. [2],
which shows that the performance of a complex Poker player is im-
proved if endgames are solved for the undominated equilibrium in-
stead of using a not refined NE. In this paper we present, to the best
of our knowledge, the first thorough experimental comparison of dif-
ferent refinements of NE on various domains.

We focus on refined strategies that exploit mistakes of the oppo-
nent and compare their expected outcome against imperfect algo-
rithmic opponents (not fully converged solutions from anytime algo-
rithms), as well as imperfect human opponents (behavioral solution
concepts). The performance of the refined strategies is compared on
a set of zero-sum extensive-form games with imperfect-information.
We define and calculate the worst and the best possible NE strategies
against these imperfect opponents and analyze the performance of
the refinements within these bounds. On one hand the results show
that there is a significant difference between these bounds and that
the existing refinements typically achieve much better results than
the worst possible Nash strategy. On the other hand they show that
all the refinements are very close to the best possible Nash strategy
suggesting that there is no other refinement of NE that would per-
form much better in zero-sum games. Finally, our experiments show
that the quality of all the refined strategies is similar and even the
simplest refinement is close to the most advanced refinement.

2 Technical background

This section introduces zero-sum extensive-form games (EFGs). We
assume perfect recall, i.e., the players perfectly remember the history
of their actions and all observed information.

A two player EFG consists of a set of players P = {1, 2}. We use
i to denote a player and −i to denote the opponent of i. An EFG can
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be visualized as a game tree. SetH contains all the states of the game
represented as nodes in the tree. We denote P : H → P ∪ {c} the
function associating a player from set P or the chance player c with
every state of the game. Z ⊆ H is a set of terminal states (leafs in
the tree). ui(z) is a utility function assigning to each leaf the value
of preference for player i; ui : Z → R. For zero-sum games it
holds that ui(z) = −u−i(z), ∀z ∈ Z . The imperfect information
is defined using the information sets. Ii is a partitioning of all {h ∈
H : P (h) = i} into these information sets. All states h contained in
one information set I ∈ Ii are indistinguishable to player i = P (h).
Due to the assumption of perfect recall, all these states share the same
history for player i and a set of available actions A(h). We overload
the notation and use A(I) as actions available in I .

A pure strategy si for player i is a mapping Ii → A(Ii). Si is a set
of all pure strategies for player i. A mixed strategy δi is a distribution
over Si, set of all mixed strategies of i is denoted as Δi. A strategy
profile is a set of strategies, one strategy for each player. We overload
the notation and use ui also to denote the expected utility of player i
when the players play according to (pure or mixed) strategies. We say
that strategy si weakly dominates s′i iff ∀s−i ∈ S−i : ui(si, s−i) ≥
ui(s

′
i, s−i) and ∃s−i ∈ S−i : ui(si, s−i) > ui(s

′
i, s−i).

In EFGs we can represent the strategies as behavioral strategies
bi for i, which assign probability distribution over A(Ii) for each
Ii. Bi is a set of all behavioral strategies for i. As shown in [6],
for all games with perfect recall, behavioral strategies have the same
expressive power as mixed strategies. Finally, we can use sequence-
form representation for games with perfect recall [4]. A sequence
σi is a list of actions of player i ordered by their occurrence on the
path from root of the game tree to some node. The strategy is then
formulated as realization plan ri that for a sequence σi represents the
probability of playing actions in σi assuming the other players play
such that the actions of σi can be executed. Realization plan ri has
to satisfy network flow property; i.e., ri(σ) =

∑
a∈A(I) ri(σ · a),

where I is an information set reached by sequence σ and σ · a stands
for σ extended by action a.

3 Solution Concepts

This section introduces the Nash equilibrium solution concept to-
gether with the refinements that aim to exploit the mistakes of the
opponent. We use two EFGs depicted in Figure 1 to illustrate the dif-
ferences between the solution concepts. For the sake of simplicity we
use a simple perfect-information game (1a) to describe Nash, undom-
inated, and sequential equilibrium, and a more complex imperfect-
information game (1b) to distinguish quasi-perfect and normal-form
proper equilibrium. Our focus is on imperfect-information games;
hence, we do not specifically define a well-known subgame-perfect
equilibrium that is useful only in perfect-information games. More-
over, the sequential equilibrium is in fact the generalization of the
subgame perfection to the games with imperfect information. Since
we are in the zero-sum setting, only the utility of player 1 is depicted
in the game trees and player 2 aims to minimize this utility value.

Nash equilibrium To define Nash equilibrium we need to in-
troduce the concept of best responses. A best response to a strat-
egy of the opponent δ−i is a strategy δ∗i for which ui(δ

∗
i , δ−i) ≥

ui(δi, δ−i), ∀δi ∈ Δi. BRi(δ−i) is a set of the best responses to
the strategy δ−i. The strategy profile {δi, δ−i} is a Nash equilibrium
iff δi ∈ BRi(δ−i), ∀i ∈ P . A game can have more than one Nash
equilibrium. All Nash equilibrium strategy profiles have the same
expected value in zero-sum games, called the value of game.
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Figure 1: (a) A game with different Nash, undominated, and sequen-
tial equilibria. (b) Matching pennies on Christmas morning.

Let us discuss equilibria of a game depicted in Figure 1a. Value
of this game is 0, achievable by action b of player 1 or by actions c
and f . This game has 4 pure strategy Nash equilibria {(c), (f, e)},
{(b), (f, e)}, {(c), (f, d)} and {(b), (f, d)}. It is easy to see, that
strategy b for player 1 can be considered insensible, since c weakly
dominates b and so player 1 can only gain by playing c. Player 1
can exploit possible mistakes of the opponent in the future (player 2
can play action g by mistake) by preferring c over b. Strategy d is
also dominated by e, thus the strategy profiles containing d can be
considered irrational. These profiles are NE only because player 2
does not expect player 1 to play a and so there are no restrictions on
d and e, and represent the mistakes of the opponent in the past.

Sequential equilibrium Solution concept due to Kreps et al. [5]
optimal against mistakes of opponent in the past. This equilibrium
uses the notion of beliefs μ, which are probability distributions over
the states in information sets symbolizing the likelihood of being in a
state when the information set is reached. Assessment is a pair (μ, b),
that is beliefs for all players and a behavioral strategy profile. A se-
quential equilibrium is an assessment which is consistent (μ is gener-
ated by b) and the sequential best response against itself (b is created
by best responses when considering μ). The set of sequential equi-
libria forms a non-empty subset of Nash equilibria [5].

Let us again analyze a game from Figure 1a. There are 2 pure strat-
egy sequential equilibria {(c), (f, e)} and {(b), (f, e)}, since beliefs
of being in a state after playing action a is equal to 1 and player 2 has
to choose the best action in this state. Insisting on sequentiality thus
removed 2 insensible equilibria, since the insensibility was caused
by not considering the mistake of opponent in the past (playing a).

Undominated equilibrium An undominated equilibrium consists
only of undominated strategies in the sense of weak dominance. For
two-player zero-sum extensive-form games it holds that every un-
dominated equilibrium of extensive-form game G is a perfect equi-
librium (as defined by Selten [13]) of its corresponding normal-form
game G′ and therefore forms a normal-form perfect equilibrium of
G. Furthermore as shown in [13], the set of undominated equilibria
forms a non-empty subset of Nash equilibria.

Thanks to the fact that all irrational equilibria of the game from
Figure 1a contain dominated strategies, only the sensible equilibrium
{(c), (f, e)} is undominated.

Quasi-perfect equilibrium Informally speaking, quasi-perfect
equilibrium is a solution concept due to van Damme [16] that re-
quires that each player at every information set takes a choice which
is optimal against mistakes of all other players. The set of all quasi-
perfect equilibria forms a non-empty subset of sequential and un-
dominated equilibria [16].

Since quasi-perfect equilibrium refines undominated equilibrium,
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there is also only one pure strategy quasi-perfect equilibrium of game
from Figure 1a {(c), (f, e)}. Now consider the game from Figure 1b.
This game is a modification of Matching pennies, called Matching
pennies on Christmas morning [10]. In the original Matching pen-
nies, player 2 hides a penny with heads or tails on the top. After that,
player 1 guesses what player 2 did. If he guesses correctly, player
1 receives payoff of 1; if not, both players receive 0. The variant on
Christmas morning adds an option for player 2, to give player 1 a gift
before guessing, which increases his payoff by 1 no matter what. This
game has an infinite number of quasi-perfect equilibria, namely all
the equilibria which have δ2(TN) = δ2(HN) = δ1(t) = δ1(h) =
0.5, δ2(TG) = δ2(HG) = 0. There are no restrictions on δ(h′) and
δ(t′), because neither of these strategies dominates other (so there is
no restriction from the normal-form perfection) and when consider-
ing that player 2 makes a mistake G with the same probability in both
states then μ(TG) = μ(HG), there is no restriction from sequen-
tial equilibrium either. Event though these equilibria are not strictly
insensible, one might want player 1 to play δ1(h

′) = δ1(t
′) = 0.5

because it is more robust to the deviations of opponent.

Normal-form proper equilibrium An equilibrium in behavioral
strategies of an extensive-form game is said to be normal-form proper
[10] if it is behaviorally equivalent to a proper equilibrium of the cor-
responding normal-form game. This equilibrium is optimal against
mistakes of opponent in the past and in the future. Furthermore, the
solution concept assumes that these mistakes are made in a certain
manner, meaning that the more costly mistakes are made with ex-
ponentially smaller probability than the less costly ones. Finally, as
shown in [10], every normal-form proper equilibrium is quasi-perfect
and the set of normal-form proper equilibria of every extensive-form
game is non-empty.

Since every normal-form proper equilibrium is also quasi-perfect
there is again only one normal-form proper equilibrium {(c), (f, e)}
of the game in Figure 1a. There is also only one normal-form proper
equilibrium in Matching pennies on Christmas morning, specifically
the one where δ1(h

′) = δ1(t
′) = 0.5.

3.1 Algorithms for Computing Equilibria

In order to experimentally compare different Nash equilibrium re-
finements, we need to compute the refined strategies. This section
describes the algorithms for finding these strategies.

Nash equilibrium We first describe the algorithm for computing
Nash equilibrium that exploits the sequence form due to Koller et al.
[4]. In eqs. (1) to (4) we present a linear program (LP) for solving
two player zero-sum EFGs. Matrix A is a utility matrix with rows
corresponding to sequences of player 1 and columns to sequences of
player 2. Each entry of A corresponds to utility value of a game state
reached by the sequence combination assigned to this entry, weighted
by the probability of occurrence of this state considering nature. If
the reached state is non-terminal, or if the sequence combination is
incompatible, the entry is 0. Matrices E and F define the structure of
the realization plans for player 1 and 2 respectively. Columns of these
matrices are labeled by sequences and rows by information sets. Row
for information set I contains −1 on a position corresponding to a
sequence leading to I , 1 for the sequences leading from I and zeros
otherwise. First row, corresponding to artificial information set has
1 only on position for empty sequence. These matrices ensure that
for every information set Ii the probability with which we play a
sequence leading to Ii is equal to sum of probabilities of sequences

leaving Ii according to ri. Vectors e, f are indexed by sequences of
players and consist of 0, with 1 on the first position. q is a vector
of variables representing values in information sets of the opponent.
The constraint in (3) enforces the structure of realization plan and
the constraint in (2) tightens the upper bound on value in each of the
opponent’s information sets I2 for every sequence leaving I2.

max
r1,q

f�q (1)

s.t. −A�r1 + F�q ≤ 0 (2)

Er1 = e (3)

r1 ≥ 0 (4)

Undominated equilibrium Undominated equilibrium is defined
as a Nash equilibrium in undominated strategies. It can be computed
using 2 LPs. First LP depicted in eqs. (1) to (4) solves the game
for Nash equilibrium. The value of the game computed by this LP
is then supplied to the second LP presented in eqs. (5) to (8) via
constraint (6) to ensure, that the resulting realization plan r1 is a
Nash equilibrium. Second modification of this LP is in the objective,
using uniform realization plan for the minimizing player rm2 .

max
r1,q

r�1 Arm2 (5)

s.t. f�q = v0 (6)

−A�r1 + F�q ≤ 0 (7)

Er1 = e; r1 ≥ 0 (8)

The restriction to undominated strategies is enforced by the objec-
tive (5). The best response to a fully mixed strategy cannot contain
dominated strategies and thus we have that r1 is undominated and
therefore normal-form perfect for two-player zero-sum games [17].

Quasi-perfect equilibrium Quasi-perfect equilibrium is a restric-
tion of Nash equilibrium, which prescribes optimal play against mis-
takes of the opponent in the past and in the future. In eqs. (9) to (12)
we present LP due to Miltersen et al. [9]. The main idea of this ap-
proach is to use symbolic perturbations of strategies, with ε as a pa-
rameter, and then use a parameterizable simplex algorithm to solve
this LP optimally. The results of such an algorithm are strategies
expressed as polynomials in epsilon, which are then used to recon-
struct the realization plans even in those information sets which are
not reachable when considering a rational opponent (see [9] for the
details of this transformation). Vectors l(ε) and k(ε) are indexed by
sequences and contain above mentioned symbolic perturbations forc-
ing this LP to create a quasi-perfect equilibrium. Vector v contains
slack variables forcing the player to exploit the weak strategies of the
opponent, matrices A, E and F , and vectors e,f , and q are as before.

max
r1,v,q

q�f + v�l(ε) (9)

s.t. F�q ≤ A�r1 − v (10)

r1 ≥ k(ε) (11)

Er1 = e; v ≥ 0 (12)

Even though Miltersen et al. argue in [9] that it is possible to solve
this LP using a non-symbolic perturbation, the ε required for such a
computation can be too small for floating point arithmetics. There-
fore, one either needs to use an unlimited precision arithmetics, or
the parameterizable simplex algorithm to compute the equilibrium,
which limits the scalability.

J. Čermák et al. / Practical Performance of Refinements of Nash Equilibria in Extensive-Form Zero-Sum Games 203



Normal-form proper equilibrium Normal-form proper equilib-
rium is a Nash equilibrium optimal against mistakes of opponent,
while assuming that the probability of the mistakes depends on
the potential loss for such a mistake. The algorithm for computing
normal-form proper equilibria of extensive-form zero-sum games is
due to Miltersen et al. [10] and it is based on an iterative compu-
tation of LP pairs V and W shown in eqs. (13) to (21). In the k-
th iteration the LP V generates a strategy that exploits all marked
exploitable sequences. The LP uses a set of vectors {m1, ...,mk},
where mi ∈ {0, 1}|f | labels exploitable sequences based on the re-
sults of W (i−1), and set {v(1), ..., v(k−1)}, where v(i) is a value of
V (i); t is a scalar which is used in further iterations as v(k). The con-
straint (15) ensures, that the computed strategy is a Nash equilibrium.

V (k) : max
r1,q,t

t (13)

s.t. −A�r1 + F�q +m(k)t ≤ −
∑

0<i<k

m(i)v(i) (14)

f�q = v(0) (15)

Er1 = e; r1 ≥ 0; t ≥ 0 (16)

LP W in k-th iteration marks sequences, which are still exploitable,
given previous iterations and V (k). Vector u is used to identify ex-
ploitable sequences and variable d is used as an auxiliary scalar for
scaling purposes. This algorithm is initialized by V (0) which is a LP
generating Nash equilibrium from eqs. (1) to (4) and W (0) which is
equal to W (k) only with the sum from constraint (18) omitted, since
there are no results from previous iterations.

W (k) : max
r1,q,u,d

1�u (17)

s.t. −A�r + F�q + u ≤ −
∑

0<i≤k

m(i)v(i)d (18)

Er1 − ed = 0 (19)

f�q − v(0)d = 0 (20)

0 ≤ u; r1 ≥ 0; d ≥ 1 (21)

Although this procedure runs in polynomial time since the number
of LP pairs is bounded by the number of sequences of the opponent,
in practice this approach can suffer from numerical precision errors
when used for solving larger games. The primary reason of this in-
stability is the error that cumulates in equation (18).

4 Experimental Comparison

This section compares the practical performance of the different vari-
ants of refinements of Nash equilibrium (NE) strategies. Since all the
compared strategies are NE strategies, they cannot be exploited, and
thus we are interested in the expected value of these strategies against
imperfect opponents. First, we describe the set of methods for creat-
ing not perfectly rational opponents, following by the set of domains,
on which we compared the quality of the strategies.

4.1 Imperfect Opponents

We use two types of imperfect opponents: (1) we use not fully
converged strategies from anytime algorithms used for solving
extensive-form games in practice, and (2) we use a game-theoretic
model that simulates the decisions made by human opponents, where
a player is more likely to make less costly mistakes rather than choos-
ing a completely incorrect move.

We use 2 algorithms for generating the imperfect opponents of the
first type: counter-factual regret minimization (CFR) algorithm [19]
and Monte-Carlo tree search (MCTS). CFR is used in its basic form
which iteratively traverses the whole game tree, updating the strat-
egy in every information set according to a regret minimizing rule.
MCTS is used in a most typical game-playing variant: UCB algo-
rithm [3] is used as the selection method and it is used in each in-
formation set (this variant is termed Information Set MCTS [1]). An
additional modification made to MCTS is nesting—MCTS algorithm
runs for certain number of iterations, and then advances to each of
succeeding information sets and repeats the whole procedure. This
ensures reasonable strategies in all parts of the game tree. The be-
havioral strategy over actions in each information set corresponds
to the frequencies, with which the MCTS algorithm selects the ac-
tions in this information set. The first algorithm provably converges
to NE, while there are no guarantees for convergence of this vari-
ant of MCTS in imperfect-information games. The iterative manner
of these algorithms allows us to sample the strategies before the full
convergence to generate different variants of imperfect opponents.

The opponents of the second type correspond to quantal-response
equilibrium (QRE) [8]. Calculation of QRE is based on a logit func-
tion, which prescribes the probability for every action in every infor-
mation set as follows.

B(I, a) =
eλu(I,a|B)

∑
a′∈A(I) e

λu(I,a′|B)
(22)

B(I, a) stands for the probability of occurence of the action a in the
information set I given B, u(I, a′|B) is the expected utility when
playing a in the information set I and according to B otherwise. We
can sample the strategies for specific values of the λ parameter. By
setting λ = 0 we get uniform fully mixed strategy and we get an
approximative sequential NE strategy when λ is very large.

4.2 Experimental Domains

The performance of refined strategies is compared on Leduc holdem,
imperfect-information variant of the card game Goofspiel, and ran-
domly generated extensive-form games. These games were chosen,
because they differ in the cause of imperfect information; for Leduc
holdem poker the uncertainty is caused by the unobservable action of
nature at the beginning of the game, while in imperfect information
variant of Goofspiel and Random games the uncertainty is caused
by partial observability of opponents moves. The size of evaluated
games correspond to the maximal sizes of games, for which we were
able to compute quasi-perfect and normal-form proper equilibrium
in reasonable time and without numerical precision errors.

Leduc holdem Poker Leduc holdem Poker is a variant of simpli-
fied Poker using only 6 cards, namely {J, J,Q,Q,K,K}. The game
starts with a non-optional bet of 1 called ante, after which each of the
players receives a single card and a first betting round begins. In this
round player 1 decides to either bet, adding 1 to the pot, or to check.
If he bets, second player can either call, adding 1 to the pot, raise
adding 2 to the pot or fold which automatically ends the game in the
favor of player 1. If player 1 checks, player 2 can either check or bet.
If player 2 raises after a bet, player 1 can either call or fold ending
the game in the favor of player 2. This round ends either by call or
by check from both players. After the end of this round, one card is
dealt on the table, and a second betting round with the same rules be-
gins. After the second betting round ends, the outcome of the game
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is determined. A player wins if (1) her private card matches the ta-
ble card, or (2) none of the players’ cards matches the table card and
her private card is higher than the private card of the opponent. If no
player wins, the game is a draw and the pot is split.

Goofspiel A card game with three identical packs of cards, two
for players and one randomly shuffled and placed in the middle. In
our variant both players know the order of the cards in the middle
pack. The game proceeds in rounds. Every round starts by revealing
the top card of the middle pack. Both players proceed to simulta-
neously bet on it using their own cards, which are discarded after
the bet. Player with higher bet wins the card. After the end of the
game, player with higher sum of values of cards collected wins. In
an imperfect-information version of Goofspiel, the players do not ob-
serve the bet of the opponent and after a turn they only learn whether
they have won, lost, or if there was a tie.

Randomly Generated Games Finally, we used randomly gener-
ated games without nature, in which we altered several characteris-
tics: the depth of the game (number of moves for each player) and
the branching factor representing the number of actions the play-
ers can make in each information set. Moreover, each action of a
player generates some observation signal (a number from a limited
set) for the opponent – the states that share the same history and the
same sequence of observations belong to the same information set.
Therefore, by changing the amount of possible observation signals
we change the number of information sets in the game (e.g., if there
is only a single observation signal, neither of the players can observe
the actions of the opponent). The utility is calculated as follows: each
action is assigned a random integer value uniformly selected from the
interval −l,+l for some l > 0 and the utility value in a leaf is a sum
of all values of actions on the path from the root of the game tree to
the leaf. This method for generating the utility values is based on ran-
dom T-games [14] that create more realistic games using the intuition
of good and bad moves.

4.3 Experimental Settings

We have implemented the algorithms for computing Nash, undom-
inated2, and normal-form proper equilibrium, and we use IBM
CPLEX 12.5 for solving LPs, Gtf framework3 for computing quasi-
perfect equilibrium and Gambit [7] for computing quantal-response
equilibrium. The Gtf framework uses simplex with symbolic pertur-
bations, which limits it’s scalability.

We analyze the performance of the refined strategies within an in-
terval determined by the worst and best possible NE strategy against
a specific opponent strategy. These bounds are computed via the
LPs used for the undominated equilibrium. To compute the best NE
against a strategy, we use this strategy in the objective of the second
LP. Moreover, if we change the objective to min in such modified
LP, we compute the worst NE.

4.4 Results

The overall results are depicted in Figure 2, the interval between the
worst and best NE is the grey area; SQF denotes NE computed us-
ing sequence-form LP; UND denotes undominated equilibrium; QPE
quasi-perfect; and NFP normal-form proper equilibrium.

2 We use fully mixed uniform strategy of the opponent as the input.
3 Available at http://www.cs.duke.edu/∼trold/gtf.html
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Figure 2: Overview of the utility value for different equilibrium
strategies. Results for a single type of imperfect opponent are de-
picted in columns (CFR, MCTS, QRE), the results for a single do-
main are depicted in rows (Poker, Goofspiel, Random Games); the
last row shows the relative performance on selected domains.

The first row shows the absolute utility values gained by different
refinements against different opponents on Leduc holdem from the
perspective of player 1 (note the logarithmic scale of x-axis in case
of CFR and QRE). The results show that all the refinements have
similar performance against all opponents and they all outperform
SQF strategy. The similarity of NFP, QPE, and UND refinements
can be demonstrated by the maximal difference in absolute utility
values between refinements that is equal to 0.03—this occurs against
QRE and it is caused by near-optimal performance of UND against
QRE for small λ. This is expected since the QRE strategy for small λ
is similar to uniformly mixed strategy, to which UND computes the
best NE strategy. Besides that the absolute differences were mostly
marginal: 6 · 10−5 for CFR and 8 · 10−3 for MCTS. To better dis-
tinguish the performance of the refinements we depict the relative
utility gain for CFR in the interval between the worst and the best
NE strategy (leftmost graph in the last row of Figure 2).

Results on the random games with branching factor 3, depth 3 and
3 possible observations are shown in second row of Figure 2. These
results are computed as an average over 10 different random games
generated with the selected properties but different structure of infor-
mations sets and utility values. The results in absolute utility values
are very similar as in poker, but the difference between the refine-
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ments and SQF decreased. The relative utility gain for QRE opponent
is for clarity depicted in the rightmost graph in the last row of Fig-
ure 2. It confirms that for smaller λ the UND outperforms every other
equilibrium, however with increasing λ the undominated equilibrium
gets worse and both QPE and NFP improves their performance as the
QRE converges to more rational strategies. Moreover, we performed
a different set of experiments by varying the size of the observation
set. When set to 1, the game degenerates to a very specific imperfect-
information game, where every action of a player is unobservable to
the opponent. Interestingly, in this setting all NE collapsed, there was
no difference between the worst and the best NE strategy, and thus
neither between the refined strategies.

Finally, we present results in absolute utility values on imperfect
information Goofspiel with 4 cards in the third row of Figure 2. The
middle graph in the last row of Figure 2 depicts the relative perfor-
mance against MCTS. The results are again computed as means of
10 different random orderings of the middle pack of cards. Again,
there is a very similar pattern of behavior against CFR and QRE op-
ponents. Against the MCTS, however, the difference between the re-
finements and the best NE strategy slightly increased. This is caused
by the fact that the MCTS reaches an irrational strategy composed of
the correct pure strategies, however, incorrectly mixed. This type of
mistakes does not follow the model assumed in QPE and NFP, and
neither UND can optimally exploit this strategy. This setting present
the only case where further improvements in exploiting the mistakes
of the opponent are possible.

The results on all domains and against all imperfect opponents
offer several conclusions. First of all, all the refinements typically
perform very well and close to optimal NE strategy. This indicates
that it is unlikely that a new refinement with dramatically better per-
formance can be defined. Secondly, the performance of all the refine-
ments is very similar in practice (especially against CFR and MCTS)
regardless of their theoretical properties. This is interesting and sug-
gest that the situations assumed by these refinements are not that
common in real-world games. Moreover, even though NFP consid-
ers likeliness of mistakes of the opponent with respect to the potential
loss, its performance in practice was similar to QPE against this type
of opponent. Finally, the presented results show that in practical ap-
plications, it is sufficient to use UND refinement: (1) the quality of
strategies is very similar to QPE and NFP, and (2) it is much easier to
compute compared to more advanced solution concepts, since it does
not require iterative process or unlimited precision arithmetic. We
have performed additional measurements for UND, SQF and best-
worst NE on bigger domains such as Goofspiel with 5 cards in every
deck or Leduc holdem with two possible values of bets and raises.
The results obtained on these domains were consistent with the re-
sults presented in Figure 2, implying that our reasoning holds with
the increasing domain size.

5 Conclusion

This paper presents a thorough comparison of the refinements
of Nash equilibrium on a set of zero-sum, extensive-form games
with imperfect information. We compare three different refinements
against imperfect opponents that simulate mistakes made by an al-
gorithm, or a human opponent. The experimental results show that
the existing refinements typically achieve much better results than
the worst possible Nash strategy, and confirm the usefulness of using
refined solution concepts in practice. Moreover, by comparing these
refinements to the best value achievable by any refinement we show
that it is unlikely that some other refinement of Nash equilibrium

might exist that can dramatically outperform the existing refinements
in zero-sum games. Finally, we show that the quality of all the refined
strategies is similar and using the simplest undominated equilibrium
can be sufficient for many real-world cases.

Presented experimental work offers several directions for future
work. A deeper analysis of the presented results should offer a new
theoretical insights on the mistakes of the opponent and their opti-
mal exploitation in practice by approximating the best Nash equilib-
rium strategy. Moreover a similar experimental analysis should be
performed for general-sum games as well to illustrate the differences
in the more generic model.
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