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Abstract. We show in this paper how managed multi-context sys-
tems (mMCS) can be turned into a reactive formalism suitable for
continuous reasoning in dynamic environments. We extend mMCS
with (abstract) sensors and define the notion of a run of the extended
systems. We then show how typical problems arising in online reason-
ing can be addressed: handling potentially inconsistent sensor input,
modeling intelligent forms of forgetting, and controlling the reasoning
effort spent by contexts. We also investigate the complexity of some
important related decision problems.

1 Introduction

Research in knowledge representation (KR) faces two major prob-
lems. First of all, a large variety of different languages for representing
knowledge - each of them useful for particular types of problems -
has been produced. There are many situations where the integration
of the knowledge represented in diverse formalisms is crucial, and
principled ways of achieving this integration are needed. Secondly,
Most of the tools providing reasoning services for KR languages were
developed for offline usage: given a knowledge base (KB) compu-
tation is one-shot, triggered by a user, through a specific query or
a request to compute, say, an answer set. This is the right thing for
specific types of applications where a specific answer to a particular
problem instance is needed at a particular point in time. However,
there are different kinds of applications where a reasoning system
is continuously online and receives information about a particular
system it observes. Consider an assisted living scenario where peo-
ple in need of support live in an apartment equipped with various
sensors, e.g. smoke detectors, cameras, and body sensors measur-
ing relevant body functions (e.g. pulse, blood pressure). A reasoning
system continuously receives sensor information. The task is to de-
tect emergencies (health problems, forgotten medication, overheating
stove,...) and cause adequate reactions (e.g. turning off the electricity,
calling the ambulance, ringing an alarm). The system is continuously
online and has to process a continuous stream of information rather
than a fixed KB.

This poses new challenges on KR formalisms. Most importantly,
the available information continuously grows. This obviously cannot
go on forever as the KB needs to be kept in a manageable size. We
thus need principled ways of forgetting/disregarding information. In
the literature one often finds sliding window techniques [9] where
information is kept for a specific, predefined period of time and forgot-
ten if it falls out of this time window. We believe this approach is far
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too inflexible. What is needed is a dynamic, situation dependent way
of determining whether information needs to be kept or can be given
up. Ideally we would like our online KR system to guarantee specific
response times; although it may be very difficult to come up with such
guarantees, it is certainly necessary to find means to identify and focus
on relevant parts of the available information. Moreover, although the
definition of the semantics of the underlying KR formalism remains
essential, we also need to impose procedural aspects reflecting the
necessary modifications of the KB. This leads to a new, additional
focus on runs of the system, rather than single evaluations.

Nonmonotonic multi-context systems (MCS) [3] were explicitly
developed to handle the integration problem. In a nutshell, an MCS
consists of reasoning units - called contexts for historical reasons
[11] - where each unit can be connected with other units via so-called
bridge rules. The collection of bridge rules associated with a context
specifies additional beliefs the context is willing to accept depending
on what is believed by connected contexts. The semantics of the MCS
is then defined in terms of equilibria. Intuitively, an equilibrium is a
collection of belief sets, one for each context, which fit together in
the sense that the beliefs of each context adequately take into account
what the other contexts believe.

The original framework was aimed at modeling the flow of infor-
mation among contexts, consequently the addition of information
to a context was the only possible operation on KBs. To capture
more general forms of operations MCS were later generalized to so
called managed MCS (mMCS) [5]. The main goal of this paper is to
demonstrate that this additional functionality makes managed MCS
are particularly well-suited as a basis for handling the mentioned
problems of online reasoning systems as well. The main reason is that
the operations on the knowledge bases allow us to control things like
KB size, handling of inconsistent observations, focus of attention, and
even whether a particular context should be idle for some time.

However, to turn mMCS into a reactive online formalism we first
need to extend the framework to accommodate observations. We
will do so by generalizing bridge rules so that they have access not
only to belief sets of other contexts, but also to sensor data. This
allows systems to become reactive, that is to take information about a
dynamically changing world into account and to modify themselves
to keep system performance up.

The rest of the paper is organized as follows. We first give the
necessary background on mMCS. We then extend the framework to
make it suitable for dynamic environments, in particular we show how
observations can be accommodated, and we define the notion of a
run of an MCS based on a sequence of observations. The subsequent
sections address the following issues: handling time and the frame
problem; dynamic control of KB size; focus of attention; control of
computation (idle contexts). We finally discuss the complexity of
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some important decision problems.3

2 Background: Multi-Context Systems

We now give the necessary background on managed MCS [5] which
provide the basis for our paper. We present a slightly simplified variant
of mMCS here as this allows us to better highlight the issues relevant
for this paper. However, if needed it is rather straightforward (albeit
technically somewhat involved) to extend all our results to the full
version of mMCS. More specifically we make 2 restrictions: 1) we
assume all contexts have a single logic rather than a logic suite as in
[5]; 2) we assume that management functions are deterministic.

In addition we will slightly rearrange the components of an mMCS
which makes them easier to use for our purposes. In particular, we will
keep bridge rules and knowledge bases separate from their associated
contexts. The latter will change dynamically during updates, as we
will see later, and it is thus convenient to keep them separate.

mMCS build on an abstract notion of a logic L as a triple
(KBL,BSL,ACCL), where KBL is the set of admissible knowl-
edge bases (KBs) of L, which are sets of KB-elements (“formulas”);
BSL is the set of possible belief sets, whose elements are beliefs; and
ACCL : KBL → 2BSL is a function describing the semantics of L
by assigning to each KB a set of acceptable belief sets.

Definition 1 A context is of the form C = 〈L, ops,mng〉 where

• L is a logic,
• ops is a set of operations,
• mng : 2ops ×KBL → KBL is a management function.

For an indexed context Ci we will write Li, opsi, and mngi to denote
its components.

Definition 2 Let C = 〈C1, . . . , Cn〉 be a tuple of contexts. A bridge
rule for Ci over C (1 ≤ i ≤ n) is of the form

op←a1, . . . , aj , not aj+1, . . . , not am, (1)

such that op ∈ opsi and every a� (1 ≤ � ≤ m) is an atom of form
c:b, where c∈{1, . . . , n}, and b is a belief for Cc, i.e., b ∈ S for
some S ∈ BSLc .

For a bridge rule r, the operation hd(r) = op is the head of r, while
bd(r) = {a1, . . . , aj , not aj+1, . . . , not am} is the body of r.

Definition 3 A managed multi-context system (mMCS) M =
〈C,BR,KB〉 is a triple consisting of

1. a tuple of contexts C = 〈C1, . . . , Cn〉,
2. a tuple BR = 〈br1, . . . , brn〉, where each bri is a set of bridge

rules for Ci over C,
3. a tuple of KBs KB = 〈kb1, . . . , kbn〉 such that kbi ∈ KBLi .

A belief state S = 〈S1, . . . , Sn〉 for M consists of belief sets
Si ∈ BSLi , 1 ≤ i ≤ n. Given a bridge rule r, an atom c:p ∈ bd(r)
is satisfied by S if p ∈ Sc and a negated atom not c:p ∈ bd(r)
is satisfied by S if p �∈ Sc. A literal is an atom or a negated atom.
We say that r is applicable wrt. S, denoted by S |= bd(r), if every
literal l ∈ bd(r) is satisfied by S. We use appi(S) = {hd(r) | r ∈
3 The paper is based on preliminary ideas described in the extended abstract

[2] and in [8]. However, the modeling techniques as well as the formalization
presented here are new. A key difference in this respect is the handling of
sensor data by means of bridge rules.

bri ∧ S |= bd(r)} to denote the heads of all applicable bridge rules
of context Ci wrt. S.

The semantics of an mMCS M is then defined in terms of equilibria,
where an equilibrium is a belief state S = 〈S1, . . . , Sn〉 satisfying the
following condition: the belief set chosen for each context must be
acceptable for the KBs obtained by applying the management function
to the heads of applicable bridge rules and the KB associated with
the context. More formally, for all contexts Ci = 〈Li, opsi,mngi〉:
let Si be the belief set chosen for Ci. Then S is an equilibrium if, for
1 ≤ i ≤ n,

Si ∈ ACCi(kb
′) for kb′ = mngi(appi(S), kbi).

Management functions allow us to model all sorts of modifications of
a context’s KB and thus make mMCS a powerful tool for describing
the influence contexts can have on each other.

3 Reactive Multi-Context Systems

To make an mMCS M suitable for reactive reasoning in dynamic
environments, we have to achieve two tasks:

1. we must provide means for the MCS to obtain information provided
by sensors, and

2. we have to formally describe the behavior of the MCS over time.

Let us first show how sensors can be modeled abstractly. We assume
that a sensor Π is a device which is able to provide new information
in a given language LΠ specific to the sensor. From an abstract point
of view, we can identify a sensor with its observation language and a
current sensor reading, that is Π = 〈LΠ, π〉 where π ⊆ LΠ. Given
a tuple of sensors Π = 〈Π1, . . . ,Πk〉, an observation Obs for Π
(Π-observation for short) consists of a sensor reading for each sensor,
that is Obs = 〈π1, . . . , πk〉 where for 1 ≤ i ≤ k, πi ⊆ LΠi .

Each context must have access to its relevant sensors. Contexts
already have means to obtain information from outside, namely the
bridge rules. This suggests that the simplest way to integrate sensors
is via an extension of the bridge rules: we will assume that bridge
rules in their bodies can not only refer to contexts, but also to sensors.

Definition 4 A reactive multi-context system (rMCS) over sensors
Π = 〈Π1, . . . ,Πk〉 is a tuple M = 〈C,BR,KB〉, as in Def. 3 except
that the atoms a� (1 ≤ � ≤ m) of bridge rules in BR for context Ci

of form (1) can either be a context atom of form c:b as in Def. 2, or a
sensor atom of form o@s, where s is an index determining a sensor
(1 ≤ s ≤ k) and o ∈ LΠs is a piece of sensor data.

The applicability of bridge rules now also depends on an observation:

Definition 5 Let Π be a tuple of sensors and Obs = 〈π1, . . . , πk〉 a
Π-observation. A sensor atom o@s is satisfied by Obs if o ∈ πs; a
literal not o@s is satisfied by Obs if o �∈ πs.

Let M = 〈C,BR,KB〉 be an rMCS with sensors Π and S a belief
state for M . A bridge rule r in BR is applicable wrt. S and Obs, sym-
bolically S |=Obs bd(r), if every context literal in bd(r) is satisfied
by S and every sensor literal in bd(r) is satisfied by Obs.

Instead of appi(S) we use appi(S, Obs) = {hd(r) | r ∈ bri ∧
S |=Obs bd(r)} to define an equilibrium of an rMCS in a similar way
as for an mMCS:

Definition 6 Let M = 〈C,BR,KB〉 be an rMCS with sensors Π and
Obs a Π-observation. A belief state S = 〈S1, . . . , Sn〉 for M is an
equilibrium of M under Obs if, for 1 ≤ i ≤ n,

Si ∈ ACCi(mngi(appi(S, Obs), kbi)).
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Definition 7 Let M = 〈C,BR,KB〉 be an rMCS with sensors Π,
Obs a Π-observation, and S = 〈S1, . . . , Sn〉 an equilibrium of M
under Obs. The tuple of KBs generated by S is defined as KBS =
〈mng1(app1(S, Obs), kb1), . . . ,mngn(appn(S, Obs), kbn)〉. The
pair 〈S,KBS〉 is called full equilibrium of M under Obs.

We now introduce the notion of a run of an rMCS induced by a
sequence of observations:

Definition 8 Let M = 〈C,BR,KB〉 be an rMCS with sensors Π and
O = (Obs0, Obs1, . . .) a sequence of Π-observations. A run of M
induced by O is a sequence of pairs R = (〈S0,KB0〉, 〈S1,KB1〉, . . .)
such that

• 〈S0,KB0〉 is a full equilibrium of M under Obs0,
• for 〈Si,KBi〉 with i > 0, 〈Si,KBi〉 is a full equilibrium of
〈C,BR,KBi−1〉 under Obsi.

To illustrate the notion of a run, let’s discuss a simple example. We
want to model a clock which allows other contexts to add time stamps
to sensor information they receive. We consider two options. We will
first show how a clock can be realized which generates time internally
by increasing a counter whenever a new equilibrium is computed. We
later discuss a clock based on a sensor having access to “objective”
time. In both cases we use integers as time stamps.

Example 1 Consider a context Cc whose KBs (and belief sets) are of
the form {now(t)} for some integer t. Let kb0 = {now(0 )}. Assume
the single bridge rule of the context is incr←, which intuitively says
time should be incremented whenever an equilibrium is computed.
The management function is thus defined as

mngc({incr}, {now(t)}) = {now(t + 1 )}
for each t. Since the computation of the (full) equilibrium is inde-
pendent of any other contexts and observations, the context just in-
crements its current time whenever a new equilibrium is computed.
Each run of an rMCS with context Cc will thus contain for Cc the
sequence of belief sets {now(1 )}, {now(2 )}, {now(3 )}, . . . . The
example illustrates that the system may evolve over time even if there
is no observation made at all.

It is illustrative to compare this with a context Cc′ which is like
the one we discussed except for the bridge rules which now are the
instances of the schema

set(now(T + 1 ))← c′:now(T ).

The management function correspondingly becomes

mngc′({set(now(t + 1 ))}, {now(t)}) = {now(t + 1 )}
for all t. Note that in this case no equilibrium exists! The reason for
this is that by replacing now(0 ) with now(1 ) the precondition for
the rule sanctioning this operation goes away. Special care thus needs
to be taken when defining the operations.

In the rest of the paper we will often use an alternative approach
where “objective” time is entered into the system by a particular
sensor Πt. In this case each update of the system makes time available
to each context via the current sensor reading of Πt.

In Example 1 we already used a bridge rule schema, that is a bridge
rule where some of the parts are described by parameters (denoted by
uppercase letters). We admit such schemata to allow for more compact
representations. A bridge rule schema is just a convenient abbreviation

for the set of its ground instances. The ground instances are obtained
by replacing parameters by adequate ground terms. We will admit
parameters for integers representing time, but also for formulas and
even contexts. In most cases it will be clear from the discussion what
the ground instances are, in other cases we will define them explicitly.
We will also admit some kind of basic arithmetic in the bridge rules
and assume the operations to be handled by grounding, as is usual,
say, in answer set programming. For instance, the bridge rule schema

add(p(T + 1 ))← c:p(T ), not c:¬p(T + 1 )

which we will use to handle the frame problem in the next section has
ground instances add(p(1 ))← c:p(0 ), not c:¬p(1 ), add(p(2 ))←
c:p(1 ), not c:¬p(2 ), etc.

Although in principle parameters for integers lead to an infinite set
of ground instances, in our applications only ground instances up to
the current time (or current time plus a small constant, see Sect. 6) are
needed, so the instantiations of time points remain finite.

In the upcoming sections we describe different generic modeling
techniques for rMCSs. For concrete applications, these techniques can
be refined and tailored towards the specific needs of the problem do-
main at hand. To demonstrate this aspect, we provide a more specific
example from an assisted living application.

Example 2 Although Bob suffers from dementia, he is able to live
in his own apartment as it is equipped with an assisted living system
that we model by means of an rMCS. Assume Bob starts to prepare
his meal. He leaves the kitchen to go to the bathroom. After that, he
forgets he has been cooking, goes to bed and falls asleep. The rMCS
should be able to recognize a potential emergency based on the data
of different sensors in the flat that monitor, e.g., the state of the kitchen
equipment and track Bob’s position.

Our rMCS M has three contexts C = 〈Ckt, Chu, Cig〉 and sen-
sors Π = 〈Πpow,Πtmp,Πpos〉. Ckt is the kitchen equipment context
that monitors Bob’s stove. Its logic Lkt = 〈2atkt , 2atkt , ACCid〉
has a very simple semantics ACCid in which every knowledge base
kb has only one accepted belief set coinciding with the formulas of
kb, i.e., ACCid(kb) = {kb}. The formulas (and beliefs) of Ckt are
atoms from atkt = {pw(on), pw(off ), tm(cold), tm(hot)} repre-
senting the stove’s power status (on/off) and a qualitative value for
its temperature (cold/hot). The bridge rules for Ckt over C are

setPower(P)←switch(P)@pow.
setTemp(cold)←T@tmp, T ≤ 45.
setTemp(hot)←T@tmp, 45 < T.

that react to switching the stove on or off, registered by sensor Πpow,
respectively read numerical temperature values from sensor Πtmp

and classify the temperature value as cold or hot. The management
function mngkt(app, kb) =

{pw(on) | setPower(on) ∈ app∨
(pw(on) ∈ kb ∧ setPower(off ) �∈ app)}∪

{pw(off ) |setPower(on) �∈ app∧
(pw(on) �∈ kb ∨ setPower(off ) ∈ app)}∪

{tm(t) | setTemp(t) ∈ app}
ensures that the stove is considered on when it is switched on or
when it is not being switched off and already considered on in
the old knowledge base kb. Otherwise, the KB constructed by the
management function contains atom pw(off ). Context Chu keeps
track of Bob’s position. The language of sensor Πpos is given by
LΠpos = {enters(kitchen), enters(bathroom), enters(bedroom)}
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and non-empty sensor readings of Πpos signal when Bob has changed
rooms. The semantics of Chu is also ACCid and its bridge rules are
given by the schema

setPos(P)← enters(P)@pos.

The management function writes Bob’s new position into the KB when-
ever he changes rooms and keeps the previous position, otherwise.
Cig = 〈Lig, opsi,mngig〉 is the context for detecting emergencies.
It is implemented as an answer-set program, hence the acceptable
belief sets of Lig are the answer sets of its KBs. The bridge rules of
Cig do not refer to sensor data but query other contexts:

extVal(oven(P ,T ))← kt:pw(P), kt:tm(T ).
extVal(humanPos(P))← hu:pos(P).

The answer-set program kbig is given by the rule

emergency← oven(on, hot), not humanPos(kitchen).

The management function of Cig that adds information from the
bridge rules temporarily as input facts to the context’s KB is given by
mngig(app, kb) =

(kb\({oven(P ,T )←| P ∈ {on, off }, T ∈ {cold , hot}}∪
{humanPos(R)←| enters(R) ∈ LΠpos}))∪

{oven(p, t)←| extVal(oven(p, t)) ∈ app}∪
{humanPos(r)←| extVal(humanPos(r)) ∈ app}.

Consider the sequence O = (Obs0, Obs1) of Π-observations with
Obsi = 〈πi

pow, π
i
tmp, π

i
pos〉 for 0 ≤ i ≤ 1, π0

pow = {switch(on)},
π0
tmp = {16}, π1

tmp = {81}, π0
pos = {enters(kitchen)}, π1

pos =
{enters(bathroom)}, and πi

s = ∅ for all other πi
s. Then, 〈S0,KB0〉

is a full equilibrium of M under Obs0, where

S0 = 〈{pw(on), tm(cold)}, {pos(kitchen)},
{oven(on, cold), humanPos(kitchen)}〉.

and KB0 equals S0 except for the last component which is
kbig ∪ {oven(on, cold) ←, humanPos(kitchen) ←}. Moreover,
(〈S0,KB0〉, 〈S1,KB1〉) is a run of M induced by O, where

S1 = 〈{pw(on), tm(hot)}, {pos(bathroom)},
{oven(on, hot), humanPos(bathroom), emergency}〉.

4 Handling sensor data

In this section we discuss how to model an rMCS where possibly
inconsistent sensor data can be integrated into a context Cj . To this
end, we add a time tag to the sensor information and base our treatment
of time on the second option discussed in the last section, that is we
assume a specific time sensor Πt that yields a reading πt of the actual
time of the form now(t) where t is an integer.

Let Πj1 , . . . ,Πjm be the sensors which provide relevant informa-
tion for Cj in addition to Πt. Then Cj will have bridge rules of the
form

add(P,T , jr )← P@jr, now(T )@t

where the operation add is meant to add new, time tagged information
to the context.

We assume the readings of a single sensor at a particular time point
to be consistent. However, it is a common problem that the readings
of different sensors may be inconsistent with each other wrt. some
context dependend notion of inconsistency. To handle this we foresee

a management function mngj that operates based on a total prefer-
ence ranking of the available sensors. The third argument of the add
operation provides information about the source of sensor information
and thus a way of imposing preferences on the information to be
added. Without loss of generality assume j1 > . . . > jm, that is
sensor Πj1 has highest priority.

Now let add(S) be the set of add-operations in the heads of bridge
rules active in belief state S. We define

Addj1(S) = {(p, t) | add(p, t , j1 ) ∈ add(S)}

and for 1 < i ≤ m we let Addji(S) = Addji−1(S)∪

{(p, t) | add(p, t , ji) ∈ add(S), (p, t) consistent with Addji−1(S)}.

Finally, we define mngj(add(S), kb) = kb ∪Addjm(S).
This shows how the management function can solve conflicts

among inconsistent sensor readings based on preferences among the
sensors. Of course, many more strategies of integrating inconsistent
sensor data can be thought of which we are not going to discuss in
the paper. Please also note that the bridge rules do not necessarily
have to pass on sensor information as is to the context. They may as
well provide the context with some abstraction of the actual readings.
For instance, the sensor temperature information temp = 55 may be
transformed into qualitative information by a rule schema like

add(temp = high,T , jr )←temp = x@jr, 45 ≤ x ≤ 65,
now(T )@t.

We next present a way to address the frame problem using bridge
rules when sensors are not guaranteed to provide complete information
about the state of the environment in each step. In this case we want
to assume, at least for some of the atoms or literals observed at time
T − 1 which we call persistent, that they also hold at time T .

Assume p is some persistent observable property. Persistence of p
is achieved by the following bridge rule schema:

add(p(T ))← now(T )@t, j:p(T − 1 ), not j:¬p(T ).

Please note that in order to avoid non-existence of equilibria as
discussed at the end of Sect. 3 the use of this rule schema for the
frame problem presupposes that information about p valid at time
T − 1 remains available and is not deleted by any other bridge rule.

5 Selective forgetting and data retention

To illustrate our approach we discuss in this section a context Cd

which can be used for emergency detection in dynamic environments.
Assume there are m potential emergencies E1, . . . , Em we want the
context to handle. The role of Cd is to check, based on observations
made, whether one or more of the emergencies Ei are suspected or
confirmed. Based on information about potential emergencies Cd

adjusts the time span observations are kept. This is the basis for
intelligent forgetting based on dynamic windows.

We do not make any assumption about how Cd works internally
apart from the following:

• Cd may signal that emergency Ei is suspected (susp(Ei)) or
confirmed (conf(Ei)).

• Cd has information about default, respectively actual window sizes
for different observations (def.win(p, x), win(p, x)), and

• about the number of time steps observations are relevant for partic-
ular emergencies (rel(p, e, x)).
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Given facts of the form mentioned above, here is a possible collection
of bridge rules for the task. The operation set sets the window size
to a new value, deleting the old one. alarm is an operation that adds
information to the context KB signaling an alarm.

set(win(P ,X ))← d:def.win(P ,X ), not d:susp(E)
set(win(P ,Y ))← d:rel(P ,E ,Y ), d:susp(E)
alarm(E) ← d:conf(E)

Finally, we have to make sure deletions of observations are per-
formed in accordance with the determined window sizes:

del(p(T ′))← now(T )@t, d:win(P ,Z ), T ′ < T − Z.

The management function just performs additions and deletions on
the context KB. Since additions always are tagged with the current
time, whereas deletions always refer to an earlier time, there can never
be a conflict.

We have so far described a form of focusing where a time window is
extended based on a specific suspected event. The next example shows
a different form of focusing where specific information is generated
and kept only during there is a potential danger in a particular room.

Example 3 Continuing Example 2 we show how context Cig can fo-
cus on specific rooms if there is a potential emergency. For the kitchen
there is a threat if the stove is on, and it then becomes important to
track whether someone is in the kitchen. Assume Cig has a potential
belief pw(on,T ) expressing the stove is on since T . Focusing on the
kitchen can be modeled by following the ASP-rule in Cig’s KB:

focus(kitchen)← pw(on,T ).

In addition we will need a bridge rule, which keeps track whether Bob
is absent from a room in case that room is in the current focus:

add(absence(R,T ))←now(T )@t, ig:focus(R),

not ig:humanpos(R),

not ig:absence(R,T ′), T ′ < T.

as well as a bridge rule to forget the absence in a room if it is no
longer necessary. There the delAll operator removes all occurrences
of absence with respect to a given room R from the KB of the context.

delAll(absence,R)← ig:humanpos(R).

delAll(absence,R)← not ig:focus(R).

With those modifications it is possible to generate an alert if Bob was
too long away from the kitchen although the stove is active.

6 Control of computation

In this section we show how it is possible - at least to some extent -
to control the effort spent on the computation of particular contexts.
We introduce a specific control context C0 which decides whether a
context it controls should be idle for some time. An idle context just
buffers sensor data it receives, but does not use the data for any other
computations.

Let’s illustrate this continuing the discussion of Sect. 5. Assume
there are k different contexts for detecting potential emergencies as
described earlier. The rMCS we are going to discuss is built on an
architecture where each detector context Ci, 1 ≤ i ≤ k is connected
via bridge rules with the control context. C0 receives information

about suspected emergencies and decides, based on this information,
whether it is safe to let a context be idle for some time.

We now address the question what it means for a detector context
to be idle. A detector context Ci receives relevant observations to
reason whether an emergency is suspected or confirmed. In case Ci

is idle, we cannot simply forget about new sensor information as it
may become relevant later on, but we can buffer it so that it does not
have an effect on the computation of a belief set, besides the fact that
a buffered information shows up as an additional atom in the belief
set which does not appear anywhere in the context’s background
knowledge.

To achieve this we have to modify Ci’s original bridge rules by
adding, to the body of each rule, the context literal not 0:idle(i). This
means that the bridge rules behave exactly as before whenever the
control context does not decide to let Ci be idle.

For the case where Ci is idle, i.e. where the belief set of C0 contains
idle(i), we just make sure that observations are buffered. This means
that for each rule of the form

add(P,T , jr )← P@jr, now(T )@t

in the original set of bridge rules we add

bf(P,T , jr )← P@jr, now(T )@t, 0:idle(I ).

The operation bf just adds the atom bf(p, t , jr ) to the context (we
assume here that the language of the context contains constructs of
this form). As mentioned above, this information is not used anywhere
in the rest of the context’s KB, it just sits there for later use.

The only missing piece is a bridge rule bringing back informa-
tion from the buffer when the context is no longer idle. This can be
done using the bridge rule empty.buffer← not 0:idle(I ). Whenever
the management function has to execute this operation, it takes all
information out of the buffer, checks whether it is still within the rele-
vant time window, and if this is the case adds it to the KB, handling
potential inconsistencies the way discussed in Sect. 4.

The control context uses formulas of the form idle(i , t) to express
context i is idle until time t. We intend here to give a proof of concept,
not a sophisticated control method. For this reason we simply assume
the control context lets a detector context be idle for a specific constant
time span c whenever the detector does not suspect an emergency.
This is achieved by the following bridge rule schemata:

add(suspicion(K )) ←K:susp(E)
add(idle(K ,T + c)) ← now(T )@t, not 0:suspicion(K ),

not 0:idle(K ,T ′), T ′ < T + c

Provided information of the form idle(i , t) is kept until the actual
time is t+2, the last 2 conditions in the second rule schema guarantee
that after being idle for period c the context must check at least once
whether some emergency is suspected. To avoid a context staying idle
forever, we assume the management function deletes information of
this form whenever t is smaller than the current time minus 1. One
more rule schema to makes sure information about idle contexts is
available in the form used by detector contexts:

add(idle(K ))← now(T )@t, 0:idle(K ,T ′), T ≤ T ′.

7 Complexity

We want to analyze the complexity of queries on runs of rMCSs. For
simplicity we do not consider parametrized bridge rules here, and as-
sume that all knowledge bases in rMCS are finite and all management
functions can be evaluated in polynomial time.
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Definition 9 The problem Q∃, respectively Q∀, is deciding whether
for a given rMCS M with sensors Π, a context Ci of M , a belief b for
Ci, and a finite sequence of Π-observations O it holds that b ∈ Si

for some Sj = 〈S1, . . . , Sn〉 (0 ≤ j ≤ n) for some run, respectively
all runs, R = (〈S0,KB0〉, . . . , 〈Sm,KBm〉) of M induced by O.

As the complexity of an rMCS depends on that of its individual
contexts we introduce the notion of context complexity along the
lines of Eiter et al. [7]. To do so, we need to focus on relevant
parts of belief sets by means of projection. Intuitively, among all
beliefs, we only need to consider belief b that we want to query
and beliefs that contribute to the application of bridge rules for
deciding Q∃ and Q∀. Given M , Π, Ci, and b as in Definition 9,
the set of relevant beliefs for a context Cj of M is given by
RBj(M, i:b) = {b′ | r ∈ brj , h:b

′ ∈ bd(r) ∨ not h:b′ ∈
bd(r)} ∪ {b | i = j}. A projected belief state for M and i:b is a
tuple Si:b

|M = 〈S1 ∩RB1(M, i:b), . . . , Sn ∩RBn(M, i:b)〉 where
S = 〈S1, . . . , Sn〉 is a belief state for M . The context complexity of
Cj in M wrt. i:b for a fixed Π-observation Obs is the complexity of
deciding whether for a given projected belief state S for M and i:b,
there is some belief state S′ = 〈S′

1, . . . , S
′
n〉 for M with S′i:b

|M = S
and S′

j ∈ ACCj(mngj(appj(S, Obs), kbj)) for all 1 ≤ j ≤ n. The
system’s context complexity CC(M, i:b) is a (smallest) upper bound
for the context complexity classes of its contexts. Our complexity
results are summarized in Table 1.

Table 1. Complexity of checking Q∃ and Q∀ (membership, completeness
holds given hardness for CC(M, i:b).

CC(M, i:b) Q∃ Q∀
P NP coNP
ΣP

i (i ≥ 2) ΣP
i ΠP

i
PSPACE PSPACE PSPACE

Membership for Q∃: a non-deterministic Turing machine can guess
a projected belief state Sj = 〈S1, . . . , Sn〉 for all m observations in
O in polynomial time. Then, iteratively for each of the consecutive
observations obsj , first the context problem can be solved polyno-
mially or using an oracle (the guess of Sj and the oracle guess can
be combined which explains that we stay on the same complexity
level for higher context complexity). If the answer is ’yes’, Sj is a
projected equilibrium. We can check whether b ∈ Si, compute the
updated knowledge bases and continue the iteration until reaching the
last observation. The argument is similar for the co-problem of Q∀.
Hardness: holds by a reduction from deciding equilibrium existence
for an MCS when CC(M, i:b) is polynomial and by a reduction from
the context complexity problem for the other results.

Note that Q∃ and Q∀ are undecidable if we allow for infinite
observations. The reason is that rMCSs are expressive enough (even
with very simple context logics) to simulate a Turing machine such
that deciding Q∃ or Q∀ for infinite runs solves the halting problem.

8 Discussion

In this paper we introduced reactive MCS, an extension of managed
MCS for online reasoning, and showed how they allow us to handle
typical problems arising in this area. Although we restricted our
discussion to deterministic management functions, two sources of
non-determinism can be spotted by the attentive reader. On the one
hand, we allow for semantics that return multiple belief sets for the
same knowledge base, and, on the other hand, non-determinism can
be introduced through bridge rules.

The simplest example is guessing via positive support cycles, e.g.,
using bridge rules like add(a)← c:a that allow (under the standard
interpretation of add) for belief sets with and without formula a. Mul-
tiple equilibria may lead to an exponential number of runs. In practice,
non-determinism will have to be restricted. An obvious option is to
choose a context formalism able to express preferences so that the
semantics only returns sufficiently good solutions. For preferences
between equilibria that depend on the belief sets of multiple contexts,
one cannot rely on intra-context preference resolution. Here, we refer
the reader to preference functions as proposed by Ellmauthaler [8].
One might also adopt language constructs for expressing preferences
in ASP such as optimization statements [10] or weak constraints [6].
Essentially, these assign a quality measure to an equilibrium. With
such additional quality measures at hand, the best equilibrium can be
chosen for the run.

As to related work, there is quite some literature on MCS by now,
for an overview see [4]. Recently an interesting approach to belief
change in MCS has been proposed [14]. Other related work concerns
stream reasoning in ASP [9] and in databases: a continuous version of
SPARQL [1] exists, and logical considerations about continuous query
languages [15] were investigated. Kowalski’s logic-based framework
for computing [13] is an approach which utilizes first order logic
and concepts of the situation- and event-calculus in response to ob-
servations. None of these approaches combines a solution to both
knowledge integration and online reasoning, as we do.

For a related alternative approach using an operator for directly
manipulating KBs without contributing to the current equilibrium, we
refer to the work by Gonçalves, Knorr, and Leite [12].
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