
Stop-Free Strategies for Traffic Networks:
Decentralized On-line Optimization

Mohamed Tlig1 and Olivier Buffet1 and Olivier Simonin2

Abstract.

Traffic management in large networks remains an important chal-
lenge in transportation systems. The best approach would be to use
existing infrastructure and find a solution to manage the increasing
flows of vehicles. Multi-agent systems and autonomous vehicles are
today considered as a promising approach to deal with traffic con-
trol. In this paper, we propose a two-level decentralized multi-agent
system which allows autonomous vehicles crossing the network in-
tersections without stopping. At the first level, we use a control agent
at each intersection which (1) lets the vehicles from each road pass
alternately, and (2) allows them to optimally regulate their speed
in its vicinity. At the second level, each agent coordinates with its
neighboring agents in order to optimize the flows inside the network.
We evaluate this approach empirically, with a comparison with a
more opportunistic First-Come First-Served strategy. Experimental
results (in simulation) are presented (measuring energy consump-
tion), showing the advantages and disadvantages of each approach.

1 Introduction

In many real transport systems, congestions are generated at the in-
tersections between the roads [3], i.e., parts of the space which must
be shared by the vehicles. There are several methods to manage in-
tersections. The simplest ones generally favor one flow against the
other, as traffic lights and ”STOP” signals do. Such events generate
delays for the vehicles because they require stopping multiple vehi-
cles for some time [5]. If the flow of vehicles is important, these local
delays can lead to the emergence of congestions.

There are various ways to handle traffic congestions [1]. A very
common approach is to use synchronized traffic lights, i.e., traffic
lights which all share the same cycle length (time required for one
cycle of traffic light phases), and whose offsets (phases of these peri-
odic signals) are chosen so as to favor “green waves” allowing most
vehicles to avoid stopping.

This work has been conducted in the context of the InTraDE Eu-
ropean project, in which autonomous vehicles transport containers
across a seaport3. Yet, we consider generic road networks with mul-
tiple intersections, as illustrated on Figure 1. Each autonomous ve-
hicle follows a pre-determined path along one lane. The objective is
to reduce delays and energy consumption, and more generally avoid
blockings.

Our approach consists in dealing with the traffic at two level: at the
local level, i.e., at each intersection, and at the global level, i.e., be-
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Figure 1. Dense traffic conditions in a 3-roads (2-lanes per road) traffic
network with 5 intersections

tween intersections. At the first level, the flows are synchronized so
that the vehicles can alternately cross the intersection without stop-
ping. This requires (1) adapting the vehicles’ speeds so that they ar-
rive at the right time to cross the next intersection without collision,
and (2) introducing a control agent at each intersection to handle in-
coming vehicles. Tlig et al. [15] show how to derive the algorithm in
each such control agent and the speed profile for each vehicle as a
function of the parameters of the problem (lane and vehicle dimen-
sions, default speed, angle between roads...).

The second level focuses on a key problem: how to optimize
the flow throughout the whole network. This requires optimizing
the phases (offsets) of the different intersections depending on the
chosen criterion, the traffic network, and the traffic conditions (the
traffic flow on each lane). This is a potentially high-dimensional
optimization problem with as many control variables as there are
nodes/intersections in the network. Yet, under mild separability as-
sumptions for the criterion, one can exploit the network structure of
the problem to decentralize the optimization process. This decentral-
ization allows to (1) speed up computations and (2) simply perform
the optimization on-line while traffic conditions evolve.

We empirically evaluate this approach, taking into account various
parameters which come into play, such as the throughput of vehicles
or the communication range of the control agent. These experiments
are also a means to show how it compares to other approaches, and
in particular to another —more opportunistic— stop-free strategy. To
that end, we consider two metrics: the total delay accumulated by the
vehicles across the network, and the energy consumption due to the
speed variations.
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After giving some background in Section 2 on the fields of traf-
fic management and intersections control in general, we describe in
Section 3 the two types of stop-free controllers we will consider in
the intersections. In Section 4, we show how to optimize the phases
for one of these controllers, and how this can be done on-line, in a
decentralized manner. Then Section 5 presents an empirical study of
this approach, both in off-line and on-line settings. Finally, we dis-
cuss the perspectives of this work and conclude.

2 Background

In this study, we address the general problem of managing cross-
ing flows of vehicles in road networks. This problem has been tradi-
tionally studied in operations research and queueing theory. It typi-
cally concerns vehicles driven by humans but, with the arrival of new
technologies, many works integrating on-line decisions consider an
automatic and real-time control. Several approaches based on com-
munications and GPS (Global Positioning System) propose to im-
prove existing solutions such as traffic lights. In [1], Bazzan presents
a summary of the methods and approaches in the fields of traffic en-
gineering to overcome congestion problems at intersections. The au-
thor classified these solutions according to the technology used, the
reactivity (adaptivity to the traffic-flow variations), and if they are
decentralized or not.

Coordinated systems are the most deployed systems because
they are the oldest one, but also because they are simple and do
not require much technology comparing to others. This class con-
tains, e.g., TRANSYT[11] (centralized, not responsive), SCOOT[7]
(centralized, responsive), SCATS[8] (decentralized, responsive),
PRODYN[6] (decentralized, responsive). They calculate the optimal
configuration of the intersections via hill-climbing optimization in
order to create “green waves”. The major problems we are interested
in concerning these kind of approaches are (1) for all these systems
the implementation of the traffic lights configuration cannot be done
in real time, and (2) when creating “green waves” using traffic lights,
we force promoting one flow over others.

Actuated approaches are strategies based on physics, optimiza-
tion, artificial intelligence (Multi-Agent Systems) and learning. For
example, in [2] the authors propose an approach based on swarm in-
telligence and multi-agent systems. Each intersection behaves like a
social ant to improve delays and influence its neighbors. The prob-
lem with this kind of algorithms is that they take too much time to
converge, in addition to the unpredictable behavior of the traffic. In
the same context, Wiering in [17] proposes a multi-agent reinforce-
ment learning approach for traffic light control and for vehicles. In
this study, each intersection learns a value function in order to esti-
mate expected waiting times given different configurations of traffic
lights. Plus, each vehicle uses a value function to compute the op-
timal trajectory to its destination. This solution is very interesting.
However, the complexity of the traffic light problem in conjunction
with the complexity of the solution make its application difficult and
unrealistic.

New technologies Other solutions are interested in fully au-
tonomous vehicle control. They can be classified into two categories.

Reservation approaches, introduced by Dresner and Stone in
[3, 4], are based on agents managing one intersection each. Each ve-
hicle wanting to cross must book a passage time interval and a route
within its target intersection. By doing so, more vehicles can be in-
side an intersection at the same time —as long as their space-time
trajectories do not intersect—, which increases the throughput.

The decentralized approach introduced by Rashe and Naumann

[9, 10] is based mainly on communication and negotiation between
the vehicles to determine the sequence of passage and exit from the
intersection. This approach is known for its limits, which depend on
the number of vehicles trying to negotiate their passage through the
intersection.

3 Two Approaches for Stop-Free Intersections

Dresner and Stone’s reservation approach [3] allows many vehicles
to avoid stopping at intersections by telling them in advance when
to arrive. Yet, although this has not been studied up to now, this
approach seems quite unlikely to generate green wave phenomena
across a network. Indeed, vehicles leave an intersection at a time in-
dependent of when they will arrive at the next intersection.

Regular green waves require periodic traffic patterns, what is typi-
cally enforced by periodic traffic signals. We thus use the distributed
traffic control mechanism proposed in [15], which uses such periodic
traffic controllers (analogous in a sense to traffic lights), but also pre-
vents vehicles from stopping.

3.1 Alternating

As in [15], we model our traffic network as follows:

• We consider traffic networks made of roads —each with two oppo-
site lanes— and their intersections. The intersections (illustrated
by Fig. 2) allow crossing a road but not turning. Two roads inter-
sect at an intersection i and under some angle θi.

• Each lane l has its own flow Wl.
• The network can thus be seen as a graph (V, E) where the vertices

in V are intersections and the edges in E are lane segments i → j,
where i and j are neighboring intersections.

�

�
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B1

A2

A1

Figure 2. An example intersection with two 2-lane roads

Tlig et al. [15] employ a control agent at each intersection i so as
to ensure that vehicles from both roads alternately cross the intersec-
tion (at default velocity V ). To that end, an optimal crossing period
Tmin(i) has to be computed as a function of V and of the geomet-
ric parameters such as the intersection’s angle θi. Two vehicles, one
from each lane, shall pass at time steps t = kTmin(i) for one road
(k ∈ N), and at t = (k + 1

2
)Tmin(i) for the other. To that end, the

control agent of the intersection tells incoming vehicles —as soon as
they enter a control zone of radius R— when they should enter the
crossing area of radius r0 (at speed V ), which requires them to com-
pute an appropriate speed profile between R and r0 (during which
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they temporarily decelerate). Fig. 3 illustrates this alternating princi-
ple of half-period Tc = Tmin(i)

2
(the minimum time needed to pass

a single vehicle through the intersection).

BA

Control Agent

RR

t

Alternate the passage of vehicles

i Tc i+1 Tc i+2 Tc... ...i+n Tc

r0

A A A AB B B B B

Figure 3. Alternating principle of an intersection for two roads A and B

3.2 First-Come First-Served

The above Alternating (Alt) strategy may waste time at some inter-
section i when a group of vehicles would like to pass on one lane
while no vehicles are going through orthogonal lanes. We thus pro-
pose to also consider another strategy which does not constrain to
alternate vehicles from one road and the other but —still using the
same periodic signal— lets the vehicles book the time when they
traverse. This First-Come First-Served (FCFS) strategy somehow re-
lates to Dresner and Stone’s reservation strategies.

Let us for example consider an intersection i where roads A and B
cross each other. Let us call A1, A2, B1 and B2 the lanes correspond-
ing respectively to the roads A and B. Fig. 4 (where T = Tmin(i))
illustrates the FCFS approach. Here, the order of arrival of vehicles
on the various lanes leads to (1) allocating the first half-period (T

2
) to

a single vehicle from lane A1, which is followed (2) by two vehicles
from road A (one on each lane) at the second half-period (T ), then
(3) a vehicle from lane B2 can pass during the third half-period ( 3T

2
),

and so on.

B1A1
A2 t

TT/2 3T/2 2T 5T/2 3T
B2

A1
A2 B2 B2

Figure 4. Illustration of the First-Come First-Served approach at the
intersection of roads A and B showing that only vehicles from the same

road —but from opposite lanes (either A1 and A2, or B1 and B2)— can go
through the intersection at the same half-period

4 How to Create Green Waves

As can be noted, the two control strategies presented in the previ-
ous section let each intersection have its own period Tmin(i). Yet,
green waves require that all intersections on the same lane share the
same period. This typically implies that all intersections in the net-
work should share the worst period: Tmax = maxi∈V Tmin(i). Note
that this does not significantly alter the maximum throughput in the
intersections since Tmin(i) does not vary much when the value of θi
remains in the usual range [π

3
, 2π

3
].

Given the above Alternating approach, the only control variable
left is the phase (offset) φi ∈ [0, 2π) of each intersection’s peri-
odic signal (which was omitted in the previous section). As shown
in Fig. 5, an intersection i directly interacts with its neighbors (here
i’s neighborhood is N(i) = {j, k, o, p}), their phases constraining
the duration of the traversal of each segment. For example, one can
obtain a desired average speed Vi,j on segment i → j by tuning the
phases φi and φj appropriately. Yet, each of the 8 segments repre-
sents a different constraint to satisfy (/criterion to optimize) while
only 5 parameters can be set, meaning that, even on this small exam-
ple, compromises will be required.

i

k

j

p

Vi,j

Vj,i �i�j

�p

�k

Vi,p

Vi,k

Vk,i

Vp,i

o
Vo,i

Vi,o

�o

Figure 5. The optimal phase φi for intersection i depends on the phases of
its neighbors

We now discuss which criteria can be optimized by controlling
phases before describing appropriate optimization algorithms.

4.1 Separable Optimization Criteria

Let us note �φ the vector of all the network intersection phases. We fo-
cus here on two objectives, which will be considered independently:

1. minimizing the travel times, i.e., the sum of the travel times ti,j
on each lane segment i → j, weighted by the flow Wi,j = Wl

(where l is the lane corresponding to the segment i → j):

tglobal(�φ) =
∑

(i→j)∈E
Wi,jti,j(�φ), and

2. minimizing the total energy consumption, i.e., the sum of the ki-
netic energy Ei,j on each lane segment i → j, weighted by the
flow Wi,j :

Eglobal(�φ) =
∑

(i→j)∈E
Wi,jEi,j(�φ).

Note that there is no risk that such a minimization leads to blocking
certain vehicles since we assume that predefined periodic traffic sig-
nals are used that allow all vehicles to pass. This would be different
for example if optimizing the duration of red and green phases of
traffic lights.

As can be observed, under mild assumptions, both criteria de-
scribed above are additively separable in that they can be written
using as follows:

fglobal(�φ) =
∑

(i→j)∈E
fi,j(φi, φj).

Here, assuming that vehicles cross intersections always at the same
default speed is sufficient to guarantee that local travel times ti,j and
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local energy consumptions Ei,j depend only on φi and φj . In the
contrary, minimizing the worst travel time over a lane would lead to
a non-separable criterion:

tworst(�φ) = max
l

∑

(i,j)∈El

Wi,jti,j(�φ),

where El is the set of segments in lane l.
A first advantage of such separable criteria is that they can be com-

puted efficiently in parallel, which can be beneficial for large net-
works. A second advantage is that each phase φi only influences its
incoming and outgoing lane segments. As a consequence, various lo-
cal search algorithms can be trivially distributed, thus dramatically
reducing the complexity of the search, as detailed in the following
section. But note that this separability does not prevent from falling
in local optima.

4.2 Hill-Climbing Based Algorithm

Various local search algorithms could be considered such as hill-
climbing, gradient descent (when the gradient of the evaluation func-
tion can be computed), tabu search, or simulated annealing [12]. Here
we consider a simple hill-climbing approach. At each iteration t, for
each intersection i, the algorithm locally searches for the best phase
given the phases of neighbouring intersections j ∈ N(i), and assigns
this value to intersection i: φt+1(i). The details are presented in Al-
gorithm 1, where Δφt is the radius of the search interval —which
should slowly decrease to ensure convergence— and δφt/Δφt is an
integer constant.

Algorithm 1: Hill-Climbing-iteration(i, t, �φt)

V min ← Evaluate(φt(i), �φ)1

φmin(i) ← φt(i)2

for φtmp ← φt(i)−Δφt to φt(i) + Δφt step δφt do3

Vtmp ← Evaluate(φtmp, �φt)4

if Vtmp > Vmin then5

Vmin ← Vtmp6

φmin ← φtmp7

φt+1(i) ← φmin8

Evaluating the performance measure at a given intersection —as
done in Algorithm 1 in the function Evaluate(·) at lines 1 and 4—
simply amounts to summing up performance measures for the 8
neighboring segments (1 segment per incoming lane, and 1 segment
per outgoing lane). For each segment, vehicles do not interact with
each other —because they are separated by a period T— so that it is
straightforward to compute, as illustrated by Fig. 6:

1. when a vehicle leaving some intersection i will reach the next con-
trol zone (here running at constant speed VMax),

2. when it should go through the next intersection j (here at speed
VCrossing),4

3. the speed profile this requires during the adaptation phase, as cal-
culated in [15], and,

4. as a consequence, any performance measure we are interested in
(traversal time, energy, ...).

A particular issue is that the evaluation function analytically com-
putes the local criterion assuming perfect vehicles, i.e., vehicles

4 In our setting, Vmax and Vcrossing are the default speed V .

R r0�i �j
VMax VCrossing

Adaptation Phase

Figure 6. Measuring the performance for any vehicle on segment i → j
requires decomposing this segment in three parts: (1) between intersection i

and j’s control zone of radius R, (2) the adaptation phase in the control
zone, and (3) the crossing zone of radius r0.

that follow some ideal solution exactly, especially because they can
change their control parameters (speed or acceleration) at any time.
In some cases this may lead to phases tuned so that some vehicles do
not need to slow down at all during the adaptation phase. In practice
—in a simulation as in the real world— vehicles act only at discrete
time steps, and thus are slightly late compared to the “perfect plan”.
The main consequence is that they enter a control area too late to
cross it at constant speed and have to wait for the next available time
interval, which is the worst possible situation. This problem is sim-
ply solved by letting the evaluation function assume that the distance
between neighboring intersections is slightly longer than expected.

Finally, to prevent the optimization from ending while on an early
plateaux, it is not stopped when sufficiently small (global) variations
are observed, but after a fixed (hand-tuned) number of iterations —
which was appropriate in our experiments.

4.3 On-line Decentralized Version

An interesting property of the proposed algorithm is the possibility
to execute it on line, with one agent i at each intersection executing at
each time step t a local Hill-Climbing iteration and communicating
its new phase φt+1(i) to its neighboors. Of course, an advantage of
such an on-line optimization scheme is the ability to adapt to chang-
ing traffic conditions using only local computations. Yet, to that end
the control agents need to keep on optimizing, i.e., they use constant
values Δφ and δφ.

Estimating Traffic Conditions In this on-line case, the traffic
conditions are not known, but need to be estimated. Here, we em-
ploy a simple approach where each control agent i estimates the flow
on each of its four lanes. For lane X , control agent i counts in nm

the number of vehicles going through its intersection during minute
m and then estimates the flow on lane X using an exponential mov-
ing average: n̄m = (1 − α)n̄m−1 + αnm, where α ∈ (0, 1) is a
constant parameter that can be tuned to adapt to more or less stable
conditions.

Executing while Optimizing One issue is that the Alternating
strategy is not meant to work with continuously changing phases.
First, a vehicle that has planned to go through its next intersection at
time t should not change its plan for time t′ unless it can change the
remaining of its pre-computed speed profile. Second, changing the
time when vehicle v arrives at intersection i may lead to collisions
with vehicles crossing i before or after v. This is all the more likely
that the common period has been computed so as to maximize the
throughput, i.e., by leaving as little free space as possible between
consecutive vehicles (called the safety distance).

Here, the first problem is solved by not allowing to change the
time when a vehicle crosses its next intersection once it has been
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computed. Then, we avoid possible collisions by making a compro-
mise between

• reducing the maximum change in phases Δφ (which should be
large enough for the phases to adapt quickly), and

• increasing the safety distance ε (which should be small to mini-
mize the period, and thus maximize the throughput).

Moreover, in Algorithm 1 the phases are not constrained to stay
within [0, 2π) to make it easier for the control agents to allocate
traversal intervals to incoming vehicles (both in the Alternating and
FCFS strategies).

5 Experiments

This section presents experiments evaluating the benefits of optimiz-
ing the phases for the Alternating strategy, and comparing this strat-
egy to FCFS, which is expected to be more opportunistic.

All experiments are conducted on a traffic network with 6 roads
and 12 intersections (Fig. 7 is a snapshot). Two groups of 6 lanes
are created (one lane per road), and 4 traffic conditions are created
by simply assign a high flow (15 vehicles.minute−1) or low flow (5
vehicles.minute−1) to all lanes in each group. These traffic condi-
tions are noted 15–15, 15–5, 5–15, and 5–5.

Note that we measure the optimization criterion only inside the
network (once vehicles have gone through a first intersection). This
allows notably reducing the variance of our estimates —without
harming the performance measure— since the system has no con-
trol over what happens outside.

Figure 7. 12 Intersections Network

5.1 Simulation Framework

We have developed (in JAVA) a continuous-space and discrete-time
simulator of a network of roads.

The detailed experimental setting for our 12-road network is the
following:

• the control agents’ range of action R is 125m and r0 is derived
automatically as in [15];

• the distance between two adjacent intersections is ∼ 450m ;
• the maximum (and default) speed of each vehicle is 10m/s, the

maximum acceleration is 1.5m/s2 and the maximum deceleration
is −1.5m/s2;

• we used a near-to-near longitudinal control developed in [13]
which ensures a collision-free behavior between same-lane vehi-
cles (only outside the control zone);

• at each entrance of the network, a source generates vehicles fol-
lowing a Bernoulli distribution with parameter 1

D
, where D is the

average time, in seconds, between two consecutive injections (For
example D = 4 implies an average of 15 vehicles per minute);

• the vehicles are 5m long and 2.5m wide, and the safety margin of
vehicle inter-distance ε = 1.5m;

• the simulation time step is set to 0.05s.

In this case, the common (i.e., worst) period in the network of Fig. 7
is Tmax = 3.5s. We fixed the parameters of the hill climbing opti-
mization, Δφ = 0.05s and δφ = Δφ

10
.

A video showing the simulator can be viewed at http://www.
loria.fr/%7emtlig/videos/12_intersections.avi.

5.2 Off-Line Optimization

We first consider the off-line case, comparing Alt and FCFS either
(asynchronous case) with local periods Tmin(i) and random phases,
(synchronous case) with common period T and random phases, or
(“optimized” case) with the common period T and phases optimized
for Alt. Each of the 6 resulting strategies is used on the 4 traffic con-
ditions during 10 experiments lasting 1 hour each (simulation time).
The results are presented in Table 1, where we measure the average
consumed energy per vehicle (considering only the kinetic energy
used to accelerate).

Table 1. Average energy consumed per vehicle using Alt and FCFS in
either their asynchronous, synchronous or optimized versions (see text);

Injections are measured in vehicles/minute

(10k veh) (7k veh) (7k veh) (3.5k veh) Ave.
Injections 15–15 15–5 5–15 5–5

FCFSasync 137.6±2.4 104.6±2.1 102.3±2.2 60.3±0.6 101.2
sync 178.8±4.6 130.7±5.7 128.6±5.7 67.4±3.2 126.4

optim 176.9±2.5 131.6±4.7 129.8±3.5 66.1±4.1 126.1

Alt async 111.1±1.3 107.1±0.8 102±0.8 85.9±0.8 101.5
sync 92.6±6.4 87.7±10.2 88.6±8.6 88.5±5.1 89.4

optim 83.8±7.4 80.2±7.4 74.7±5.6 83.7±12.4 80.6

A first observation is that synchronizing the network alone already
improves the traffic flow for Alt, except in low traffic conditions,
while it always degrades the traffic flow for FCFS (which benefits
from being opportunistic in the asynchronous case).

Then, for synchronous intersections, using optimized phases al-
lows Alt to reduce the energy consumption –meaning that “green
waves” are efficiently created– while this has no impact on FCFS
–i.e., these phases are not optimal for FCFS.

Also, as FCFS is opportunistic, it saves energy in low density traf-
fic conditions (5–5). Yet, the higher the density of traffic conditions,
the more conflicts happen at intersections (i.e., the less opportunities
can be exploited by FCFS) meaning that vehicles often have to slow
down. In the same high-density traffic conditions, Alt benefits from
green waves and maintains a low energy consumption.

Note that measures with the travel times criterion lead to the same
conclusions because, in both cases, the criteria try to keep the vehi-
cles at their default speed for as long as possible.

5.3 On-Line Optimization

We now consider a 4-hour period during which the four traffic con-
ditions used previously are applied 1 hour each, and compare:
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• FCFS with local periods and random phases,
• Alt with phases optimized off-line using the average flow over 4

hours: 10–10, and
• Alt with phases optimized on-line using 4 learning rates α.

Table 2. Average energy consumed per vehicle using Alt with off-line
optimized phases, Alt with on-line optimized phases, and

FCFS with random phases

Alg. Alt on-line Alt off-line FCFS
(α) (0.05) (0.1) (0.2) (0.3)

Energy 78.2 ±4.3 77.1 ±4.7 76.1 ±5 77.1 ±4.4 80.1 ±6.9 101.2

As detailed previously, each agent intersection i estimates alone
the flows on its lanes; communicates its phase only with its neigh-
bors; and optimizes its own phase φ(i) using Algorithm 1. Table 2
presents empirical estimates of the energy consumption per vehicle
in each case. The on-line version of the Alt strategy outperforms both
its off-line version and (by a wider margin in this case) FCFS. This
clearly demonstrates that the on-line estimation of the flows and op-
timization of the phases are efficient, leading to an adaptive traffic
network. The best results are obtained with α = 0.2, though the
difference with other values does not seem significant.

6 Discussion

Dealing with More Complex Scenarii In this work, the Alter-
nating strategy has two main limitations: (1) at a given intersection,
all lanes use the same amount of time, while the flows may be very
different from one lane to the next, and (2) the vehicles cannot turn.

For the first limitation, one may simply use an n/m alternation
pattern (n time slots for one road, alternating with m time slots for
the other road) at each intersection rather than 1/1.

As in most traffic light approaches (see Sec. 2), the second limi-
tation can be overcome by using, at each intersection, cycles made
of 4 periods instead of two: 2 periods to let cars from each road go
straight or turn right, plus 2 periods to let cars from each road turn
left. Lanes need to be duplicated before the intersections To prevent
conflicts between cars from the same lane but going in different di-
rections.

In both cases more work is needed to compute the various dura-
tions in the periodic signal, and to optimize the phases (using more
complex analytical evaluation formulas).

Going Further with Alt+FCFS As observed, applying phases op-
timized for Alt while using FCFS leads to degraded results. So, one
interesting question is whether phases could be optimized specifi-
cally for FCFS. Because FCFS is opportunistic, when a vehicle leav-
ing intersection i will go through the next intersection j depends on
potential conflicts with other vehicles, and is thus difficult to pre-
dict. As a consequence, it is more difficult to analytically compute a
performance criterion on segment i → j given φ(i) and φ(j). This
implies (1) that simulations may be necessary to evaluate a given set
of phases �φ, and (2) the optimization cannot be distributed because
of complex interactions between intersections.

Another interesting problem is how to make the best of both FCFS
and Alt. A first idea would be to switch between them depending on
the overall traffic conditions. But one could even envision heteroge-
neous traffic networks in which some of the intersections use an Alt
controller (dense traffic), and other rely on FCFS (low traffic).

7 Conclusion

In this paper we have first proposed an approach to optimize the
flow of a traffic network in which vehicles do not need to stop at
intersections. This approach significantly improves on simply using
independent stop-free intersections. It is also notably better than a
more opportunistic First-Come First-Served strategy —which pre-
vents the formation of green waves— under dense traffic conditions.
Moreover, the algorithm can be easily adapted to work on line, each
intersection continuously estimating the local traffic conditions and
optimizing its phase —only requiring to communicate this phase to
its neighbors. This on-line version significantly improves on the off-
line one, showing its adaptability to changing flows.

Further experiments should be conducted to get a better under-
standing of the approach, in particular considering different networks
and different scenarios. Also, some parts of the approach could be
improved such as the local-search algorithm —e.g., using the Dis-
tributed Stochastic Algorithm, a variant of Hill-Climbing especially
designed for such distributed settings [16, 14]— or the estimation of
the traffic conditions.
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