
On The Properties of Belief Tracking for Online
Contingent Planning using Regression

Ronen Brafman and Guy Shani1

Abstract. Planning under partial observability typically requires
some representation of the agent’s belief state – either online to de-
termine which actions are valid, or offline for planning. Due to its
potential exponential size, efficient maintenance of a belief state is,
thus, a key research challenge in this area. The state-of-the-art fac-
tored belief tracking (FBT) method addresses this problem by main-
taining multiple smaller projected belief states, each involving only a
subset of the variable set. Its complexity is exponential in the size of
these subsets, as opposed to the entire variable set, without jeopardiz-
ing completeness. In this paper we develop the theory of regression
to serve as an alternative tool for belief-state maintenance. Regres-
sion is a well known technique enjoying similar, and potentially even
better worst-case complexity, as its complexity depends on the ac-
tions and observations that actually took place, rather than all actions
and potential observations, as in the FBT method. On the other hand,
FBT is likely to have better amortized complexity if the number of
queries to the belief state is very large. An empirical comparison of
regression with FBT-based belief maintenance is carried out, show-
ing that the two perform similarly.

1 Introduction

To plan and act in a partially observable domain, an agent typically
maintains some representation of its state of knowledge online. A
complete description of the agent’s state of knowledge, consisting of
the set of possible states of the world (or a distribution over possi-
ble states, in the probabilistic case), is called the agent’s belief state.
Many planners for partially observable domains search directly in the
space of belief states, known as the belief space.

Maintaining and updating an explicit belief state can be expensive
because the number of possible states of the world can be exponen-
tial in the description size of a single state, i.e. the number of state
variables. Thus, directly maintaining sets of states becomes unman-
ageable both space and time-wise as the problem grows. To alleviate
this, methods that maintain a more compact, symbolic description
of the set of possible states have been developed, such as methods
based on BDDs [1], prime-implicates, CNFs, and DNFs [10]. Unfor-
tunately, symbolic representations also have an exponential worst-
case description, and when not, may be expensive to update. Fur-
thermore, every representation that was suggested thus far, while be-
ing very compact for certain benchmark problems, demonstrated the
worst-case performance on other benchmarks.

Still, planning algorithms can benefit from an important observa-
tion [4] — during planning and plan execution it is sufficient for the
agent to answer only two types of queries with respect to a belief

1 Ben Gurion University, {brafman/shanigu}@bgu.ac.il

state: has the goal been achieved, and for each action, is it applica-
ble, i.e., are its preconditions satisfied in this belief state. Further-
more, assuming conjunctive goals and preconditions, one need only
need to check whether literals appearing in the goal and in actions
preconditions are satisfied in the current belief state.

Bonet and Geffner leverage this insight to introduce a method that
maintains multiple small belief states [2, 3], which are abstractions
of the real belief state. Each abstraction contains enough information
to answer one query, that is, to assess the value of a single variable.
Often the value of a single variable depends only on the value of a
small subset of the state variables, called relevant variables. As such,
these abstract beliefs can be considerably smaller, requiring space ex-
ponential in the number of relevant variables only, which is known as
the problem causal width. Using this representation, called factored
belief tracking (FBT), Bonet and Geffner show an impressive scaling
up to much larger problems.

The CFF algorithm [4] introduced an implicit representation of
belief states. It maintains a copy of the state variables for every time
point, together with constraints over the value of these variables (as
in a SAT encoding of planning problems). This representation grows
linearly with the number of actions executed and answering a query
regarding the current value of a variable requires solving an UN-
SAT problem. As information is obtained, the representation and
constraints concerning earlier stages can be simplified.

Regression-based belief maintenance takes this lazy approach a
step forward, maintaining only the initial belief state, the set of ac-
tions executed, and sensed observations [9]. This approach is similar
in spirit to the Situation Calculus [5] where a state is represented in
terms of the initial state and sequence of actions. Using this infor-
mation, one could regress the conditions required currently (e.g., p)
towards the initial belief state. If the regressed condition is implied
by the initial state then we know that p holds now. Otherwise, there
exists some current possible state that does not satisfy p. In earlier
work [9], we showed that, empirically, the regression-based method,
coupled with some caching, is significantly more efficient than CFF’s
method over current benchmark problems.

In this paper we provide a detailed description of the regression
method and its use for belief-state maintenance. We focus on on-
line belief maintenance, where, after having performed a sequence
of actions and observing some observations, the agent must deter-
mine whether the goal or a precondition literal l hold. This is a
slightly simpler task than offline belief maintenance, where the agent
must consider arbitrary hypothetical sequences, and for each such
sequence, not only determine the resulting belief state, but also, de-
termine whether this sequence is possible.

Our first contribution is to extend Rintanen’s formalism of regres-
sion [7] to handle observations, allowing for the use of regression

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-147

147

for belief-state queries in domains with partial observability. Earlier
work on this topic [8] considered offline regression of whole branch-
ing plans, resulting in a more complex formalism that could be useful
for offline planning. We show that regression enjoys similar com-
plexity bounds to the FBT because one can ensure that the regression
formula will contain relevant variables only. This occurs without ef-
fort when regressing actions, and provided that only observations rel-
evant to the queries are regressed. Finally, we conduct experiments
comparing belief update and query time of the regression method to
approximate FBT, showing regression to be very efficient, scaling up
similarly.

2 Background

We define the contingent planning model, its specification language,
and review causal belief tracking and the concept of problem width.

Model: We focus on contingent planning problems with sens-
ing. A contingent planning problem is a tuple of the form
〈S, S0, SG, A, Tr, Ω, O〉, where S is a set of states, S0 ⊆ S is the
set of possible initial states, also called the initial belief state and is
often denoted bI , SG ⊆ S is the set of goal states, A is a set of action
symbols, and Tr is the transition function, such that Tr(s, a) ⊆ S
is the set of states that can be reached by applying a in state s, Ω is
a set of observation symbols, and O(a, s′) ∈ Ω is the observation
obtained when s′ is reached following the application of a.

At each point in execution, there is a set of states considered pos-
sible, called the current belief state. bI is the initial belief state, and
if b is the current belief state, a is executed, and o is observed then
the resulting belief state τ(b, a, o) is defined as:

τ(b, a, o) = {s′|s ∈ b and , s′ ∈ Tr(s, a), o ∈ O(a, s′)} (2.1)

That is, states s′ that can result from the execution of a in a state in
b, such that o can be observed. We extend this notation to a sequence
ā, ō of actions and observations recursively as follows:

τ(b, ā · a, ō · o) = τ(τ(b, ā, ō), a, o) (2.2)

Language: A contingent planning problem is specified as a tuple
〈P,A, ϕI , G〉. P is a set of propositions, A is the set of actions, ϕI

is a propositional formula over P in prime implicate form describing
the possible initial states, and G ⊂ P is the set of goal propositions.

A state of the world s assigns a truth value to all elements of P . A
belief-state is a set of possible states, and the initial belief state, bI ,
consists of the set of states initially possible, i.e. S0 = bI = {s : s |=
ϕI}. The goal is to arrive at a belief state in which all propositions in
G hold, i.e., SG = {s ∈ S such that s |= gi for every gi ∈ G}. We
assume ϕI is in prime implicate form; this does not restrict the gen-
erality of the language. Alternatively one can assume multi-valued
variables and an initial belief formula in the restrictive form of a
conjunction of literals. To get an arbitrary initial state, one can add
an artificial “initiating” action [2, 3], moving the complexity of the
initial state into that action. There are sound reasons for this choice,
but we prefer to use a non-restrictive initial state formula in a com-
putationally efficient form. Unlike methods that have to progress the
belief state in PI form, we require it from the initial state only.

A deterministic action, a ∈ A, is a triple: {pre(a), effects(a),
obs(a)}. We shall use the more common a(s) to denote Tr(s, a).
The action precondition, pre(a), is a set of literals. The action ef-
fects, effects(a), is a set of pairs, (ca,l, l), denoting conditional ef-
fects, where ca,l is a propositional formula and l is a literal. For
notational convenience, we’ll assume one condition ca,l exists for

Figure 1: Localize 3 × 3. The goal is to get to cell 3, 3.

every action a and literal l2. In practice, ca,l = false for most liter-
als, l, i.e., l is typically not a possible conditional effect of a, and this
pair can be omitted. obs(a) is also a set of pairs, {(ωa,o, o)|o ∈ Ω},
where ωa,o is a propositional formula over P and o ∈ Ω.3 Thus,
o = O(a, s′) iff s′ |= ωa,o.

Since one observation must occur following the execution of an
action,

∨
o∈Ω ωa,o = true for every a ∈ A. As sensing is determin-

istic, the ωa,o for different o’s are mutually exclusive. Our implemen-
tation uses special no-obs observations denoting nothing-observed,
but as no-obs can be treated like any other observation, we make no
special distinction between it and “real” observations.

For deterministic actions, if s �|= pre(a) then a(s) is undefined.
Otherwise, a(s) satisfies l iff either (i) s |= ca,l or (ii) s |= l∧¬ca,¬l.

We assume consistency, i.e., for every proposition p and action a:
ca,p and ca,¬p are inconsistent. That is, an action a executed in any
state s cannot make both p and ¬p true.

A non-deterministic action is defined as a set of deterministic ac-
tions, a = {a1, . . . , am}, one of which is non-deterministically
selected when a is executed. The actions in this set are restricted
to have an identical precondition, i.e., for all 1 ≤ i, j ≤ m,
pre(ai) = pre(aj). The set of states that are possible following
the execution of a in s is thus a(s) = a1(s) ∪ · · · ∪ am(s). How-
ever, each time a is executed, exactly one of its elements, ai occurs,
and the actual outcome is ai(s). This means that o ∈ O(a, s′) iff
o ∈ O(ai, s′) for some 1 ≤ i ≤ m.

We restrict our attention to deterministic observations: every non-
deterministic observation can be compiled away by adding an ob-
servable state variable, whose value changes non-deterministically
following the action, representing the observation result.

Example 1. As a running example, consider the Localize problem
(Figure 1), where an agent in a grid must reach the top-right cell. The
agent moves deterministically, and has a sensor that observes nearby
walls. In this domain we have 4 movement actions, each with condi-
tional effects modifying the agent location. For example, the move-
up action would have a conditional effect (at3,1,¬at3,1 ∧ at3,2),
denoting that if the agent was at x = 3, y = 1 prior to the ac-
tion, it is at cell x = 3, y = 2 following the action. The sen-
sor activation action checking has conditional effects for specify-
ing nearby walls. For example, it would contain a conditional ef-
fect (at3,1,¬wallup ∧ walldown ∧ wallright ∧ ¬wallleft). There
are 2 observations, RED denoting a wall, and GREEN denoting
no wall, and 4 sensing actions, with ωsensed,RED = walld and
ωsensed,GREEN = ¬walld, d ∈ {up, down, left, right}.

2 In our examples, though, for ease of exposition, we abuse notation and
allow conditional effects of the form (c, e) where c is a formula and e is a
conjunction of literals.

3 Formally, Ω is specified implicitly as the set of observation symbols appear-
ing in actions in A.

R. Brafman and G. Shani / On The Properties of Belief Tracking for Online Contingent Planning Using Regression148

2.1 Belief Tracking

In some applications belief tracking may require consistent mainte-
nance of the current belief state of the agent. For planning algorithms
we can focus on a narrower scope, which requires only answering
specific queries concerning the set of possible states.

We distinguish between case of belief tracking for offline plan-
ning algorithms and online planning algorithms. In offline planning,
given a sequence of actions ā and a sequence of observations ō, the
agent must know whether the sequence is executable starting from
bI , that is, whether τ(bI , ā, ō) �= ∅, and whether the goal is satisfied
following the sequence, i.e., whether τ(bI , ā, ō) |= G [2].

In online planning, where an agent computes at each step the next
action to perform, the task is slightly different. The agent has al-
ready executed a sequence of actions, ā, successfully, and sensed a
sequence ō of observations (i.e., the execution history). Thus, obvi-
ously τ(bI , ā, ō) �= ∅, and the agent only needs to query, for a given
literal l, whether τ(bI , ā, ō) |= l.

Computationally, the two problems are closely related. One can
check whether a sequence of actions and observations is possible in
a belief state by checking whether the preconditions of each action
hold following the prefix of actions and observation that precedes
it, and whether the condition ωa,o holds for each action and sensed
observation following the relevant prefix. Checking the applicability
of an action requires one online belief-tracking query for each of its
preconditions. However, checking whether an observation is possible
could be complex, as ωa,o is not necessarily a conjunction. Thus, one
can answer an online belief-tracking query using one offline query,
but not necessarily vice versa. We further discuss this issue later.

2.2 Problem Width

Bonet and Geffner [2] introduce a measure of the complexity of be-
lief tracking, called causal width. Essentially, it is the number of
variables that must be maintained when answering a belief tracking
query regarding the value of some proposition p.4

Definition 1 (BG). p is an immediate cause of a variable q, written
p ∈ Ca(q) iff p �= q and p occurs (possibly negated) in the body c of
a conditional effect (c, l) of some action a, and l ∈ {q,¬q}. For an
observation o, p ∈ Ca(o) is similarly defined, where c is replaced
by ωa,o.

Definition 2 (BG). p is causally relevant to q if p = q or p ∈ Ca(q)
or p ∈ Ca(r) and r is causally relevant to q.

Definition 3 (BG). o ∈ O is evidentially relevant to q if q is casually
relevant to o.

Definition 4 (BG). p is relevant to q if p is casually or evidentially
relevant to q, if p and q appear in the same clause in ϕI

5 , or if p is
evidentially or causally relevant to r, and r is relevant to q.

Intuitively, the variables relevant to p are variables whose value
could impact the value of p in the future because their value deter-
mines whether p will be a conditional effect of some action or not;
or because these variables impact our ability to make an observation
that will impact our belief regarding whether p holds or not.

4 An alternative notion of width exists [3], which is useful for approximate
belief tracking, but less relevant to this paper.

5 BG’s original definition does not consider the case that p and q appear in
the same initial clause because of their assumption that all initial clauses
are singletons.

Definition 5 (BG). The causal width of a variable p, w(p) is the
size of the context set of p: ctx(p) = {q|q is relevant to p}. The
causal width of a planning problem 〈P,A, ϕI , G〉 is max{w(p)|p ∈
P appears in the goal or a precondition}.

Computing the context set of a variable p is a simple low-order
poly-time procedure.

In many problems some variables are always known, or deter-
mined — their values are known initially and change only determin-
istically, conditioned on the value of other determined variables. This
means that at each time point during the execution of a valid sequence
of actions, their value is the same in all possible states. Thus, one can
easily track their value independently of all other variables, paying
linear time and space for each update. For the purpose of our analysis
of belief tracking, we ignore these variables.

We now define a natural extension of width to the online setting,
i.e., in the context of an action-observation sequence:

Definition 6. wā,ō(p), the width of variable p w.r.t. ā and ō is the
width of p with respect to the original planning problem, restricted
to the set of actions appearing in ā and the set of observations ap-
pearing in ō.

The following notion will be useful to us later:

Definition 7. Observation o resulting from action a is relevant to p
if ωa,o contains a proposition relevant to p.

3 Regression

We review Rintanen’s [7] formalization of regression and extend it
to address observations. First, we define the applicability of actions.
Next we define regression over a single action with no observation,
and then extend the results to regression over an observation. Finally,
we discuss regression over a sequence of actions and observations.

3.1 Applicability

An action is applicable in state s if s satisfies its preconditions,
i.e., s |= pre(a). An action is applicable in a set of states S if
S |= pre(a), that is, ∀s ∈ S, s |= pre(a). An action a is applicable
given the initial belief state bI and an action-observation sequence
ā, ō if a is applicable in τ(bI , ā, ō). Finally, a1, . . . , an; o1, . . . , on

is applicable in a belief state b iff for every i = 1, . . . , n ai is appli-
cable in τ(b, a1, . . . , ai−1, o1, . . . , oi−1).

3.2 Regression Without Observations

Let φ be a propositional formula and a a deterministic action. Re-
call that ca,l is the condition under which l is an effect of a. The
regression of φ with respect to a is:

rga(φ) = pre(a) ∧ φr(a) (3.1)

φr(a) = replace each literal l in φ by ca,l ∨ (l ∧ ¬ca,¬l) (3.2)

Example 2. Let us assume that the agent has executed a move-up
action, and now regresses the formula φ = at3,2. The precondition
of move-up is ¬wallup. There is one condition in move-up that adds
at3,2, (at3,1,¬at3,1∧at3,2), and there is one condition that removes
it, (at3,2,¬at3,2∧at3,3). Thus, the regression is ¬wallup∧ (at3,1∨
(at3,2 ∧ ¬at3,2)). Simplifying, we get ¬wallup ∧ at3,1.

Lemma 1. 1. (φ1 ∧ φ2)r(a) = (φ1)r(a) ∧ (φ2)r(a)

R. Brafman and G. Shani / On The Properties of Belief Tracking for Online Contingent Planning Using Regression 149

2. (φ1 ∨ φ2)r(a) = (φ1)r(a) ∨ (φ2)r(a)

3. If φ is not a literal then (¬φ)r(a) = ¬(φr(a))

Proof. As φr(a) is a syntactic manipulation of the formula φ that is
a point-wise replacement of each literal by a formula, the above is
immediate.

Theorem 1. [Rintanen08] Given a formula φ, a deterministic action
a, and a state s, s |= rga(φ) iff a is applicable in s and a(s) |= φ.

For a non-deterministic action a = {a1, . . . , am} define [7]:

rga(φ) = rga1(φ) ∧ · · · ∧ rgam(φ) (3.3)

For the non-deterministic case we have:

Theorem 2. [Rintanen08] Let φ be a formula, a an action, and s
a state. Then s |= rga(φ) iff a is applicable in s, and for every
s′ ∈ a(s), s′ |= φ.

3.3 Regression with Observations

We now extend regression to an action and an ensuing observation.
Suppose we want to validate that φ holds following the execution
of a in some state s given that we observed o. Thus, we need to
ensure that following a, if ωa,o holds then φ holds. This leads to the
following definition:

rga,o(φ) = rga(ωa,o → φ) (3.4)

Theorem 3. Given a formula φ, an action a, an observation o, and
a state s, s |= rga,o(φ) iff a is applicable in s and τ({s}, a, o) |= φ.

Proof. s |= rga,o(φ) iff (by definition) s |= rga(ωa,o → φ) iff
(Theorem 2) a is applicable in s and for every s′ ∈ a(s), s′ |=
ωa,o → φ. By definition, s′ |= ωa,o iff o = O(a, s′). Thus, s |=
rga,o(φ) iff a is applicable in s and for every s′ ∈ a(s), we have that
o = O(a, s′) implies s′ |= φ. To conclude the proof, τ({s}, a, o)
contains precisely all states in a(s) in which it is possible to observe
o following a.

The following is an immediate corollary:

Corollary 1. For a belief state b, b |= rga,o(φ) iff a is applicable in
b and τ(b, a, o) |= φ.

When s |= rga,o(φ) it is not necessarily the case that o can be
observed following the execution of a in s, only that if o is observed
then φ must hold. Thus, the regression of an observation cannot be
decomposed: rga,o(φ) �≡ rga(ωa,o) → rga(φ)

While rga,o(φ) implies rga(ωa,o) → rga(φ), the other direction
is false for non-deterministic actions. For example, suppose that a
has two possible effects, p,¬p, and they are observable. rega(p),
however, is false because there is no condition under which we are
guaranteed to see p after a. For deterministic actions, however:

Theorem 4. Given a formula φ, a deterministic action a, an obser-
vation o, and a state s, s |= rga,o(φ) iff s |= rga(ωa,o) ⇒ s |=
rga(φ).

Proof. s |= rga,o(φ) iff (by definition) s |= rga(ωa,o → φ) iff a is
applicable in s and a(s) |= ωa,o → φ; iff a is applicable in s and
a(s) |= ωa,o implies a(s) |= φ;6 Using Theorem 2 a is applicable
in s and a(s) |= ωa,o iff s |= rga(ωa,o) and a is applicable in s
and a(s) |= φ iff s |= rga(φ). Consequently, s |= rga,o(φ) iff
s |= rga(ωa,o) implies s |= rga(φ), as required.

6 When a is non-deterministic, only one direction of the last step is valid, i.e.,
a(s) |= φ → ψ implies a(s) |= φ ⇒ a(s) |= ψ, but a(s) |= φ ⇒
a(s) |= ψ does not imply a(s) |= φ → ψ.

Finally, regression has a number of useful properties:

Theorem 5. For any two formulas φ1 and φ2 we have:

1. φ1 ≡ φ2 ⇒ rga,o(φ1) ≡ rga,o(φ2)
2. φ1 ≡ φ2 ⇒ rga(φ1) ≡ rga(φ2)
3. rga,o(φ1 ∧ φ2) ≡ rga,o(φ1) ∧ rga,o(φ2)
4. For deterministic a, rga,o(φ1 ∨ φ2) ≡ rga,o(φ1) ∨ rga,o(φ2)

Proof. 1. Follows immediately from τ({s}, a, o) |= φ1 iff
τ({s}, a, o) |= φ2 and Theorem 3.

2. Identical to 1, using Theorem 2 instead of Theorem 3.
3. Suppose s |= rga,o(φ1∧φ2). By Theorem 3 τ({s}, a, o) |= φ1∧

φ2, implying τ({s}, a, o) |= φ1 and τ({s}, a, o) |= φ2. Applying
Theorem 3 again, we get s |= rga,o(φ1) and s |= rga,o(φ2). The
other direction is identical.

4. Same as 3, noting that for deterministic a τ({s}, a, o) |= φ1 ∨ φ2

implies τ({s}, a, o) |= φ1 or τ({s}, a, o) |= φ2.

3.4 Regression Over a Sequence

We extend the definition of regression recursively to a sequence of
actions and observations ā, ō as follows:

rgā·a,ō·o(φ) = rgā,ō(rga,o(φ)); rgε,ε(φ) = φ (3.5)

where ε is the empty sequence.
Theorem 3 generalizes as follows:

Theorem 6. Given a formula φ, an action-observation sequence
ā, ō, and a belief state b, b |= rgā,ō(φ) iff ā, ō is applicable in b
and τ(b, ā, ō) |= φ.

Proof. Proof by induction on |ā|. The base case is immediate. For
the inductive step: b |= rgā·a,ō·o(φ) iff (by definition of rg) b |=
rgā,ō(rga,o(φ)) iff (using the inductive hypothesis) ā, ō is appli-
cable in b and τ(b, ā, ō) |= rga,o(φ). Applying Corollary 1, this
holds iff a is applicable in τ(b, ā, ō) and τ(τ(b, ā, ō), a, o) |= φ.
As τ(τ(b, ā, ō), a, o) = τ(b, ā · a, ō · o) the latter is equivalent to:
ā ·a, ō ·o is applicable in b and τ(b, ā ·a, ō ·o) |= φ, as required.

4 Belief Tracking by Regression

Bonet and Geffner [2] track the belief state by progressing, for ev-
ery p ∈ P , the belief state projected to the context set of p, which
they call a beam. This set is closed under relevance, so it is easy
to maintain, and it contains p. To determine if p holds, they check
whether all belief states in this set satisfy p. This yields a sound and
complete method for belief tracking, called factored belief tracking
(FBT). They later [3] proposed an incomplete version of FBT, called
causal belief tracking (CBT).

Theorem 7 (BG). The time and space complexity of online belief
tracking over a propositional description using FBT is O(2w), where
w is the width of the problem.

4.1 Method and Properties

We propose an alternative method for online belief tracking based on
regression, which is a direct consequence of Theorem 6:

Theorem 8. For any literal l and action-observation sequence ā, ō
that was applied in bI , we have that τ(bI , ā, ō) |= l iff bI |= rgāō(l).

R. Brafman and G. Shani / On The Properties of Belief Tracking for Online Contingent Planning Using Regression150

Example 3. We illustrate how an agent that has soundly executed
two move-up actions, cannot grantee that the goal at3,3 holds in all
possible states. We would regress φ = ¬at3,3 through the action
sequence backward, starting with the last action. There is one condi-
tion in move-up that adds at3,3 — (at3,2,¬at3,2 ∧ at3,3), and there
is no condition in move-up that removes at3,3, hence, the result of
the regression through the last action would be false ∨ (¬at3,3 ∧
¬at3,2) = ¬at3,3 ∧ ¬at3,2.

We can now regress the two literals independently through the first
action in the sequence. Focusing on ¬at3,2, we see two relevant con-
ditional effects — (at3,1,¬at3,1∧at3,2) and (at3,2,¬at3,2∧at3,3),
the first removing ¬at3,2 and the second adding it. Thus, the regres-
sion result through the first action is at3,2 ∨ (¬at3,2 ∧ ¬at3,1) =
at3,2 ∨¬at3,1 , combined with the regression for ¬at3,3, the simpli-
fied complete regression is ¬at3,3 ∧ ¬at3,2 ∧ ¬at3,1. If the initial
state formula allows the agent to be initially in any place φI =
(oneof at1,1...at3,3), then there are satisfying assignments to the
φI ∧rg(¬at3,3), such as at1,1. Thus, we cannot prove that following
two movements upwards we have reached the goal cell 3, 3.

Thus, we can now answer online belief queries using regression.
However, one practical problem with this method is that rga,o(·) con-
tains pre(a) and hence when we regress repeatedly over a sequence,
as in rgā,ō(·), we will also have to regress the variables in pre(a).
This can adversely affect the size of rgā,ō(·) and the number of vari-
ables it involves, leading, in the worst case, to a formula exponential
in P . Fortunately, this is not necessary for online belief tracking,
because the preconditions of already executed actions were already
regressed and shown to hold in the initial belief state. Using the φr(a)

operation we define:

rg∗
ε (φ) = φ; rg∗

a·ā(φ) = [rg∗
ā(φ)]r(a) (4.1)

Thus, essentially, rg∗ is the same as rg, except that we avoid regress-
ing pre(a). As before:

rg∗
a,o(φ) = rg∗

a(ωa,o → φ) (4.2)

As with rg, rg∗ is also extended recursively to sequences.

Theorem 9. For any literal l and action-observation sequence ā, ō
that is applicable in bI , we have that bI |= rgāō(l) iff bI |= rg∗

āō(l)

Proof. By induction on |ā|, exploiting the observation that if a is ap-
plicable in b then b |= pre(a) and thus b |= rga(φ) iff b |= rg∗

a(φ).
This immediately extends to rga,o and rg∗

a,o as they are defined us-
ing rga. Formally, the base case (empty sequence) is immediate. Let
l be a literal and a · ā, o · ō be an action-observation sequence that
is applicable in bI . Let b = τ(bI , a, o). By the induction hypothesis,
observing that if a · ā, o · ō is applicable in bI then ā, ō is applicable in
b, we obtain: b |= rgā,ō(l) iff b |= rg∗

ā,ō(l). Thus, bI |= rgaā,oō(l)
iff (by definition of rg on sequences) bI |= rga,o(rgā,ō(l)) iff (by
the observation above) bI |= rg∗

a,o(rgā,ō(l)) iff (by the induction
hypothesis) bI |= rg∗

a,o(rg
∗
ā,ō(l)). In the latter case we show that

regression of equivalent formulas is equivalent (Theorem 5).
Finally, it is not surprising that when verifying the validity of p,

we do not care about observations that are irrelevant to p.

Lemma 2. Let ō1 be an observation sequence, and let ō2 be a
subsequence of ō1 that omits observations irrelevant to p. Then,
bI |= rg∗

āō1(l) iff bI |= rg∗
āō2(l).

Theorem 10. For any literal l, the time and space complexity of
determining whether l is valid following ā, ō is O(2w), where w =
wā,ō′(l) and ō′ is the subsequence of ō containing only observation
relevant to l .

Proof. For any literal l, to determine whether it holds following ā, ō,
we need to compute rg∗

ā,ō′(l) (where ō′ are the observations relevant
to l) and to check whether bI |= rg∗

ā,ō(l). By definition of relevance,
rg∗

ā,ō(l) contains only propositions relevant to l with respect to the
planning problem, restricted to the actions and observations in ā and
ō, which we denote by w. The size of the regression formula is at
most exponential in w. Potentially, its size can grow by a polynomial
factor following each regression step, becoming exponential in the
length, rather than w. However, we can maintain size exponential in
w by simplifying the formula following each step, at a cost that is at
most exponential in w for each step.

Finally, to check whether bI |= rg∗
ā,ō(l) we can convert rg∗

ā,ō(l)
into CNF (again, in time at most exponential in w) and check that
each clause in it is entailed by bI . Since bI is in PI form, this takes
polynomial time in the input size for each clause.

Thus, regression may have a practical advantage over FBT when
the sequence of actions has lower width than the original planning
problem. We note that the offline query: “is ā, ō executable in bI?”
is not typical of online planning. In an online planning process, one
would query each of the ā, ō prefixes earlier, and the ā, ō queries will
be executed only after all the prefixes are known to be executable.
Thus, to determine executability, one needs query only regarding the
preconditions of the last action in the sequence.

4.2 Implementation

In practice, the actual run-time of regression can be improved.
First, during planning we perform many regression queries that

lead to the learning of new facts. For example, we always learn that
the preconditions of an executed action are valid. These learned facts
can be cached at each step and used to simplify formulas generated
when answering future queries.

Second, we can utilize observations that were made following a
deterministic action to constrain and simplify the initial state. If we
observed o following a, we regress ωa,o through the preceding se-
quence of action and observations, and obtain a formula ϕ that must
hold in the initial state. Thus, we can replace bI with bI ∧ ϕ.

Sometimes ϕ is a unit literal, e.g., if o is an observation of a static
fact. In that case, we can insert it using unit propagation into ϕ main-
taining PI form in polynomial time. Sometimes, however, it could
be a more complex formula, requiring an exponential price for con-
verting bI ∧ ϕ to PI form. In our current implementation, we do not
maintain a PI form, but rather use CNF and determine validity using
UNSAT queries to a SAT solver. Theoretically, these queries can take
exponential time to answer, but in practice they are very fast.

This technique has two important advantages. First, simpler initial
state formulas imply faster inference in future queries. Second, once
an observation is regressed and added to the initial state, we can ig-
nore it when answering future regression queries. Furthermore, we
avoid observation relevance analysis, because once the regressed ob-
servation has been conjoined with the initial state, we have the the
simpler case of regression without observations.

Example 4. Let us assume that the agent has executed the sen-
sor activation action checking, and then the observe-wall-up ac-
tion, observing the green light observation. We can now regress
wa,o = ¬wallup through the action sequence. The observe-wall-up
is a sensing action with no effects, thus regressing through it has no
effect on the regressed formula. We hence need to regress ¬wallup

through the checking action. For this action ca,l = at1,1 ∨ at1,2 ∨
at3,1 ∨ at3,2 — the list of cells where there is no wall above the

R. Brafman and G. Shani / On The Properties of Belief Tracking for Online Contingent Planning Using Regression 151

agent. The condition ca,¬l = at2,1 ∨ at1,3 ∨ at2,3 ∨ at3,3, and
¬ca,¬l = ¬at2,1∧¬at1,3∧¬at2,3∧¬at3,3. Thus, the regressed term
ca,l∨(l∧¬ca,l) = at1,1∨at1,2∨at3,1∨at3,2∨(¬wallup∧¬at2,1∧
¬at1,3 ∧ ¬at2,3 ∧ ¬at3,3, we can now conjoin the initial state for-
mula (oneof at1,1...at3,3) with this regressed formula, limiting the
set of possible initial state only to (oneof at1,1at1,2at3,1at3,2).

5 Empirical Evaluation

We now demonstrate the practical value of regression, showing it to
scale up well. We experiment with large benchmarks, that are cur-
rently unsolvable using any planner. As such, in all these domains,
we use a simple and fast domain-specific heuristic for action selec-
tion. In each step the “planner” chooses an action, runs a regression
query to check if its preconditions hold, executes it, and runs a sec-
ond regression query to check if the goal has been reached. If an
observation is sensed following the action, the planner also regresses
the observed value and caches the resulting information. Thus, in
every step, there can be up to 3 different regression operations. We
report the average step time, rather than the pure regression time, to
be comparable to previous experiments. For every problem, we run
25 iterations, and report the average time in seconds.

Our heuristic is not trivial. For example, in the battleship domain,
once a cell containing a ship is hit, we hit its neighboring cells un-
til the entire ship was drowned. We must thus check for a set of cells
whether they were hit, or contain a ship. Using caching, these queries
are not regressed, and are thus sound but incomplete. That being said,
it is less efficient than the heuristic implemented in CBT. For exam-
ple, we require about 50 shots to solve Battleship 5 × 5 while CBT
requires about 39 shots.

We compare regression to CBT[3], which is a more advanced, ap-
proximate implementation of the ideas behind FBT. This method
is sound but incomplete in general. Furthermore, the current CBT
code is non-generic, implementing only three domains: Battleship,
Wumpus, and Minesweeper, where it performs very well. However,
it can be executed only on these domains. Also, its implementation
makes use of a manually designed multi-valued variable represen-
tation. While the use of multi-valued variables does not impact the
worst-case complexity of the method, it is reasonable to believe that
it lends additional practical efficiency, compared to the use of a more
generic, PDDL-like propositional representation that we use.

Our experiments were run on a Windows Server machine with
24 2.66 GHz cores (although only a single core is used), and 32GB
RAM. Regression is implemented in C# while CBT uses Cygwin.

Table 1: Comparing decision time (secs) of regression and CBT.
Domain Regression CBT

Battleship 10 × 10 4.2E-3 5.7E-5
Battleship 20 × 20 1.0E-2 7.4E-5
Battleship 30 × 30 2.0E-2 8.5E-5
Battleship 40 × 40 3.8E-2 9.5E-5
Minesweeper 8 × 8 7.2E-2 8.3E-3

Minesweeper 16 × 16 2.8E-1 1.2E-2
Minesweeper 32 × 32 7.4E-1

Large Wumpus 20 × 20 4.5E-3 2.4E-3
Large Wumpus 30 × 30 6.2E-3 4.7E-2
Large Wumpus 40 × 40 9.7E-3 2.8E-3
Large Wumpus 50 × 50 1.4E-2 1.3E-2

Nevertheless, as shown in Table 1 our regression-based method
which is sound, complete, and uses a generic implementation, ac-
cepting domains in a PDDL-like language, does very well. It is able
to scale-up to similar domain sizes as CBT, although in the Battleship
domain it is much slower. It is interesting to observe that in the Wum-
pus domain, the only domain in which boolean variables are used by
CBT, the two methods are virtually identical in performance. In ad-

Table 2: Regression time for challenging benchmark domains.
Domain Regression

Localize 20 4.6E-3
Localize 30 3.4E-2
Localize 40 7.9E-2
Localize 50 1.6E-1

RockSample 8 × 8 1.0E-4
RockSample 16 × 16 7.6E-4
RockSample 32 × 32 5.5E-3

MasterMind 6c,4p 5.1E-3
MasterMind 8c,4p 6.2E-3
MasterMind 10c,6p 1.0E-1

dition, as shown in Table 2 in domains not supported by the current
CBT code, regression-based belief tracking scales very well to do-
main sizes that cannot be handled by any other method.

6 Conclusion

In this paper we discuss the theory of regression, developing it as a
practical tool for online belief tracking in contingent domains, show-
ing that it enjoys potentially better worst-case theoretical guarantees
than FBT. We evaluate the use of regression empirically, showing that
it scales up very well on all current contingent benchmark domains.

Regression naturally enjoys a focus on relevant variables only,
which is also the main source of efficiency of FBT. As regression
takes a lazy approach, constructing formulas during queries, it may
not be as beneficial for planners that require many queries. Repeat-
edly checking the precondition validity of a large set of actions may
well be less efficient using regression than using a DBN [6] or FBT.

The success of approximate CBT techniques points to an interest-
ing line of future work focusing on approximate regression methods.
For example, by possibly weakening the regression formula in some
cases (recall that we regress ¬l, not l), maintaining a simple syntactic
form, one might be able to farther simplify its computational cost in
practice, at the price of some loss of completeness.
Acknowledgments: This work was supported by ISF Grant 933/13
and by the Lynn and William Frankel Center for Computer Science.

REFERENCES

[1] Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, Marco Roveri,
and Paolo Traverso, ‘Mbp: a model based planner’, in IJCAI01 Work-
shop on Planning under Uncertainty and Incomplete Information,
(2001).

[2] Blai Bonet and Hector Geffner, ‘Width and complexity of belief track-
ing in non-deterministic conformant and contingent planning’, in AAAI,
(2012).

[3] Blai Bonet and Hector Geffner, ‘Causal belief decomposition for plan-
ning with sensing: Completeness results and practical approximation.’,
in IJCAI, (2013).

[4] Jörg Hoffmann and Ronen I Brafman, ‘Conformant planning via heuris-
tic forward search: A new approach’, Artificial Intelligence, 170(6),
507–541, (2006).

[5] Hector Levesque, Fiora Pirri, and Ray Reiter, ‘Foundations for the sit-
uation calculus’, Linköping Electronic Articles in Computer and Infor-
mation Science, 3(18), (1998).

[6] Yan Lin and Marek J. Druzdzel, ‘Computational advantages of rele-
vance reasoning in bayesian belief networks’, in UAI, pp. 342–350,
(1997).

[7] Jussi Rintanen, ‘Regression for classical and nondeterministic plan-
ning’, in ECAI, pp. 568–572, (2008).

[8] R. Scherl, T. Cao Son, and C. Baral, ‘State-based regression with sens-
ing and knowledge’, International Journal of Software and Informatics,
(2009).

[9] Guy Shani and Ronen I Brafman, ‘Replanning in domains with par-
tial information and sensing actions’, in IJCAI, pp. 2021–2026. AAAI
Press, (2011).

[10] Son Thanh To, Enrico Pontelli, and Tran Cao Son, ‘On the effectiveness
of cnf and dnf representations in contingent planning’, in IJCAI, pp.
2033–2038. AAAI Press, (2011).

R. Brafman and G. Shani / On The Properties of Belief Tracking for Online Contingent Planning Using Regression152

