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Abstract. Graphical models are widely used in argumentation to
visualize relationships among propositions or arguments. The intu-
itive meaning of the links in the graphs is typically expressed using
labels of various kinds. In this paper we introduce a general semanti-
cal framework for assigning a precise meaning to labelled argument
graphs which makes them suitable for automatic evaluation. Our ap-
proach rests on the notion of explicit acceptance conditions, as first
studied in Abstract Dialectical Frameworks (ADFs). The acceptance
conditions used here are functions from multisets of labels to truth
values. We define various Dung style semantics for argument graphs.
We also introduce a pattern language for specifying acceptance func-
tions. Moreover, we show how argument graphs can be compiled to
ADFs, thus providing an automatic evaluation tool via existing ADF
implementations. Finally, we also discuss complexity issues.

1 INTRODUCTION

Graphical models play an important role in many scientific areas
including AI (just think of Bayes nets for probabilistic reasoning).
Graphical representations seem particular useful - and are indeed
widely used - in argumentation, one of the highly active subfields
of AI. Here, it is common to lay out the structure of a particu-
lar argumentation scenario using graphs of various kinds. In fact,
argument mapping is a field of its own, and there are even com-
mercial systems around supporting graphical representations of ar-
gumentation scenarios. A prominent example is Rationale (http:
//rationale.austhink.com/), an educational tool based on
argument mapping. Systems like Rationale allow the user to create
graphs of various kinds, but do not come with a semantics of links
and nodes. In other words, they are tools for visualization, but not for
semantic evaluation of the graphs.

The framework we are developing in this paper tries to fill this gap.
Our framework allows not only to visualize argument structures, but
also to assign a semantics to a wide range of graphs. More precisely,
we consider arbitrary labelled graphs. Each link in the graph carries
a label. There is no restriction as to the labels used, they can be ar-
bitrary symbols including numbers. As an example, take a simple
argument graph containing links labelled with + or -, representing
support and attack, respectively. Now assume a situation depicted as
follows:
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Whether s should be accepted or not certainly depends on the ac-
ceptance status of its parents. However, even if the parents’ status is
known, the intuitive meaning of the labels is still not sufficient to de-
cide s. Let’s call a link active if its source node is accepted. Different
options arise. For instance, we might say s should be accepted iff

• no negative and all positive links are active, or
• no negative and at least one positive link is active, or
• more positive than negative links are active.

The bottom line is: to evaluate an argument graph we not only need
labelled links, but also an acceptance condition for each of the nodes.
In this paper we introduce a general framework for handling accep-
tance conditions which are based on the labels of active links. In ad-
dition, we provide a formal language called GRAPPA (GRaph-based
Argument Processing with Patterns of Acceptance) to express such
conditions conveniently. Since they can be defined individually for
each node, we end up with graphs where links have a label, taken
from some arbitrary set, and nodes come with acceptance conditions
represented as patterns in our language.

Explicit acceptance conditions for argumentation were first stud-
ied in the context of ADFs, a generalization of Dung frameworks [9],
initially proposed in [5] and further developed in [3]. The latter paper
redefines the semantics of ADFs based on a so-called characteristic
operator, a technique going back to a general operator-based theory
of nonmonotonic reasoning developed by [8]. Acceptance conditions
for ADFs are propositional formulas with variables ranging over the
parents of a node. In the approach developed here we specify ac-
ceptance conditions as functions from sets of labels to truth values.
Intuitively, we collect the labels of the active links and check whether
the set obtained this way satisfies the specified condition. Since the
number of occurrences of a particular label obviously may make a
difference, we actually have to use multisets of labels.

The rest of the paper is organized as follows. In Sect. 2 we in-
troduce labelled argument graphs (LAGs) and define various Dung
style semantics for them. Sect. 3 introduces the GRAPPA pattern
language for acceptance conditions. Sect. 4 illustrates the potential of
GRAPPA by handling typical graph-based approaches to argumenta-
tion. Sect. 5 shows how labelled argument graphs and the GRAPPA
approach can be represented as standard ADFs which allows us to
use existing tools for the implementation. We also discuss the com-
plexity of GRAPPA. Sect. 6 concludes.
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2 LABELLED ARGUMENT GRAPHS

In this section we will formally introduce labelled argument graphs
(LAGs). As mentioned in the Introduction, an essential ingredient
for the evaluation of such graphs are acceptance functions based on
multisets of labels. For this reason we introduce acceptance func-
tions based on a set L of labels first. A multiset m of labels taken
from L can formally be viewed as a function m : L → N such
that for each l ∈ L, m(l) is the number of occurrences of l in the
multiset. As usual, we will often represent multisets using standard
set notation, but with multiple occurrences of elements. For instance,
{+, +, -} is used to denote the multiset m with m(+) = 2, m(-) = 1,
and m(x) = 0 for any other elements of L (if there are any).

Definition 1 Let L be a set of labels. An acceptance function over
L (L-acceptance function for short) is a function c : (L → N) →
{t, f}, that is, a function assigning a truth value to a multi-set of
labels. The set of all L-acceptance functions is denoted FL.

We are now ready to define LAGs:

Definition 2 A labelled argument graph (LAG) is a tuple G =
(S,E,L, λ, α) where

• S is a set of nodes (statements),
• E is a set of edges (dependencies),
• L is a set of labels,
• λ : E → L assigns labels to edges,
• α : S → FL assigns L-acceptance-functions to nodes.

The semantics of LAGs is defined in a similar way as the semantics
of ADFs [3], namely by introducing a characteristic operator whose
(pre)fixpoints will give us the intended semantics. The operator is
based on partial interpretations.4 Partial interpretations of S assign a
truth value from t, f standing for true, respectively false, to some of
the nodes in S, leaving the truth values of the other nodes open. They
thus generalize classical interpretations where the set of open nodes
is empty. Partial interpretations can be viewed as representing what
is known or assumed about S in a particular situation.

Partial interpretations are conveniently represented as sets of lit-
erals containing elements of S evaluated to t unnegated and those
evaluated to f negated. Given a partial interpretation v of S, a com-
pletion of v is a classical (total) interpretation of S (in other words: a
consistent set of literals containing s or ¬s for each s ∈ S) contain-
ing v. The set of all completions of v is denoted [v]c.

The intuition behind the operator we define next is as follows.
Consider a partial interpretation v over the nodes in S. The opera-
tor revises v and produces a new partial interpretation v′. In doing
so, it checks which truth values of nodes in S can be justified, based
on v. This is done by considering all possible completions of v in the
following way: if the acceptance function of a node s evaluates to t
under all completions, that is whatever the truth values of the open
nodes are, then v′ assigns t to s. If the evaluation of the acceptance
condition for s yields f for all completions, then the value of s under
v′ is f . In all other cases the value remains open.

Definition 3 Let G = (S,E,L, λ, α) be an LAG, v a partial inter-
pretation of S. mv

s , the multiset of active labels of s ∈ S in G under
v, is defined as

mv
s(l) = |{(e, s) ∈ E | e ∈ v, λ((e, s)) = l}|

4 The operator in [3] used 3-valued interpretations which are equivalent to
partial interpretations. We prefer the latter here as they are conceptually
and technically somewhat simpler.

for each l ∈ L.
The characteristic operator ΓG of G takes a partial interpreta-

tion v of S and produces a revised partial interpretation ΓG(v) of S
defined as follows: ΓG(v) = PG(v) ∪NG(v) with

PG(v) = {s | α(s)(m) = t for each m ∈ {mv′
s | v′ ∈ [v]c}}

NG(v) = {¬s | α(s)(m) = f for each m ∈ {mv′
s | v′ ∈ [v]c}}

On the basis of this operator we can now define various semantics
for LAGs. Except for the underlying operator, the definitions are ex-
actly those for ADFs introduced in [3] as generalizations of Dung’s
AF semantics [9].

Before introducing the formal definitions, let’s describe the moti-
vations underlying the semantics. Consider a classical, total interpre-
tation v which is a fixed point of ΓG. In this case the assignment of
truth values is such that a node is t iff its acceptance function evalu-
ates to t, and f otherwise. We will call such interpretations models.
Now consider the least fixed point of ΓG. Since this operator is eas-
ily shown to be ⊆-monotonic, the least fixed point can be computed
by iterating on the empty partial interpretation where every node is
open. It is easy to see that in each step only nodes receive truth value
t, respectively f , for which the respective assignment is beyond any
doubt, that is where the assignment must be the right one according
to the acceptance function, independently of what the truth value of
open nodes may turn out to be.

Admissible interpretations are “safe” in the sense that whatever
the truth value of the open nodes is, assignments of values t and f
are justified and will be preserved. This is captured by requiring that
revising an interpretation v leads to an interpretation containing the
information in v. Preferred interpretations are then those admissible
interpretations which contain maximal information. Finally, it is nat-
ural to consider an interpretation v as complete whenever applying
the revision operator reproduces v, in other words whenever v is a
fixed point of ΓG. This leads to the following definitions:

Definition 4 Let G = (S,E,L, λ, α) be an LAG, v a partial inter-
pretation of S. We say

• v is a model of G iff v is total and v = ΓG(v),
• v is grounded in G iff v is the least fixed point of ΓG,
• v is admissible in G iff v ⊆ ΓG(v),
• v is preferred in G iff v is ⊆-maximal admissible in G,
• v is complete in G iff v = ΓG(v).

Example 1 Consider an LAG with S = {a, b, c, d} and L = {+, -}.
The following graph shows the labels of each link.

a b

c d

+
+

+

-

For simplicity, let’s assume all nodes have the same acceptance
condition requiring that all positive links must be active (that is the
respective parents must be t) and no negative link is active.5 We ob-
tain two models, namely v1 = {a, b, c,¬d} and v2 = {a,¬b,¬c, d}.
The grounded interpretation is v3 = {a}. We obtain 16 admissible
interpretations:
5 In the pattern language developed in the next section this can be expressed

as #t(+)−#(+) = 0 ∧#(-) = 0.
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{a}{b} {¬b}

{a,¬b}{a, b}{b,¬d} {¬b, d} {¬b,¬c}

{a,¬b, d}{a, b,¬d}{a, b, c} {a,¬b,¬c} {¬b,¬c, d}

{a, b, c,¬d} {a,¬b,¬c, d}

Among these admissible interpretations {a, b, c,¬d} and
{a,¬b,¬c, d} are preferred. Complete interpretations are these two
and in addition {a}.

As in logic programming [2], the idea underlying stable semantics
here is to exclude self-justifying cycles. Again this semantics can be
defined along the lines of the corresponding definition for ADFs in
[3]: take a model v, reduce the LAG based on v and check whether
the grounded extension of the reduced LAG coincides with the nodes
true in v. Here is the definition:

Definition 5 Let G = (S,E,L, λ, α) be an LAG, v a model of G,
Sv = v ∩ S. v is a stable model of G iff v restricted to Sv is the
grounded interpretation of Gv = (Sv, Ev, L, λv, αv), the v-reduct
of G, where

• Ev = E ∩ (Sv × Sv),
• λv is λ restricted to Sv ,6

• αv is α restricted to Sv .

Observe that in αv we did not have to alter the values of the
function, i.e. the true and false multisets remain the same (although
some of them might become “unused” since the number of parents
shrinked). We will see later that this exactly matches the stable se-
mantics for ADFs from [3]. For the moment, we continue our run-
ning example.

Example 2 For Example 1 we obtained two models, v1 =
{a, b, c,¬d} and v2 = {a,¬b,¬c, d}. In v1 the justification for b
is obviously based on a cycle. The v1-reduct of our graph is

a b

c

+
+

+

It is easy to see that the grounded interpretation of the reduced
graph is {a}, v1 is thus not a stable model, as intended. We leave it
to the reader to verify that v2 indeed is a stable model.

Results about the semantics carry over from ADFs (see [3]).

Proposition 1 Let G be an LAG. The following inclusions hold:

stb(G) ⊆ mod(G) ⊆ pref (G) ⊆ com(G) ⊆ adm(G),

6 Given a function f : M → N and M ′ ⊆ M , f restricted to M ′ is the
function f ′ : M ′ → N such that f ′(m) = f(m) for all m ∈M ′.

where stb(G),mod(G), pref (G), com(G) and adm(G) denote the
sets of stable models, models, preferred interpretations, complete
interpretations and admissible interpretations of G, respectively.
Moreover, pref (G) �= ∅, whereas mod(G′) = ∅ for some LAG G′.

3 ACCEPTANCE PATTERNS

The definition of the semantics of LAGs introduced in the last sec-
tion depends on a function assigning one of the truth values t, f to
each multiset of labels. In this section we address the question how
to represent this acceptance function. We will introduce a specific
pattern language for this purpose.

Although in principle there are infinitely many multisets of labels,
even if the set of labels is finite, we only need to consider a finite
number of multisets, assuming that each node in an LAG has only
finitely many parents: the number of occurrences of each label in the
relevant multisets is obviously restricted by the number of incoming
links with that label. Similar to the way propositional formulas de-
scribe Boolean functions by specifying the conditions interpretations
have to satisfy to be evaluated to t, we will use a language for speci-
fying conditions a multiset has to satisfy to be evaluated to t. In other
words, a pattern will just be a predicate on multisets.

Before we define our pattern language let’s look at some exam-
ples. Let’s start with qualitative labels. Assume L = {++, +, -, --}
representing strong support, support, attack and strong attack, respec-
tively and consider the multiset m1 = {++, +, -, -}. Assume further
we want to accept a node if its support is stronger than the attack
against it, measuring strength, say, by counting support, respectively
attack links, multiplying strong support/attack with a factor of 2. m1

obviously satisfies this acceptance condition as it has 2 active sup-
porting labels, one of them counting twice.

To be able to express conditions like this one we need to be able
to refer to the number of occurrences of a label in a multiset. We will
use the symbol # followed by a particular label for this purpose. The
condition informally described above can then be represented as

2(#++) + (#+)− 2(#--)− (#-) > 0.

To be able to express conditions like: half of the positive links must
be active we also make it possible to refer to the total number of links
(including those which are not active) with a particular label via the
term #t.

Now consider quantitative labels where L is, say, the set of inte-
gers. Consider the multiset m2 = {5, 2,−3,−3}. In this case the
number of occurrences of a particular number seems less relevant,
and we are probably more interested in, say, summing up the val-
ues in m2, or we may want to compare the strongest positive number
with the strongest negative one. We will take this into account by pro-
viding in our pattern language key words representing the sum, min-
imum and maximum of the elements in a multiset consisting entirely
of numbers (following standard database query languages). Finally,
for both qualitative and quantitative labels, we provide a handle for
counting different (active or all) labels.

We call LAGs whose acceptance function is defined as a pattern
in our pattern language GRAPPA systems (GRaph-based Argument
Processing with Patterns of Acceptance).

Definition 6 A GRAPPA system is a tuple G = (S,E,L, λ, π)
where S, E, L and λ are as in Def. 3 (definition of LAGs) and

• π : S → PL assigns acceptance patterns over L to nodes.

PL here denotes the set of acceptance patterns over L defined next:
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Definition 7 Let L be a set of labels.

• A term over L is of the form

– (#l), (#tl) for arbitrary l ∈ L,

– min, mint, max, maxt, sum, sumt, count, countt.

• A basic acceptance pattern (over L) is of the form

a1t1 + · · ·+ antnRa

where the ti are terms over L, the ai’s and a are integers and
R ∈ {<,≤,=, �=,≥, >}.

• An acceptance pattern (over L) is a basic acceptance pattern or a
boolean combination of acceptance patterns.

We now define the semantics of acceptance patterns in a GRAPPA
system G. Whether a multiset of labels satisfies a pattern or not may
depend on the node s in the graph where it is evaluated. Terms yield
numbers. The value of terms indexed with t is independent of the
multiset, it entirely depends on the node s, more precisely on the
labels of links with target s. We call these terms node-dependent.
In contrast, the non-indexed terms are evaluated based on a given
multiset alone.

Definition 8 Let G = (S,E,L, λ, π) be a GRAPPA system. For
m : L → N and s ∈ S the value function valms is defined as:7

valms (#l) = m(l)
valms (#tl) = |{(e, s) ∈ E | λ((e, s)) = l}|
valms (min) = min m
valms (mint) = min{λ((e, s)) | (e, s) ∈ E}
valms (max) = max m
valms (maxt) = max{λ((e, s)) | (e, s) ∈ E}
valms (sum) =

∑
l∈L m(l)

valms (sumt) =
∑

(e,s)∈E λ((e, s))

valms (count) = |{l | m(l) > 0}|
valms (countt) = |{λ((e, s)) | (e, s) ∈ E}|

The satisfaction relation |= for basic patterns is given by:

(m, s) |= a1t1 + · · ·+ antnRa iff
n∑

i=1

(
ai val

m
s (ti)

)
R a.

Satisfaction of boolean combinations is inductively defined as usual,
e.g. for acceptance patterns p1 and p2 we have (m, s) |= p1 ∧ p2 iff
(m, s) |= p1 and (m, s) |= p2, (m, s) |= ¬p1 iff (m, s) �|= p1, etc.

This puts us in a position to establish the connection with LAGs.
For each node s with pattern π(s), the function α(s) associated with
π(s) is defined as

α(s)(m) = t iff (m, s) |= π(s).

GRAPPA systems thus are LAGs whose acceptance functions are
defined by patterns. Note that we can now define the characteristic
operator for a GRAPPA system G = (S,E,L, λ, π) equivalently as
ΓG(v) = PG(v) ∪NG(v) with

PG(v) = {s | (m, s) |= π(s) for each m ∈ {mv′
s | v′ ∈ [v]c}},

NG(v) = {¬s | (m, s) �|= π(s) for each m ∈ {mv′
s | v′ ∈ [v]c}}.

7 min m and max m return the minimal, respectively maximal element of a
multiset m and are undefined in case m = ∅ or m contains a non-numerical
term. The sum over labels is undefined whenever one of the summands is
non-numerical, it equals 0 whenever there are no summands.

For convenience we introduce some useful abbreviations:

• in cases where readability is not affected we omit brackets;
• whenever ai = −bi is a negative number we write −biti rather

than +aiti in basic acceptance patterns;
• we use #{l1, . . . , ln} for #l1 + . . .+#ln, the same for #tl;
• we also use conditional acceptance patterns of the form φ1 :

φ2/φ3, where φi are acceptance patterns, as an abbreviation for
φ1 ∧ φ2 ∨ ¬φ1 ∧ φ3.

Lemma 1 Let L = {l1, . . . , lk} be a finite set of labels. Each fini-
tary L-acceptance function (the total number of occurrences of la-
bels in each multiset evaluated to t is finite) can be represented as an
acceptance pattern over L.

Proof Let g be a finitary L-acceptance function. Each finite multiset
m evaluated to t can be represented as a conjunction #l1 = m(l1)∧
. . . ∧ #lk = m(lk). The pattern for g then is the disjunction of all
conjunctions representing multisets evaluated to t.

As we have seen, the semantics of some patterns depends on the
graph they are used in. This raises an important issue related to sta-
ble semantics where stability is checked via a reduction of the origi-
nal graph (see Def. 5). Note that the semantics of node-independent
terms is not affected by the reduction as these terms actually de-
pend on the labels of active links which are preserved. On the other
hand, the meaning of node-dependent terms (those indexed by t) may
change in the reduced graph. This has an important consequence:
we have to replace node-dependent terms in patterns by their ac-
tual values in the original graph before using them in the reduced
graph. It is easy to see that this can always be done. For instance,
for node c in the graph of Example 1 the original acceptance pattern
#t(+)−#(+) = 0 ∧#(-) = 0 becomes 2−#(+) = 0 ∧#(-) = 0
which is equivalent to the pattern #(+) = 2 ∧#(-) = 0.

4 USE CASES

In this section we illustrate how some typical argument graphs can
be reconstructed using GRAPPA.

Bipolar argument graphs and Dung frameworks

In Sect. 1 we used bipolar argument graphs with labels for support
(+) and attack (-) as a motivating example. The acceptance conditions
discussed there are expressed as follows:

• all positive, no negative link active: (#t+)−(#+) = 0∧(#-) = 0,
• at least one positive, no negative active link: (#+) > 0∧(#-) = 0,
• more positive than negative active links: (#+)− (#-) > 0.

For an alternative treatment of bipolar frameworks, see [1, 6]. Dung
frameworks have no labels, yet they can be viewed as having the
single label - left implicit. They use a single pattern for all nodes:

• no negative active link: (#-) = 0

Let’s call this pattern the Dung pattern. We have the following result:

Proposition 2 Let F = (A,R) be a Dung framework. The associ-
ated GRAPPA system is GF = (A,R, {-}, λ, α) where α assigns the
Dung pattern to all nodes. E is grounded, admissible, complete, pre-
ferred, stable wrt. F iff E = v ∩ A for some grounded, admissible,
complete, preferred, stable interpretation v of GF .

Weighted argument graphs

Weighted graphs have as labels positive or negative numbers, ex-
pressing the strength of support, respectively attack (see also [7]).
Again various patterns come into mind:
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• the sum of weights of active links is greater than 0: sum > 0.
• the highest active support is stronger than the strongest (lowest)

attack: max+min > 0
• the difference among strongest active support and the strongest

active attack is above some threshold b: max+min > b.

Farley/Freeman proof standards

Farley and Freeman [11] introduced a framework for expressing
5 different proof standards based on 4 different types of argu-
ments: valid, strong, credible and weak arguments. The strength of
the argument types is decreasing in the given order. Since argu-
ments can be pro or con a particular proposition, we need 8 labels
v, s, c, w,−v,−s,−c,−w. The − expresses a con argument of the
respective type. The proof standards discussed by Farley and Free-
man can be captured using the following patterns:

• scintilla of evidence: #{v, s, c, w} > 0
• preponderance of evidence:

#{v, s, c, w} > 0 ∧ (#−v) = 0 ∧ (#−s) = 0 ∨
(#v) > 0 ∧ (#−c) = 0 ∨
#{v, s} > 0 ∧ (#−w) = 0 ∨
#{v, s, c} > 0

• dialectical validity: #{v, s, c} > 0, #{−v,−s,−c,−w} = 0
• beyond reasonable doubt: #{v, s}>0, #{−v,−s,−c,−w}=0
• beyond doubt: #v > 0, #{−v,−s,−c,−w} = 0

Rather than assigning a particular proof standard to each node, it may
be useful in some (legal) settings to have dynamic proof standards,
that is to make it possible to argue about the proof standard in the
same way as about any other topic. Assume it is an issue whether
the proof standard for a node s is, say, dialectical validity (dv) or
beyond reasonable doubt (brd). Let’s assume dv is the default, and
the stronger proof standard is only applied if this was established
during the argumentation, that is if there is some parent node p of
s representing the information that brd is needed. We introduce an
additional label brd and assign it to the link (p, s). The new, dynamic
proof standard can conveniently be represented using the conditional
pattern

#brd > 0 : patt(brd)/patt(dv).

Here patt(ps) is the pattern for proof standard ps ∈ {brd, dv}.

ADFs

Acceptance conditions of ADFs are propositional formulas built
from parent nodes rather than labels of links. To model ADFs in
GRAPPA we just have to label each link with its source node, that
is, the set of labels L is identical to the set of nodes S and for each
link l = (p, s) we have λ(l) = p. The acceptance pattern for each
node s is obtained from its ADF acceptance condition Cs by simply
replacing each occurrence of an atom a in Cs by the basic pattern
#a = 1.

Proposition 3 Let A be an ADF, GA the GRAPPA system obtained
from A as described above. A and GA are equivalent under all se-
mantics introduced in Sect. 2.

Carneades

Carneades [13, 14] is an advanced model of argumentation captur-
ing, among other things, weighted arguments and 5 different proof
standards. In [4] Carneades was reconstructed using ADFs and gen-
eralized to arbitrary cyclic graph structures. It is thus apparent that
Carneades can be modelled in GRAPPA. Nevertheless, we give a
direct reconstruction here as it is simpler than the one obtained indi-
rectly via ADFs.

A Carneades argument is a tuple 〈P,E, c〉 with premises P , ex-
ceptions E (P ∩ E = ∅) and conclusion c. c and elements of P ,
E are literals. An argument evaluation structure (CAES) is a tuple
C = 〈args, ass, weight, standard〉, where

• args is a set of arguments,
• ass is a consistent set of literals, the assumptions,
• weight assigns a real number to each argument, and
• standard maps propositions to a proof standard.

Assumptions are best handled as modifiers of the original arguments:
argsass is obtained from args by

1. deleting each argument 〈P,E, c〉 where q ∈ ass for some q ∈ P
or q ∈ ass for some q ∈ E,8 and

2. deleting each q ∈ ass from the premises of the remaining argu-
ments, and

3. deleting each q such that q ∈ ass from the exceptions of the re-
maining arguments.

The graph Gass
args is then obtained as in [4] by translating each

argument. We illustrate the translation using an example: a =
〈{bird}, {peng, ostr}, f lies〉 with weight(a) = 0.8 translates to:

bird

ostr

peng

a

flies

flies

+0.8

−0.8

+

-

-

The graph obtained this way uses two types of nodes, proposition
and argument nodes. Labels for links to argument nodes are + and
-, labels for links to proposition nodes positive/negative reals. The
pattern for argument nodes is

• (#t+)− (#+) = 0 ∧ (#-) = 0,

Patterns for proposition nodes depend on the proof standards (α, β
and γ are positive numerical parameters):

• scintilla of evidence: max > 0
• preponderance of evidence: max+min > 0
• clear and convincing evidence: max > α ∧max+min > β
• beyond reasonable doubt: max > α ∧ max + min > β ∧

−min < γ
• dialectical validity: max > 0 ∧min > 0

Proposition 4 For each CAES C the GRAPPA system obtained by
the construction described above is equivalent to the ADF as ob-
tained in [4] under all semantics.

5 COMPUTATIONAL ASPECTS

In this section we show how LAGs and GRAPPA systems can be
translated to equivalent ADFs. An ADF is a tuple (S,E,C) where S
is a set of statements; E ⊆ S×S is a set of links; and C = {Cs}s∈S

is a set of propositional formulas such that Cs is given over atoms
parE(s) = {t ∈ S | (t, s) ∈ E}.

For the forthcoming definition, recall the notion of mv
s from Defi-

nition 3. Given an LAG G, let s ∈ S and T ⊆ parE(s). The multiset
of active labels of s based on T , mT

s , is the unique multiset defined
as: mT

s = mv
s for some partial interpretation v assigning t to each

node in T and f to each node in parE(s) \ T .
8 q is the complement of literal q.
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Definition 9 For an LAG G = (S,E,L, λ, α) define its associated
ADF AG as (S,E,CG) where

CG(s) =
∨

T⊆parE(s):α(s)(mT
s )=t

( ∧
r∈T

r ∧
∧

r∈parE(s)\T
¬r

)
.

Proposition 5 Let G be an LAG, AG its associated ADF constructed
as described above. G and AG are equivalent under all semantics
introduced in Sect. 2.

Proof Sketch: we can show that the characteristic operators of both G
and AG are equivalent. From this the result follows for all semantics
except stable. For stable, we can additionally show that reducts are
equivalent, i.e. for each model v of G, AGv is the same object as the
ADF AG reduced w.r.t. v (see [3], Def.6).

For a GRAPPA system G = (S,E,L, λ, π) where acceptance
functions are represented as patterns we can express the ADF accep-
tance conditions accordingly:

CG(s) =
∨

T⊆parE(s):(mv
s ,s)|=π(s)

( ∧
r∈T

r ∧
∧

r∈parE(s)\T
¬r

)
.

This reduction paves the way for implementations via the ADF trans-
lations and the use of the existing ADF system Diamond [10].

Finally, we briefly address the complexity of reasoning with
GRAPPA systems. All hardness results for ADFs (see [17] for a
detailed overview) carry over to GRAPPA systems thanks to the
poly-time translation of ADFs to GRAPPA systems given in the
previous section. Concerning membership results note that they do
not follow directly from the reductions given above, since those
might have an exponential blow-up. However, it is rather easy to see
that complexity does not increase compared to ADFs since evalu-
ating the characteristic operator for a GRAPPA system is equally
hard as evaluating the characteristic operator for ADFs. To be more
precise, consider the following problem: given a GRAPPA system
G = (S,E,L, λ, π), a node s ∈ S, and a partial interpretation v,
decide whether s ∈ ΓG(v), respectively ¬s ∈ ΓG(v). The prob-
lem is shown to be in coNP by the following complementary non-
deterministic algorithm: Guess v′ ∈ [v]c and check (mv′

s , s) �|= π(s)

(resp. (mv′
s , s) |= π(s)). These checks can be done in polynomial

time, since evaluating a basic acceptance pattern does not involve
more than counting, finding minimal or maximal elements, and some
simple arithmetics; also computing the outcome for a Boolean com-
bination of basic acceptance patterns is then straightforward. With
this result the verification problem for admissible semantics is eas-
ily seen to be in coNP as well (matching the coNP result for ADFs
for this problem). Further membership results for other semantics
then follow in the same way as discussed in [17]. Thus, GRAPPA
systems provide a convenient and powerful language for specifying
acceptance functions without additional costs as compared to ADFs.

6 DISCUSSION

In this paper we introduced a semantical framework that allows us
to define Dung-style semantics for arbitrary labelled graphs. The ap-
proach rests on acceptance functions based on multisets of labels. We
introduced a pattern language for representing such functions, gave
various examples demonstrating the expressiveness of the approach,
and showed how it can be implemented via a translation to ADFs.

Dov Gabbay [12] analyzed argument (and other) graphs from an
equational point of view. This interesting work is very general and

highly abstract. However, it is far from immediate how it could di-
rectly be applied to the goals of this paper. In particular, our operator-
based semantic definitions for LAGs do not have a correspondence
in Gabbay’s work.

Analyzing various attempts to generalize Dung frameworks, Mod-
gil [15] recently coined the term abstract locution frameworks, that
is frameworks which represent the way people express their views in
their communication. We believe GRAPPA can be very helpful for
the specification of such frameworks, and in particular for equipping
them with a precise formal semantics, the necessary prerequisite for
automatic evaluation.

As to future work, we want to investigate refinements of the ADF-
based implementation: to keep acceptance conditions of the result-
ing ADF simple, techniques from SAT-based constraint solving [16]
could replace the naive translation given above. Another option is to
extend the Diamond system directly using special features of ASP
systems like weight constraints and aggregates. We also plan to ex-
plore LAGs where (i) sets of labels are assigned to edges; and (ii)
labels come with an internal structure, e.g. preferences among them.
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