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Abstract. Sensor systems are constantly growing in all applica-
tion areas and become elements of our environment. Semantic Sensor
Networks (SSN) support this development and provide standardized
semantic access for reasoning on this information. Unfortunately
they do not model internal system knowledge or simple correlations
between sensors and hence they cannot be used to automatically per-
form analytics tasks based on sensor data only. We show how SSN
ontology can be extended and demonstrate its benefits for the task of
diagnosing smart building problems using real-world data.

1 Introduction

With the development of embedded cyber physical systems and large
computation resources in the cloud, the availability of sensor in-
formation continuously increases. Semantic Sensor Networks (SSN)
play an important role in this development as they provide a homoge-
neous semantic layer for sensor information and simplify the detec-
tion and retrieval of data [1]. This in turn is key for automating high
level analytics tasks that are based on these data. However, many ana-
lytics tasks require system information apart from sensor data such as
cause-effect relationships between sensors [2] for diagnosis. Adding
these information manually can turn into a very tedious task and pre-
vent the use of SSN for large scale analytic applications.

Building automation systems are one established example of large
scale sensor and control networks that can contain thousands of de-
vices. Analyzing the data allows to improve the building’s energy
consumption with large environmental impact as buildings consume
about 40 % of the energy in industrialized countries [3]. This could
be significantly reduced if malfunctioning equipment could be iden-
tified quickly. Approaches that tackle this problem [2, 4] need to be
configured manually since they need to correlate sensor information.
Thus, they require not just data as input but also information about
the physical processes in buildings.

This paper shows that few extensions to the SSN ontology are suf-
ficient for automatically deriving complex physical process models
and thus for automating the diagnosis task in buildings. Our approach
is solely based on semantics techniques such as SPARQL update.
Starting from our extended SSN description we first derive the physi-
cal process model to capture the correlations among the sensors. This
allows us to derive diagnosis rules, i. e. the cause-effect relationships
of sensor observations, and finally to obtain the diagnosis results.

2 Extending the SSN Ontology

As basis for our ontology we use the Semantic Sensor Network
(SSN) skeleton ontology defined by the W3C incubator group [1].
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Figure 1. Extension to the SSN ontology

It provides basic concepts to model a ssn:Sensor that observes a
ssn:Observation of a ssn:Stimulus occurring in the environment of a
specific ssn:Property of a ssn: FeatureOfInterest. We extend the SSN
ontology using the name space phy for generic concepts to model
physical relationships for enabling diagnosis. Figure 1 illustrates the
extensions, which are defined as follows:?

e phy:Physical Process : The properties of many real world features
are related by physical processes. A phy:PhysicalProcess models
this as directed relationship of a source property (phy:hasInput)
that influences a target property (phy:hasOutput). We differenti-
ate positive and negative correlation processes. The influence is a
phy:PosCorrProc if a factor increases with its influence and it is
a phy:NegCorrProc if it decreases with an increase of the influ-
ence. The temperature we feel, for example, is influenced by the
inner energy in a room via a positive correlation process, as it feels
warmer when we increase the energy. The cooling system uses a
negative correlation process as it removes heat from this energy.

e phy:FeatureLink: Physical processes occur not only between
properties within the same feature, but also between related fea-
tures. A FeatureLink denotes such a relationship between features
that are defined by phy:linksFeature object properties. They are,
for instance, used to model spatial relationships between two ad-
jacent rooms connected by a wall.

e phy:Cause, phy:Effect: are subconcepts of ssn:Stimulus and de-
scribe the not necessarily observed stimulus of a cause and the
resulting effect.

e phy:Anomaly: is a subconcept of ssn:Observation that is used
to describe abnormal observations that should be diagnosed. An
anomaly may be for example a high room temperature.

e phy:ObservedCause: is another subconcept of ssn:Observation
describing the observable discrete states of potential causes of an
anomaly. A cause for a high temperature in a room might be an
inactive cooling system.

3 Approach

We first create automatically a process model describing the physical
relationships between sensors in a given SSN consisting of sensors,
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Figure 2. Process relationships for a example room and outdoor.

features, and feature links. Defining such relationships manually is
not feasible for large ontologies with thousands of sensors. There-
fore, we define such potential relationships once on conceptual level
in a domain ontology using annotations. We then apply this knowl-
edge using a series of SPARQL 1.1 update (SPARUL) queries to a
specific building SSN. First, we create all missing property instances
for the monitored feature instances. We differentiate: (i) mandatory
properties that are characteristics for a feature and are always created;
and (ii) optional properties that are only created if they are observed
by a sensor. Second, we connect these property instances by physi-
cal processes within features and also between features connected by
feature links.

We illustrate this for a single room in Fig. 2 connected to the out-
side. The white elements are existing instances in the SSN. The first
step adds the properties in gray, such as the mandatory properties
temperature and energy and the optional property cooling that is not
added to the outside since there is no cooling actuator sensor. We
then add the physical processes for the properties in the room and
the linked outside. They are indicated by solid and dashed arrows
representing positively and negatively correlated processes, respec-
tively.

Diagnosis starts by discretizing online data streams of the sensors.
If a sensor observes an anomaly it will create an observation instance
for each time sample. Anomalies are detected using building opera-
tion rules that define a normal range. We discretize values as High
if it is above this range, and Low if it is below it. Causes are also
discretized in High and Low using a statistical classification model
[5]. The benefit of our semantic approach and the known process re-
lationships is, that we can utilize the semantic type of processes to
narrow down the nature of the potential cause. For example, if the
anomaly is characterized by a High state, then a cause that is con-
nected by a positive correlation process is probably also High. If the
cause is connected by a negative process it is probably Low. For ex-
ample, a TempHigh observed by the temperature sensor in Fig. 2 may
be caused by a high occupancy, low cooling actuator, or high outside
temperature as they are all linked by physical processes.

4 Experiments

Our test system currently manages the IBM Technology Campus in
Dublin. The campus contains six buildings with more than 3,500 sen-
sors. We investigated in more detail office building B5, which has
about 271 sensors [5]. The diagnostic approach creates 747 proper-
ties, 4,498 processes and 1,097 causes for this example.

The building has temperature sensors and a heating system in most
rooms. We defined as abnormal if the temperature falls two degrees
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Figure 3. Results for a building: TP - true positives, TN - true negatives,
FP - false positives, FN - false negatives in percentage of anomalies.
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below the setpoint. The potential causes for the anomaly are a low
outside temperature, neighboring rooms with a low temperature, an
inactive heating system, and a low setpoint of the heating system.
For our building 4 % of the room temperature samples were abnor-
mal due to an inactive heating system and / or unusually low outside
temperature.

Figure 3 summarizes the results. Our approach retrieved that
67.95 % of the abnormal room temperature readings were related
to an inactive heating system which could also be validated by the
building operator. Furthermore our approach computed that 8§9.58 %
of the abnormal cases were related to the outside air temperature
which the operator largely confirmed to be the case.

Most importantly, our approach revealed that most abnormal tem-
perature readings that were related to the outside temperature oc-
curred in 11 rooms that had severe isolation problems. It turned out
that they consumed an estimated 50 % of the buildings heating en-

ergy.

5 Conclusion

We have shown how to extend the SSN ontology for enabling the
automated configuration and operation of analytics tasks such as
diagnosis. The latter was achieved by extending the SSN by addi-
tional properties and then relating them by physical processes using
SPARUL rules and generic knowledge of a domain ontology.

The approach was demonstrated for the smart building domain as
it provides a good use case. Here the number of concepts for sen-
sors, measureable properties, and processes in buildings is limited
and strongly repetitive through the rooms. A specific SSN standard
has not yet been established in the domain, but the required informa-
tion of sensors and their locations is available for most systems and
can be utilized to unlock the benefits of semantic models.

We have shown that we can indeed automatically localize the
causes of anomalies for real buildings, i.e. our diagnosis result con-
tained indeed the true cause of an anomaly. Thus the building opera-
tor only had to consider the possible causes of the diagnosis result for
identifying the problem. Future work includes integrating test gener-
ation methods for assisting the operator in identifying which of the
possible causes did indeed cause the anomaly.
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