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Abstract. A variety of multiagent systems methods has been pro-
posed for forming cooperatives of interconnected agents represent-
ing electricity producers or consumers in the Smart Grid. One major
problem that arises in this domain is assessing participating agents
uncertainty, and correctly predicting their future behaviour. In this
paper, we adopt two stochastic filtering techniques —the Unscented
Kalman Filter equipped with Gaussian Processes, and the Histogram
Filter— and use these to effectively monitor the trustworthiness of
agent statements regarding their final actions. The methods are incor-
porated within a directly applicable scheme for providing electricity
demand management services. Simulation results confirm that these
techniques provide tangible benefits regarding enhanced consump-
tion reduction performance, and increased financial gains.

1 Introduction
Smart Grid-related research has received much attention in the last
few years. Its general objective is to create a more secure, reliable
and efficient electricity networks infrastructure, with affordable en-
ergy produced mostly by green sources, production costs minimized,
and energy savings maximized [5]. Due to the scale and complex-
ity of electrical networks management, artificial intelligence (AI)
and multiagent systems (MAS) solutions are in high demand in the
emerging markets involving business entities providing services in
the Smart Grid [9]. Many such entities have already adopted a busi-
ness model that pulls together the resources and abilities of multi-
ple economically-minded individuals. For instance, the emergence of
Virtual Power Plants or cooperatives of small-to-medium size elec-
tricity producers or consumers has been hailed as a means to create
large and trustworthy providers of renewable energy production or
electricity consumption reduction services [1, 4, 10, 9]. Generally,
instead of peak-trimming, recent work has shown that it may be more
appropriate to balance demand according to production of electricity
and proactively avert the creation of peaks [1, 3].

In this work, we adopt the approach of [1], for collective power
consumption shifting provided by electricity consumer cooperatives.
For shifting coalitions to be effective, members are required to state
to the cooperative (a) their estimated reduction capabilities, and (b)
their confidence on the accuracy of that estimate. Although agents
are motivated to be truthful via the employment of the Continuously
Ranked Probability Score (CRPS), such “fines” might scare agents
and keep them away from participation. Also, even if participating
agents are perfectly truthful regarding their abilities and correspond-
ing uncertainty, their reports and estimates can still be highly inaccu-
rate — e.g. due to communication problems, malfunctioning equip-
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ment, or prejudiced beliefs and private assumptions. Thus, monitor-
ing the performance of individuals and correctly predicting their fu-
ture contributing potential is of utmost importance to the cooperative.

To this end, several approaches try to explicitly estimate agent
electricity consumption and production amounts, by incorporating
prediction models that rely on agent geographical location and
weather forecasts, or the processing of macroeconomic data [6, 8].
This paper proposes the application of generic prediction methods,
which are nevertheless able to adapt to a specific agent’s behavior and
generate accurate estimates. More specifically, we propose the use of
stochastic filtering methods to keep track of the parameters that best
describe agent behavior, and effectively estimate actual future agent
performance. These techniques are able to not only fit the dynamics
of the processes governing agent performance, but can also imbibe
the potential errors of electricity metering or information transmis-
sion devices. In particular, we adopt the Histogram Filter (HF) [11]
and the Unscented Kalman filter (UKF) equipped with a Gaussian
Process (GP) [2, 7] to predict the future actual actions of agents par-
ticipating in cooperatives offering electricity DSM services.

2 Electricity Demand Shifting

In this section, we describe the features of the approach of [1] which
we monitor and try to predict, in order to enhance the performance
of electricity consumer cooperatives taking part in collective power
consumption shifting operations. For the cooperative to place a bid,
each contributing agent i must state its reduction capacity, r̂thi , at th
high-consumption (peak) intervals, and corresponding shifting costs
for moving consumption to non-peak, tl, intervals. Agents are also
required to state their uncertainty over their expected relative error
regarding their r̂

th
i , in a form of a normal distribution N (μi, σ̂

2
i ).

Next, the cooperative assigns a conservative estimate of each agent’s
performance (but still “trusts” the reported σ̂i):

r̃
th
i = (1− σ̂i)r̂

th
i (1)

Then, the agent’s reservation price (that is, the highest price i is will-
ing to pay for shifting consumption from th to tl without suffering a
monetary loss), is calculated; and so is the agent’s contribution po-
tential, the product of the expected reduction and reservation price,
r̃thi p̂i. The agents are then ranked by descending contribution poten-
tial, and shifting coalitions are formed by the number of top agents
that meet the required constraints. Selected coalitions are awarded
low, variable prices for shifting to tl, determined by a group price
pg ≤ pl which is guaranteed by the Grid, and by monetary transfers
that make it worthwhile for everyone selected to participate [1].

It is obvious that the expected coalition performance is greatly
affected by agent statements, which, if inaccurate, endanger the
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scheme’s stability and effectiveness. This is why a trusted index r∗i,th
is needed—one not stated explicitly by i, but nevertheless revealing
the distribution best describing future agent actions. This index can
then be used instead of r̃thi to calculate a more accurate contribution
potential for i. To explain further, rthi is the actual amount of load
reduced, and which can be, in general, assumed to be provided by a
transformation (unknown at this point) of the stated reduction capac-
ity r̂thi of agent i: rthi = αi · r̂thi , with αi corresponding to a random
variable following some unknown probability distribution.

Our objective is to build models for agent performances by ap-
proximating the distributions αis follow. We then sample such a dis-
tribution to obtain a better αi estimate, denoted α̃i; and use it in order
to calculate our trusted index r∗i,th , with which we replace r̃

th
i :

r∗i,th = α̃i · r̂thi (2)

Thus, more accurate predictions about individual agent and coopera-
tive electricity consumption shifting abilities can be obtained.

3 Method Description

Given all underlying uncertainty, agents’ final behaviors most likely
correspond to complex, non-linear functions of past behavior. There-
fore, we chose to test two filtering approaches that are expected to
fit such a function well: (a) a non-linear KF approach, the Unscented
Kalman Filter (UKF) equipped with a Gaussian Process (GP); and
(b) the Histogram Filter (HF), a non-parametric filtering technique.

Unscented Kalman Filter with Gaussian Process The classic
KF algorithm is limited to systems with linear transition and obser-
vation models; while the EKF can handle non-linearities, but not in
an optimal manner [11]. The UKF, uses the unscented transform to
obtain better estimates when dealing with non-linear models [12]—
such as those that may describe consumption shifting capabilities.

Let x ∈ R
L be a Gaussian random variable with mean x̄ and co-

variance Px that is propagated through a nonlinear function y =
g(x). A matrix X can be constructed that contains 2L + 1 sigma
vectors Xj and their corresponding weights Wj , via the unscented
transform procedure. Next, the sigma vectors are propagated via a
nonlinear function Yj . Then, the mean and covariance of y are ap-
proximated by a weighted sample mean and covariance of the pos-
terior sigma vectors [7]. In our setting, x’s are σ̂i’s, and y’s the es-
timates about the final αi. Now, when an agent states an uncertainty
forecast σ̂i, the expected mean and variance of the corresponding αi

are given by a GP that has been trained on past D = (σ̂i, αi) pairs.
So, the final model can be summarized as:

στ = Aσ̂i + wτ (3a)

ατ = GPμ(στ ,D) + uτ (3b)

with noise uτ followingN (0, GPσ(στ ,D)). By using this approach,
ατ ’s converge to some value α̃i that represents the more accurate
estimate of the actual αi. Due to lack of real data about the transition
model, and for the fairness of comparison with the HF below, we set
A to be I; and wτ is assumed to followN (0, 1).

Histogram Filter Histogram filters (HF) decompose a continuous
state space to a finite set of areas or bins, that are a partition of the ini-
tial space. Then, a probability pk is mapped to each bin, whose value
depends on the frequency of the observations in the range of that bin.
With this approach, agent forecasts σ̂is are completely ignored, and
only past observations of αi are taken into account.

4 Experimental Evaluation
In a first set of experiments, we define three classes of agents: the
accurate predictors (who almost always act as they predicted), the
inaccurate predictors (who usually are off their predictions by 50%),
and the uncertain predictors (who might or might not follow their
stated forecasts). Agent behaviour is simulated by sampling appro-
priate Beta and Gaussian distributions, which generate the required
αis and σ̂is. In order to rank the classes above, we employ three
methods: Conservative Trusting (CT), the method used in [1]; HF,
which utilizes a Histogram Filter constructed by past αi observa-
tions and does not take into account σ̂i statements; and GP-UKF
which also keeps track of past observations, but takes into account
σ̂i statements. Our simulations show that GP-UKF outperforms HF
and CT, both in terms of absolute relative error mean and variance.
When dealing with accurate predictors, there is no big performance
difference. However, when monitoring inaccurate predictors, the HF
and GP-UKF methods capture the systematic inaccuracies of agents
and perform very well, while the CT does not. Moreover, in addi-
tional tests, the CT method performs far worse than the others.

In a second experimental setting, we applied our proposed meth-
ods to the scenario of [1], considering cooperative consumption shift-
ing efforts over a 10-day period (using simulated data originating
from a real-world dataset). In this setting, GP-UKF achieves reduc-
tion that is closer to the expected compared against the other meth-
ods. It thus manages to perform better in terms of economic benefits
also, generating more actual gain in euros than any other method.
Specifically, the CT method achieves 28241.193 KWh of actual re-
duction, as opposed to an expected reduction of 35928.151 KWh;
while the amounts for HF are 30249.181 KWh and 36073.986 KWh,
and for GP-UKF 35236.2815 KWh and 36182.952 KWh respec-
tively. In terms of actual gains, the methods rank as follows: CT:
e1199.9, HF: e1447.55, GP-UKF: e1987.22.
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