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Abstract. Links are important for the publication of RDF data
on the web. Yet, establishing links between data sets is not an easy
task. We develop an approach for that purpose which extracts weak
linkkeys. Linkkeys extend the notion of a key to the case of different
data sets. They are made of a set of pairs of properties belonging to
two different classes. A weak linkkey holds between two classes if
any resources having common values for all of these properties are
the same resources. An algorithm is proposed to generate a small
set of candidate linkkeys. Depending on whether some of the, valid
or invalid, links are known, we define supervised and non super-
vised measures for selecting the appropriate linkkeys. The supervised
measures approximate precision and recall, while the non supervised
measures are the ratio of pairs of entities a linkkey covers (coverage),
and the ratio of entities from the same data set it identifies (discrim-
ination). We have experimented these techniques on two data sets,
showing the accuracy and robustness of both approaches.

1 Data interlinking

Linked (open) data is the publication of data by using semantic web
technologies [7]: data is expressed in RDF, eventually described by
an ontology and linked to other data sets through statements iden-
tifying equivalent resources. Usually, such statements are asserted
through triples between equivalent elements using the owl:sameAs
predicate. We call them sameAs links, or simply links. They are a
very important part of linked data.

It is thus critical to be able to generate relevant links between data
sources, what is called data interlinking. We consider the setting in
which users want to interlink data sets. They are able to identify
equivalent or overlapping classes of objects (this can also be pro-
vided through an ontology alignment) and they may be able to pro-
vide some examples of correct and incorrect links. Hence, we design
algorithms which, from a pair of classes in two data sets and option-
ally two sample sets of owl:sameAs and owl:differentFrom links, are
able to generate a set of owl:sameAs links.

Among the possible ways to produce links is the identification of
keys: sets of properties whose values characterize unique individuals.
We consider here linkkeys, i.e., keys that span across two data sets
and which identify unique individuals only for the available data. A
linkkey between a pair of classes is characterized by pairs of corre-
sponding properties {〈p1, q1〉, . . . 〈pn, qn〉} which together identify
unique entities. Weak linkkeys are required to be keys only on the
identified entities. A valid linkkey allows straightforwardly to gen-
erate links since entities bearing common values for these properties
are the same individual.

Our method first relies on generating all candidate linkkeys, i.e.,
maximal sets of property pairs for which there is at least two in-
stances sharing a value. Since there are several candidate linkkeys,

it is necessary to evaluate them and select the most promising ones.
For that purpose, we define measures of discriminability and cov-
erage for non supervised linkkey extraction and approximation of
precision and recall for the supervised case. We show through exper-
iments that they are good approximations of precision and recall and
that they are robust to data alteration.

So, after defining some notation (§2) and discussing prior art (§3),
we define more precisely the notion of a weak linkkey and provide an
algorithm for generating candidate linkkeys (§4). Such an algorithm
is able to drastically reduce the number of candidate linkkeys. Then
we provide measures for assessing their quality (§5). We evaluate
these measures and their robustness through an experiment based on
actual data (§6).

2 Notation and problem statement

Consider that we want to link two data sets D and D′ complying
to specific ontologies O and O′, respectively. We assume that the
ontologies are description logic TBoxes and the data sets are ABoxes
containing only c(a) and p(a, a′) axioms. The structure O = 〈O,D〉
will be called an ontology.

Let us assume that the vocabularies of O and O′ are disjoint. We
use the letters c, p, and a, with sub- or super-scripts, to denote class
and property expressions, and individuals names of O, respectively,
and we retain the letters d, q, b for those of O′.

The general task carried out by data interlinking is, given two data
sets D and D′, to find one set of relations between individuals of
D and D′. We restrict ourselves to finding equality statements be-
tween named individuals a and b from each data sets denoted by
〈a, owl:sameAs, b〉 or the pair 〈a, b〉. A set of such pairs is called a
link set and denoted by L.

We consider the subproblem of finding a set of links L between
instances of c and d from O and O′, given a set of links L0 between
D and D′ which does not contain links between c and d. L0 is used
for comparing property values of instances of c and d. Links may
be generated in an iterative way: first links are generated for classes
having only owl:DatatypeProperties, then the generated links may
be used for generating links based on owl:ObjectProperties involv-
ing these classes. In the following, p(a) ∩ q(b) means {x|O, L0 |=
p(a, x) and O′, L0 |= q(b, x)}.

3 Related works

There has been a lot of work recently on data interlinking [5] in part
inspired by the work on record linkage in databases [3].

Usually, one defines a similarity between resources based on their
property values and declares an owl:sameAs link between those
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which are highly similar [11]. The difficult part is to define the simi-
larity and what is “highly”. So, some works use machine learning in
order to set similarity parameters and thresholds from sample links
[12, 9]. Similarities do not attempt at defining what makes identity,
but rather require that as many features as possible be close enough.
There is no explicit assertion of what makes identity.

Keys in databases are sets of attributes (columns in a table) such
that two different individuals cannot have the same values for these
attributes. These are sufficient conditions for being the same. Hence,
interlinking may be based on keys.

In database, the extraction of keys has been mainly studied through
the discovery of functional dependencies. According to [18] there are
three kinds of methods for finding functional dependencies in data:
the candidate generate-and-test methods [8, 18, 13], minimal cover
methods [6, 17, 16], and formal concept analysis methods [10, 2].

Two methods have been proposed for discovering keys in RDF
data sets. KD2R [14] is a method based on the Gordian algorithm
[16] which derives keys from the maximal non keys.

The pseudo-key extraction method proposed by [1] follows the
candidate generate-and-test approach. Since it has been designed for
RDF data, it differs from the database methods, considering that
properties in the RDF model are not total functions like attributes
in the relational model. This makes optimizations and pruning rules
proposed by [8] and [18] not valid for RDF data.

So far, keys were extracted in each data set independently without
considering their interactions.

4 Extracting candidate linkkeys

The approach presented here extracts directly what we call linkkeys.
Linkkeys are adaptations of keys across different data sets. These
linkkeys are used for generating links, because, like keys, they find
equivalent objects. In principle, there are many candidate linkkeys.
Hence we present algorithms for exploring them efficiently.

4.1 Weak linkkeys and candidate linkkeys

Like alignments, linkkeys [4] are assertions across ontologies and are
not part of a single ontology. They are sets of corresponding proper-
ties from both ontologies which, for a pair of corresponding classes,
identify equivalent individuals. Various sorts of linkkeys may be de-
fined by requiring that they be keys on some parts of the datasets.
Weak linkkeys do only have to be keys for the set of linked entities.

Definition 1 (Weak linkkey) A weak linkkey between two classes c
and d of ontologies O and O′, respectively, is a set of property pairs

{〈p1, q1〉, . . . , 〈pk, qk〉}

such that p1, . . . , pk are properties in O and q1, . . . qk are properties
in O′, and ∀a;O |= c(a), ∀b;O′ |= d(b), if ∀i ∈ 1, . . . , k, pi(a) ∩
qi(b) �= ∅, then 〈a, owl:sameAs, b〉 holds.

Linkkeys are defined here with respect to the sharing of a value
for a property. They may also rely on the equality between prop-
erty values. The two notions are equivalent for functional properties.
Equality of property values can be seen as too restrictive, especially
across datasets. However, this problem can be partially solved by us-
ing methods such as value clustering or normalization.

Because they are sufficient conditions for two instances to denote
the same individual, they can be used for generating links: any pairs
of instances from the two classes which satisfy the condition must be

linked. We denote by LD,D′(r) the set of links that are generated by
a (candidate) linkkey r between data sets D and D′.

We present here a method to extract a superset of weak linkkeys
instantiated on the current data. Then, we show how to select the rele-
vant ones by assessing their quality through several selection criteria.

The approach generates all candidate linkkeys. We call candidate
linkkey a set of property pairs which is maximal for at least one link
it would generate if used as a linkkey.

Definition 2 (Candidate linkkey) Given two ontologies O and O′

and a set of links L0, {〈p1, q1〉, . . . , 〈pk, qk〉} is a candidate linkkey
for the pair of classes 〈c, d〉 iff ∃a, b such that

• ∀i ∈ 1 . . . k, pi(a) ∩ qi(b) �= ∅, and
• ∀〈p, q〉 �∈ {〈p1, q1〉, . . . , 〈pk, qk〉}, p(a) ∩ q(b) = ∅.

This simply means that we only consider as candidates sets of pairs
of properties that would generate at least one link that would not be
generated by any larger set.

D D′ Candidate linkkeys
〈a1, p1, v1〉 〈a2, p2, v4〉 〈b1, q1, v1〉 〈b2, q2, v2〉 {〈p1, q1〉, 〈p2, q2〉}
〈a1, p2, v2〉 〈a2, p3, v5〉 〈b1, q2, v2〉 〈b2, q2, v4〉 {〈p2, q2〉, 〈p3, q3〉}

〈a2, p1, v3〉 〈b2, q1, v1〉 〈b2, q3, v5〉

Table 1. Two sets of triples and the corresponding candidate linkkeys.

Table 1 shows an example of candidate linkkeys that hold be-
tween data sets D and D′. For instance, the set {〈p2, q2〉} that
would generate links 〈a1, b1〉, 〈a1, b2〉 and 〈a2, b2〉 is not a can-
didate linkkey because these links can also be generated by su-
persets {〈p1, q1〉, 〈p2, q2〉} and {〈p2, q2〉, 〈p3, q3〉}. Instead of the
23×3 = 512 possible sets of property pairs, there are only 2 candi-
date linkkeys.

Generating and checking all combinations of sets of property pairs
is not suitable due the exponential size of search space. In order to
extract them efficiently, we rely on several indexation steps.

4.2 Extraction algorithms

The extraction procedure is given by Algorithm 2. It first indexes, for
each data set, the set of subject-property pairs sharing at least one
value. Then it calls Algorithm 1 which iterates over these indexes in
order to generate another index associating each pair of subjects to
the maximal sets of properties on which they agree. From the values
contained in this last index, we can easily derive the set of candidate
linkkeys and count their occurrence.

indexDataset(D): indexDataset(D′): PropertyAgreement
v1 : {〈a1, p1〉} v1 : {〈b1, q1〉, 〈a1, b1〉

〈b2, q1〉} → {〈p1, q1〉, 〈p2, q2〉}
v2 : {〈a1, p2〉} v2 : {〈b1, q2〉, 〈a1, b2〉
v3 : {〈a2, p1〉} 〈b2, q2〉} → {〈p1, q1〉, 〈p2, q2〉}
v4 : {〈a2, p2〉} v4 : {〈b2, q2〉} 〈a2, b2〉
v5 : {〈a2, p3〉} v5 : {〈b2, q3〉} → {〈p2, q2〉, 〈p3, q3〉}

Table 2. Indexes computed by Algorithms 1 and 2 on the example of
Table 1.

In the worst case, if all subjects have the same predicate-object
pairs, time complexity is O(n2). In any case, we have to browse the
whole datasets which is in O(n). The practical complexity depends
on the number of subject-predicate pairs per object. Space complex-
ity is O(n), i.e., the sum of the triples in both datasets.
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Algorithm 1 Maximal property pairs agreement.
Input: Two o→{sp} indexes, idx and idx′

Output: An 〈s, s′〉 → {〈p, p′〉} index, i.e., the maximal agreeing
property pairs for each subject pair
function PROPERTYAGREEMENT(idx, idx′)

residx ← ∅

for all k belonging to both idx and idx′ keys do

for all 〈s, p〉 ∈ idx[k] do

for all 〈s′, p′〉 ∈ idx′[k] do

residx[〈s, s′〉] = residx[〈s, s′〉] ∪ {〈p, p′〉}
end for

end for

end for

return residx
end function

Algorithm 2 Candidate linkkey extraction.
Input: Two data sets D and D′

Output: The set of candidate linkkeys instanciated between D and
D′ and their occurency
function CANDIDATELINKKEYEXTRACTION(D,D′)

idx ← indexDataset(D)
idx′ ← indexDataset(D′)
agreementIdx ← PROPERTYAGREEMENT(idx, idx′)
for all {〈p1, p′1〉, ..., 〈pn, p′n〉} ∈ agreementIdx values do

linkkeys[{〈p1, p′1〉, ..., 〈pn, p′n〉}] + +
end for

return linkkeys
end function

5 Weak linkkey selection measures

Algorithm 2 extracts candidate linkkeys. These candidates are not
necessarily valid linkkeys. In order to compare candidates, we pro-
pose measures for assessing their quality. Two important and clas-
sical quality criteria are the correctness and the completeness of the
links that a candidate linkkey generates.

A good measure for assessing correctness a priori should approx-
imate the ranking of candidate linkkeys given a posteriori by its pre-
cision. In the same manner, a good measure for completeness should
approximate that of candidate linkkeys given by recall.

In the following, we propose measures that assess these two crite-
ria according to two scenarios: supervised and non supervised.

5.1 Measures for supervised selection: exploiting
owl:sameAs and owl:differentFrom links

In the supervised case, it is possible to directly approximate precision
and recall on the examples. Let be L+, a set of owl:sameAs links
(positive examples) and L−, a set of owl:differentFrom links (negative
examples), the set L+ ∪ L− can be considered as a sample. Hence,
it is possible to evaluate the behavior of LD,D′(r) on this sample,
i.e., compute the precision and recall of LD,D′(r)∩ (L+∪L−) with
respect to L+.

The quality of a candidate linkkey r can be evaluated by the two
classical correctness and completeness measures restricted to the
sample. They are defined as follows:

Definition 3 (Relative precision and recall)

̂precision(r, L+, L−) =
|L+ ∩ LD,D′(r)|

|(L+ ∪ L−) ∩ LD,D′(r)|

r̂ecall(r, L+) =
|L+ ∩ LD,D′(r)|

|L+|
When the sample only consists of owl:sameAs links, i.e., L− = ∅,
̂precision is not relevant. In that situation, we can artificially generate

owl:differentFrom links by partially closing the owl:sameAs links. To
that extent the following rule can be used: for each 〈a, b〉 ∈ L+, we
assume 〈a, x〉 ∈ L− for all x such that 〈a, x〉 �∈ L+ and O′ �|=
〈b, owl:sameAs, x〉, and 〈y, b〉 ∈ L− for all y such that 〈y, b〉 �∈ L+

and O �|= 〈a, owl:sameAs, y〉.
Given precision and recall, F-measure may be computed in the

usual way (F = 2PR
P+R

).

5.2 Measures for unsupervised selection

In case no sameAs link across data sets is available, we can only
rely on local knowledge for assessing the correctness of potentially
generated links.

Assuming that, in each data set, instances are distinct, then there
should not be more than one link involving one instance. So, a first
measure of quality is the capability of discriminating between in-
stances, i.e., that the link set is one-to-one. We then propose to mea-
sure the correctness of a candidate linkkey by its discriminability
which measures how close the links generated by a candidate linkkey
are to a one-to-one mapping.

Definition 4 (Discriminability)

disc(r) =
min(|{a|〈a, b〉 ∈ LD,D′(r)}|, |{b|〈a, b〉 ∈ LD,D′(r)}}|)

|LD,D′(r)|
It is equal to 1, when links are a perfect one-to-one mapping

and is lower-bounded by (|{a|〈a, b〉 ∈ LD,D′(r)} × {b|〈a, b〉 ∈
LD,D′(r)}|.

For assessing the completeness of a candidate linkkey, we rely on
the intuition that the more instances linked by a candidate linkkey,
the more complete the candidate linkkey is. Then, the coverage of
a candidate linkkey is defined as the proportion of instances of both
classes that could be linked.

Definition 5 (Coverage)

cov(r,D,D′) =
|{a|〈a, b〉 ∈ LD,D′(r)} ∪ {b|〈a, b〉 ∈ LD,D′(r)}|

|{a|c(a) ∈ D} ∪ {b|d(b) ∈ D′}|
The coverage measure always favors the most general linkkey

candidates: if r′ ⊆ r, then LD,D′(r) ⊆ LD,D′(r′), so
cov(r′, D,D′) ≥ cov(r,D,D′).

Using both coverage and discriminability strikes a balance be-
tween the completeness and generality of candidate linkkeys. They
can be aggregated by harmonic means just like F-measure does.

6 Experimental evaluation

The accuracy and robustness of the proposed quality measures have
been experimentally evaluated1. Our goal is to assess that proposed
measures help to select the best candidate linkkeys in term of pre-
cision and recall. To that extent, we performed two series of experi-
ments evaluating discriminability and coverage on the one hand, and
partial precision and recall on the other hand. Both series of experi-
ments use on the same data sets.
1 All the material allowing to reproduce experiments is available at http:
//melinda.inrialpes.fr/linkkey/
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6.1 Data sets

We have experimented with geographical data from INSEE and
GeoNames data sets2. INSEE comprehends data about French ge-
ography, economy and society, whereas GeoNames is a world-wide
geographical database. We have concentrated on the fragment of IN-
SEE which corresponds to geographical data (available as an RDF
dump), and the fraction of GeoNames corresponding to French geo-
graphical data (retrieved by querying in the whole data set individu-
als with FR as value for the property countryCode),3 for which there
exist owl:sameAs links to INSEE. The INSEE data set covers 36700
instances; GeoNames contains 36552 instances. The reference link
set maps each instance of commune in GeoNames to one and only
one commune in INSEE. So, 448 INSEE instances are not linked.

Our objective is to extract candidate linkkeys between classes rep-
resenting the French municipalities of these two data sets and evalu-
ate them according to the different selection criteria.

In both data sets, these instances are also described as part
of broader administrative regions which are themselves described
within each data set. In the experiments, links between these admin-
istrative regions are part of L0.

6.2 Experimental protocol

Two series of test are performed respectively for the unsupervised
and supervised selection measures.

For the the first series, candidate linkkeys between the two data
sets are extracted with the given algorithm and the ranking given by
discriminability and coverage are compared to those given by preci-
sion and recall.

Then, a set of derivative tests simulating perturbed interlinking
scenarios are performed. They extract and evaluate candidates on al-
tered versions of the data sets. Different kinds of alterations are per-
formed: (1) triples removal: we randomly suppress some triples; (2)
values scrambling: we randomly scramble the object of some triples;
(3) instance removal: instances are randomly removed by suppress-
ing all triples involving them. For each series of tests, the probability
of degradation varies from 0 to 0.9 by step of 0.1.

The second series of tests evaluates the behavior of supervised
selection measures when the size of the positive examples varies. To
that extent, the probability that a owl:sameAs link from the reference
be in L+ varied from 0 to 0.9 by step of 0.1. L− is generated from
owl:sameAs links according to Section 5.1.

For both series, 10 runs are performed and their results averaged.

6.3 Results

Unsupervised selection measures There are 7 property pairs that
have been found in candidate linkkeys. They are:

P5 = 〈codeINSEE, population〉 P1 = 〈nom, name〉
P6 = 〈codeCommune, population〉 P2 = 〈nom, alternateName〉
P3 = 〈subdivisionDe, parentFeature〉 P7 = 〈nom, officialName〉
P4 = 〈subdivisionDe, parentADM3〉

The algorithms extracted eleven candidate linkkeys which are de-
tailed in Table 3. Their relations are provided in Figure 1

2 http://www.insee.fr/, http://www.geonames.org/
3 We omit to use prefixes as the two data sets are written in distinct languages

(French and English).

k1 k2 k3 k4

k5 k6 k7 k8

k10 k9

k11
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Figure 1. The set of candidate linkkeys. This is a subset of the powerset
lattice 〈2P×P ′

,⊆〉, but not a lattice.

Among the 11 candidate linkkeys, 8 have a precision greater or
equals to 0.8. These candidates are k1 and its specializations and
k8. Three have good recall, for all the others recall is very low, i.e.,
less than 0.3%. Only k1 and k7 have a good F-measure, with a clear
superiority of the last one. The first candidate does not have a per-
fect precision because there are different communes in France with
the same name, but these communes can be distinguished by the ar-
rondissement they belong to. As an example, Bully may refer to three
communes: Bully in Dieppe, Bully in Lyon, and Bully in Roanne4.

Coverage values are strongly correlated to those given by re-
call. This confirms our expectation. There is also a good correla-
tion between discriminability and precision, except for the candi-
date k4 = {〈codeINSEE,population〉, 〈codeCommune,population〉}.
Indeed, codeINSEE and codeCommune are two equivalent identifiers
of French communes. They are obviously not related to the popula-
tion property which is the number of inhabitants, but 354 pairs of
instances share the same values for this properties. This candidate
linkkey has a good discriminability because its properties are them-
selves discriminant. This shows that the discriminability alone is not
sufficient.

Thus, the best linkkey given by F-measure is not one of the most
simple rule like k1, but one with an intermediate position in the graph
of Figure 1: k7. This is correctly predicted by the harmonic means of
coverage and discrimination. Here again, Pearson value correlation
is optimal, while the Kendall rank correlation is hurt by k4’s high
rank in discriminability. k7 generates 35689 links out of the 36546
expected links and all these links are correct. The missing links
are due to missing links between parent regions in L0 and differ-
ences in spelling, e.g., Saint-Étienne-de-Tulmont vs. Saint-Etienne-
de-Tulmont. This could be improved by using a priori normalization
or less strict constraints than inclusion.
Robustness The number of generated linkkey candidates is stable
when instances are removed or triples are scrambled5 but it increases
when triples are removed. It reaches a maximum of 33 candidates
at 30% of triple removed, then it decreases. Indeed, when triples are
removed some pairs of instances agree on less properties and then
more general candidates are generated. The majority of these candi-
dates still have a very low coverage (and recall).

Figure 2 shows that when alterations increase, the discriminability
remains stable for the majority of linkkeys candidates. Candidates
showing less smooth curves are candidate linkkeys generating few
links, i.e., with low coverage. For candidates k1 and k3, two candi-
dates having good recall but not perfect precision, we observe that
discriminability increases more rapidly when removed triples or in-

4 Here we refer to the arrondissements, and not the homonymous cities.
5 In that last case, only one more candidate is generated.
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Candidate linkkeys Quality estimators Reference 10% of reference

name pairs # links disc. hmean cov. prec. F-m. rec. prec. F-m. rec.

k1 {P1} 45 654 0.801 0.889 0.998 0.8 0.889 1 0.68 0.809 0.999
k2 {P2} 19 0.79 0.002 0.001 0.579 0.002 0.001 0.434 0 0
k3 {P3, P4} 5 331 816 0.007 0.014 0.975 0.007 0.014 0.977 0.004 0.008 0.978
k4 {P5, P6} 354 0.984 0.02 0.01 0 0 0 0 0 0
k5 {P7, P1} 44 0.887 0.004 0.002 0.887 0.004 0.002 0.918 0.002 0.001
k6 {P2, P1} 11 0.819 0.002 0.001 0.819 0.002 0.001 0.778 0 0
k7 {P3, P4, P1} 35 689 1 0.987 0.975 1 0.988 0.976 1 0.988 0.977
k8 {P3, P2, P4} 11 1 0.002 0.001 1 0.002 0.001 1 0 0
k9 {P3, P2, P4, P1} 9 1 0.002 0.001 1 0.002 0.001 1 0 0
k10 {P3, P7, P4, P1} 39 1 0.004 0.002 1 0.004 0.002 1 0.002 0.001
k11 {P3, P7, P2, P4, P1} 2 1 0 0 1 0 0 1 0 0

Correlations to the reference

Pearson ρ 0.645 1 1 0.99 0.999 1
Kendall τb (all p-values < 0.01) 0.778 0.695 0.723 1 0.911 0.911

Table 3. Candidate linkkeys and quality estimation in the non supervised case and the supervised case with 10% links.
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Figure 2. Evolution of discriminability and coverage measures in function of the degradation of data sets. A curve stops when the confidence is not
computable, i.e., there is no owl:sameAs link generated by the candidate linkkey. When less instances are available, more candidates are generated.

stances increase. These two candidates have more stable discrim-
inability values when objects of triples are scrambled. For candidates
having not a very low coverage, these tests show that discriminability
is robust until at least 50% of alterations.

Coverage is less robust to alterations. When linkkey candidates
generate one-to-one link sets, the coverages values decreases when
alterations increase. On the instance removal test, we observe a lin-
ear decrease for candidate linkkeys which generates one-to-one map-
ping. For k3 which tends to a many-to-many mapping, the coverage
curve is stable. This is in line with Definition 5 (coverage). Indeed,
if a linkkey is one-to-one, each time one instance is suppressed, one

link will be suppressed. Hence the numerator is decreased of two
units while the denominator is decreased by only one unit. In the
case of the cartesian product, these two quantities will decrease at
the same speed. In the case of triple removal or scrambling, the prob-
ability that an alteration removes a link is higher than that it removes
an instance. Then, the coverage measure decreases even faster when
the probability of alteration increases.

However, we observe that the order of linkkey candidates given by
coverage is preserved in most of the cases. For instance, rule k1 has
always better coverage than k7. This behavior shows that coverage is
a good estimator of the linkkey candidates ranking given by recall.
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Supervised selection measures When the amount of reference
owl:sameAs links varies, the precision value is constant for the ma-
jority of linkkey candidates (7/11) (see Figure 3). These candidates
are those having extreme precision value, i.e., either 1 or 0. For the
other four candidates, the precision slowly and linearly decreases
from 100% to 50% of owl:sameAs. Under 50% of reference links,
three of these candidates do not have a stable trend anymore. This is
caused by the low number of links they generate. The last candidate,
k1, which generates much more links, has a more stable precision.
The recall values are perfectly robust to the variation of sample links.

The rankings given by precision and recall remain the same when
the sample links decrease. It is thus possible to select good linkkey
candidates when we have only a sample of reference owl:sameAs
links (Table 3 provides the estimation with 10%). This behavior has
also been shown in ontology matching [15]
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Figure 3. Evolution of precision and recall measures in function of the
ratio of owl:sameAs links in L+. A curve stops when confidence is not
computable, i.e., there is no owl:sameAs link generated by the candidate

linkkey (Legend as of Figure 2).

7 Conclusions and perspectives

Linkkeys are sets of pairs of properties characterizing equivalence.
They can be used for generating links across RDF data sets. We pro-
vided an algorithm for enumerating a restricted number of linkkey
candidates and provided measures for evaluating the quality of these
candidates. We experimentally observed that these measures select
the best candidate in both the supervised and non supervised case.
They are also robust to mistakes in the data sets and sample links.

Other measures, such as consistency, may be used in addition but
they require expressive alignments which are not often available.

This setting is well suited for finding one-to-one linksets. Estab-
lishing similar measures for many-to-many correspondences is an
open question.
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