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Geometrical Feature Extraction for Cuneiforms

Ariella Richardson ! and Uzy Smilansky? ?

Abstract. Cuneiform writing is one of the earliest methods of
writing in human history. It is based on pressing a stylus (reed) on
clay tablets, resulting in wedge marks (cuneiforms) which, when
combined, provide meaningful symbols. Applying modern machine
learning methods to the study of ancient cuneiform tablets is a fasci-
nating task. In the present paper we describe a method for extracting
geometrical features of the wedges imprinted by the stylus that is
used for writing. We introduce two independent feature extraction
methods to describe the wedges. The data for this study come from
precise optical scans of three tablets, originating from different his-
torical periods. We use these tablets to demonstrate the validity of our
extracted features, and to demonstrate the accuracy of classifying the
different tablets.

1 INTRODUCTION

Using machine learning for studying human writing has long been an
active research area. Studies on modern handwriting, cover many di-
verse applications, such as character and word recognition, signature
verification, and even the study of handwriting deficiencies [13, 15].
Machine learning is also used in the study of ancient writing, termed
Paleography. Wolf et al. [19] study the The Cairo Genizah, a collec-
tion of texts discovered in the late 19th century. They apply machine
learning methods for joining manuscript-fragments that are part of
the same manuscript.

In this study we take another step backward in time and apply ma-
chine learning to the study of ancient Cuneiform tablets. Cuneiform
tablets provide a means to study our ancestors’ world, and to under-
stand early civilizations with their complex social structures and so-
phisticated cultures. This form of writing served the Mesopotamian
civilizations for thousands of years, and the earliest cultural and sci-
entific achievements of mankind are recorded in this way. Examples
of the type of tablets we study are shown in Figure 1, where the
indentations are the cuneiform symbols we are attempting to ana-
lyze. Each character is formed by imprinting the stylus (the sharp-
ened reed used as a writing tool) into wet clay, forming an imprint
named a wedge. Figure 2 shows examples of single wedges cut from
the tablets.

Some of the interesting questions to answer are: Did the shape
of the stylus evolve over time? Does the same scribe always use a
similar stylus? Are tablets written in certain areas similar to those
written in others? Can one automatically join fragments of tablets?
Are tablets from the same periods similar to each other?

In order to help answer these types of questions, we propose a
feature extraction method for the cuneiform wedges. Our first contri-
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Figure 1. Scanned Clay Cuneiform Tablets.

bution is describing the wedges, and therefore the stylus, as it is the
inverse of the imprinted wedges. Our second contribution is showing
how our feature extraction can be used by classification algorithms
to classify different tablets.

Using scanners which are based on the structured light technique
[17] a 3D scan of the cuneiform tablets can be made. These scans
enable harnessing computer science in general and machine learning
in particular to the study of cuneiform tablets. Previous applications
enable visualization [3, 7], and attempt to perform Optical Character
Recognition (OCR) [1, 10, 9, 2, 6].

We focus on single wedges, and not on the cuneiform characters
which are a combination of several wedges. This is analogous to us-
ing single pen strokes rather than letters when studying modern writ-
ing as suggested in [15]. We use the extracted wedge features for
classification of cuneiform tablets.

Our feature extraction is based on viewing the wedge as a three di-
mensional corner generated by the intersection of three planes (tetra-
hedron), as illustrated in Figure 3, and is inspired by archaeological
studies [12, 11].

We use three cuneiform tablets to demonstrate our feature extrac-
tion. We will show the stylus features extracted for each of the tablets,
and show that we obtain a precise measure. We also show how using
our features for the classification of tablets results in high accuracy.

The paper is structured as follows: Section 2 discusses some re-
lated work. Section 3 introduces our feature extraction method. Sec-
tions 4 and 5 describe the data we used and our experimental results.
We conclude in Section 6.
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Figure 2. Single wedges

2 BACKGROUND AND RELATED WORK

The data retrieved from the tablet scan is in the form of a 3D mesh.
Using 3D scans of cuneiform tablets is not new, and has been studied
using a variety of methods. One possible way to use the 3D scans is to
extract the 2D information held in the scan and use image processing
methods developed for 2D data such as the work of Malzbender et
al. [8] who use Polynomial Texture Maps for tablet visualization.
However, since the cuneiform symbols are inherently 3D, the depth
of the symbols, the position of the tablet and many other features are
of importance when reading the tablets. This motivates investigation
of the 3D data.

Most research performed on 3D scans of cuneiform tablets in-
volves visualizing the tablet such as [8, 3, 7]. The aim of the visu-
alization is to provide a means to read the tablets without the need to
physically have the tablet. As tablets are often kept in museums, and
may be harmed by handling, this is in itself an important task.

Visualization of the tablets is not the only way computer sci-
ence can contribute to the study of cuneiform tablets. An example to
an important and interesting task involves extracting the cuneiform
characters automatically. Hilal et al. [1] attempt to address this task
by using 2D pictures of hand written copies of tablets. They use
intensity curves for the drawn images to differentiate between char-
acters.

Classification of cuneiform tablets was performed in the
ECML/PKDD Discovery Challenge 3 [5]. In this challenge clay
tablets were translated by specialists from cuneiform symbols to a
set of ASCII characters. The task involved classifying these sym-
bols in order to identify and date documents. There is also a Unicode
character set that is specific to cuneiform. However, methods such
as these require manual copying by a trained archaeologist for per-
forming the transcription of the characters from the tablet. This is a
slow task requiring the work of a trained archaeologist, which could
benefit from the application of automated methods on 3D scanned
data.

Using 3D scanning for feature extraction, that is later used as input
for classification algorithms has been performed by Richardson et al.
[16]. Their work was performed on a lithic artifacts. As the features
for cuneiforms are inherently different to those of lithic artifacts, this
work cannot be transfered directly to our problem. However, their

success indicates that computerized analysis is beneficial to archae-
ological studies, and feature extraction is a beneficial step.

Active research on character extraction from 3D scans is being
performed by Mara [9] who also introduced GigaMesh [10] and by
Gerfrid, Muller and Fisseler [2, 6]. The approach used by Mara et
al. [10] is based on capturing the volume of character that is below
the surface. The volume is found using the intersection of multiple
spheres with the area below the tablet surface. This study provides an
enhanced visual 3D picture of the tablet focusing on enhancing the
characters. In other work [9], Mara shows how the characters that are
found can be used as a basis for OCR.

Most similar to our work is a research project that is currently
being conducted by Gerfrid, Muller and Fisseler [2, 6]. Gerfrid et
al. propose a “top-down” method. They use the full tablet, extract
single wedges from the tablet and then analyze them. They model
the cuneiform wedges as tetrahedrons (as we do), find the surface
that best fits the tablet, and use it to extract the wedges from the
tablet. Once the wedges are found, their features are estimated. The
wedge features are extracted by segmenting each wedge into three
parts using the mesh cell normals, and finding the normals for each
face. They then derive the wedge edges from the faces.

In contrast we propose a “bottom-up” method. We perform this
study under the assumption that the wedges have already been cut
from tablet, and focus on extracting precise features for each wedge.
We propose two sets of features describing the wedge imprinted by
the stylus. Both sets of features describe the angles between the
wedge edges. However we derive one set of features from the face
area of the wedge, and the other set from the curved edge areas, re-
sulting in two independent feature sets. Our proposed extracted fea-
tures provide a precise robust description of the wedges on a tablet.

3 FEATURE EXTRACTION METHOD

Our feature extraction algorithm uses the digitized 3-D model of the
surface as input. The focus of our study was to extract features for
a single wedge, which is a single imprint of the stylus. The wedges
we use are cut from the scan of the clay tablet manually, as shown in
Figure 2. In order to explain the various parts of our feature extrac-
tion method, we will use an example wedge shown in Figure 3. This
single wedge is viewed from the outside.

A wedge can be viewed as a triangular pyramid with three triangu-
lar faces emerging from a common vertex. Thus, the angles between
the edges of the three triangles («, 3, in Figure 3) uniquely define
the geometry of the wedge, and thus the geometry of the stylus that
imprinted the wedge.

Figure 3. A scanned model of a wedge. The edges E1, E2, E3 we expect
to obtain, and the angles «, (3, v between them.

The first stage of the wedge analysis consists of segregating the
domains where the edges and faces appear on the measured model
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(coloured in red and blue , respectively, in Figure 4). The pyramid ge-
ometry , namely, the angles «, 3, v on the pyramid, is now extracted
in two independent ways, which are based on different sets of points
on the surface. One method makes use of the edge domains, and the
other uses the face domains. We combine local measures such as the
local curvature of the mesh, together with global features such as the
plane or line passing through large areas of the mesh.

Figure 4. A wedge separated into high (red) and low (blue) curvature
areas.

3.1 Preprocessing

We proceed to describe how the geometrical features are extracted
from the 3D scan. The 3D scan is a triangular mesh composed of a list
of triangular cells and vertices. The triangular cells are often termed
faces, however in order to differentiate between the mesh faces to
the wedge faces, we will refer to them as mesh cells. There is no
information on which parts of the mesh compose each face, or the
edges and tip of the wedge, therefore we propose a method to find
them. First we will describe some preprocessing we perform on the
wedge mesh, and then the two feature extraction methods.

3.1.1 Cap

We first restrict the area used in the analysis to avoid the vicinity of
the wedge boundaries where the surface shows curving, or deforma-
tions typical for elongated wedges. This is done by using cells that
are within a sphere centered at the deepest point of the wedge. We
term these cells the Cap cells. The radius of the sphere is determined
by the depth of the wedge. The sphere can be seen in Figure 5 as the
blue area, while the grey areas on the wedge are not included in the
analysis. The restriction of the wedge area to the Cap is beneficial to
our study since we are focusing on finding the common features of
the various wedges on a specific tablet, in order to model the stylus
or classify different tablets. If we were to study the differences be-
tween different wedges, for example in order to perform OCR, then
this stage would be eliminated.

Figure 5. The cap (blue) area of a wedge.

3.1.2 Curvature measures

We calculate the curvature measures as proposed by Cohen-Steiner
and Morvan [4]. The curvature measures calculated for each cell are:
the direction of minimum/maximum curvature (Umin/Umazx), min-
imum/maximum curvature (C'min/Cmax ) , the Gaussian curvature
(Cgauss) and the normal to the surface of the cell (Norm,).

3.2 Edge Features

The algorithm which analyzes the edge domains (coloured red in
Figure 4) finds the local edge direction using the direction of the
minimum surface curvature. The resulting directions are combined
to define the best fitting lines which emerge from a single tip point.
These lines are the edges of the wedge, and the angles ok, Or, Ve
between these edges are our first set of features.

The algorithm ExtractEdgeFeatures is described in Algo. 1.
The input to the algorithm ExtractEdgeFeatures is the mesh of
the Cap , with curvature measures and a threshold for excluding the
tip area. The output is the angles between the edge vectors E;, i =
1,2, 3 which define the wedge edges. These angles are denoted by
ag, Be,VE-

Algorithm 1 ExtractEdgeFeatures
Input: Cap, Cmax(Cap), Cmin(Cap), Umin(Cap),t
Output: ag, B, VE, tipE

M = Cmaz(Cap) > mean(Cmax(Cap))&Cmin(Cap) < t

[M1, M2, M3] = Kmeans(Umin(M), 3)

forall: = 1to 3 do

E; = vector closest to Umin(M;)

tipgp = point with maz(Cgauss)

ag = angleBetween(Es, E3)

Be = angleBetween(FEs, E1)

~vE = angleBetween(FE1, Es)

The cells used for the edge features are selected from the Cap
cells. We use cells on the Cap that have a maximum curvature
(Cmaz) that is above average, this selects cells that are on the
curved areas of the wedge. We exclude the cells that are in the tip
area by removing cell with a low minimum curvature (Cmin).

Since we wish to extract three edges defined by these cells, we
must segregate the cells into three sets, each corresponding to a sin-
gle edge. This is done by clustering the direction of the minimum
curvature Umin into 3 clusters, using K-Means. The cells that are
used in this stage, clustered into the 3 clusters appear in Figure 6(a).
The output clusters of mesh cells are labeled M1, M2, Ms.

() (b) (©)

Figure 6. (a) Wedge with areas of high curvature on Cap selected for the
edge analysis. Each color correlates to a cluster. Displays the extracted edges
as shown from the outside (b) and from the inside (c) of the wedge.
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For each of the 3 clusters, we now obtain a vector that represents
the edge belonging to this cluster. The edge direction is obtained
using the direction of the minimum curvature (Umin), by finding
the average direction for all the cells in this cluster. The tip of the
wedge is estimated to be the point with the highest Gaussian curva-
ture (C'gauss), and the edges are lines that come out of the tip in the
edge direction. The stylus is not a perfectly straight tetrahedron, and
the estimated edges cut through the wedge. Figure 6(b) shows the ex-
tracted edges as seen from the outside of the wedge, and Figure 6(c)
shows the edges as viewed from the inside of the wedge.

3.3 Face Features

The second extraction algorithm uses the face area (coloured blue in
Figure 4) and finds the best fitting planar faces and tip point. From
the intersection of these planes we derive our second set of edges and
thus the angles a.r, B, vr between the wedge edges, and creates our
second independent feature set.

The algorithm ExtractFaceFeatures is described in Algo. 2.
The input to the algorithm ExtractFaceFeatures is the mesh
of the Cap, with curvature measures and a threshold for selecting
curvature. The output is the angles between the edge vectors Fj,
1 = 1,2, 3 which define the wedge edges. These angles are denoted
by ar, Br,vF.

Algorithm 2 ExtractFaceFeatures
Input: Cap, Cmax(Cap), Cmin(Cap), Norm(Cap),t
Output: ap, Br,Vr, tipr
M = Cmaz(Cap) < mean(Cmaz(Cap))&Cmin(Cap) < t
[M1, M2, M3] = Kmeans(Norm(M), 3)
forall: =1to 3 do
N; = vector closest to Norm(M;)
repeat
tipr = getTipPoint Faces(N1, N2, N3, My, Mo, M3)
foralli = 1to3do
N; = getNormal FromTip(tipr, Norm(My),
Norm(Ma), Norm(Ms))
until convergence

F1:N2><N3
F2:N3><N1
F3:N1><N2

ar = angleBetween(Fs, F3)
Br = angleBetween(F3, F)
vr = angleBetween(F1, F»)

As for the edge features, we use the Cap cells of the wedge. How-
ever for the face features we use the cells on the Cap that have a
maximum curvature (C'maz) that is below average. We again ex-
clude the cells that are in the tip area by removing cell with a low
minimum curvature (Cmin).

We cluster the cells into three clusters, one for each wedge face.
This is done by using K-Means on the cell normals (Norm), K = 3.
The output clusters of mesh cells are labeled M, M2, M3. The low
curvature area used in this part of the analysis appears in Figure 7(a).
Each color represents a cluster found using K-means.

Once we have 3 clusters of cells, we find the vector that best rep-
resents the cell normals, this is our first guess for the normal to the
wedge face (and is also the method developed independently by [6]).
As the normals do not always provide a precise representation of the
wedge faces, we improve the analysis further. We iteratively generate

(@ (b)

Figure 7. (a) Wedge with areas of low curvature on Cap selected for the
face analysis. Each color correlates to a cluster. (b) displays the extracted
edges as shown from the outside of the wedge.

the wedge tip by fitting a plane through the cluster cells with the es-
timated normal, and then refining the normal by fitting planes to the
cells using the estimated tip. When the process converges, we have
the estimated tip, along with three wedge face normals. The cross
product of these normals provides us with 3 edges, and the angles
between them are the face features. The edges extracted are shown
in Figure 7(b).

3.4 Curvature Features

Curvature measures are also descriptive of the wedges, and are nat-
ural candidates for wedge features. We use the average and stan-
dard deviation of the curvature measures Cmin,Cmaz,Cgauss de-
scribed in Section 3.1.2. We calculate the curvature measures over
the face area (coloured blue in Figure 4), and label this feature set
curvF', and separately over the edge area (coloured red in Figure 4)
and label this feature set as curvE.

4 DATA SETS
4.1 Tablets

There are three tablets used in this study. The first is a recent tablet
prepared especially for the present study by Prof J Marzahn, see Fig-
ure 1(a). The second is the Urlll tablet from the archaeological col-
lection of the Hebrew University - Jerusalem, shown in Figure 1(b),
and the third an Assyrian tablet displayed in Figure 1(c) from the
Heidelberg Academy of Sciences and Humanities (Forschungsstelle
Literarische Keilschrifttexte aus Assur).

From each tablet we manually extracted single wedges. There are
25 wedges in the recent set , 20 wedges in the UrlIl set, and 8 in the
Assyrian set. The wedges are of a variety of orientations and shapes
and sizes.

4.2 Scanning

We use scanners which are based on the structured light technique
[17]. They are available commercially, and can achieve high spa-
tial accuracy, exceeding 0.05mm. This level of precision is sufficient
to resolve various features which appear on the wedge surfaces, the
most prominent are the imprints of micro-tubes or capillary lines of
the plant (separated by approximately .65mm) along the reed sec-
tions (Figure 8(a)), as well as faults which are due to the granularity
of the clay, damages and cracks. The output data are stored as digi-
tized triangulated surfaces as shown in Figure 8(b). The tablets and
the stylus tips were scanned at the Computerized Archaeology Lab-
oratories, The Hebrew University, Jerusalem, and by the commercial
firm TrigonArt, Berlin.
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(a) Full wedge surface note striations imprinted
by the reed micro-tubes

(b) Close-up of wedge surface, with mesh

Figure 8. Digitized images of single wedge.

5 EXPERIMENTAL RESULTS

For each of the wedges in each of the tablets we extracted both the
face features and the edge features. Examples of wedges and their
extracted features appear in Figure 9. The the face features are visible
in blue. The edge features in red, are partially visible (some parts of
the edges are not visible, since they are inside the wedge).

(a) (d) ()

Figure 9. Wedges with face features (blue), and edge features (red).

5.1 Wedge Feature Evaluation

The first result describes the features of the stylus that is estimated to
have been used for each tablet. The stylus is estimated by averaging
the wedge features that we extracted for all the wedges on each tablet.
The recent tablet was scanned at two resolutions referred to as low
and high, respectively.

As the edges are the intersections of the wedge faces, the two sets
of features are easily obtainable from each other. If we were to obtain
a perfect scan, and if the stylus were shaped like a perfect geometri-
cal tetrahedron, these features would be expected to coincide. How-
ever, since the stylus is not perfect, the clay is granular and moreover,
the scanning resolution is always finite, the features do not coincide.
Note also that the faces are not always perfect planes: indeed Figure
8(a) shows clearly a set of parallel deformations on one of the faces.
These originate from the reed tubular structure.

The mean values and standard deviations for features in all data
sets are summarized in Table 1. The results for the recent tablet indi-
cate that under favorable conditions our method can achieve a margin
of uncertainty of 1 for the extracted angles. The margin of uncer-
tainty for the Urlll and the Assyrian data are higher than the one
seen in the recent tablet data. This might be due to various possible
causes lower scan resolution, more rounding of the edges and de-
formations caused by the proximity of other wedges. Comparing the
three sets of data, one can see significant differences between the ge-
ometries, showing that the Urlll stylus is less sharp than the recent
stylus. The Assyrian stylus has even larger angles, meaning that it is
even wider than the others. We wish to mention that in an early stage
of our study we investigated the use of the face normals alone to find
the edges (as in [6]), and found a much larger margin of uncertainty
in our results. This lead us to the more precise method we presented.

Table 1. Wedge angles

Feature a Jé] 5
recent (high) face 88.7+ 0.6 92.4+0.6 96.5 £ 0.8
edge 89.6 + 1.0 88.2+0.6 93.0+1.4
recent (low) face 90.9+£0.5 92.8+0.4 97.6 £ 0.7
edge 88.3+0.7 87.2+1.0 89.8+ 1.1
URII face 92.0+1.1 98.6 £1.1 1029+14
edge 95.1+1.8 98.1+1.5 95.7+ 1.3
Assyriyan face 89.1£2.5 100.2£3.3 | 117.6 £2.1
edge 104.6 + 5.2 102 +£4.9 105.7 £ 5.6

5.2 Tablet Classification

The second question we address is whether the extracted features
can be used to differentiate between the tablets. We use three types
of features the edge features and face features that we defined in
Sections 3.3 and 3.2 and the curv features described in Section 3.4.

For each wedge we form a feature vector using either the edge
features, the face features, the curv features or combinations of these
features (see Table 2 for details). Each feature vector is labeled with
the tablet name. We perform pairwise classification of wedges from
the three tablets. We use Decision Trees (DT) and Support Vector
Machine (SVM) as the classification algorithms. We used the default
Matlab DT (classregtree) and the default Matlab SVM (svmtrain)
with a Gaussian radial basis function kernel with a scaling factor of
1 (as proposed in [18]), and Sequential Minimal Optimization [14].
The pairwise classification accuracy was measured using random 10-
fold cross validation (for the Assyrian set we used 8-folds). Each test
was repeated 50 times.

Classification results can be seen in Table 2. For the classification
of the recent set vs. the Urlll set, the best accuracy of 99% was ob-
tained using curvE with DT. The Urlll and Assyrian classification
was most accurate, with an accuracy of 90% when using either the
edge features with SVM or the face features combined with curvF
and using DT or when combining all features with DT. Classifying
the recent vs. Assyrian sets was 100% accurate for a variety of meth-
ods. When averaging the different methods over the 3 datasets, we
found that SVM with the combined edge and face features, or DT
with either the face features combined with curvF or combining
all features, has the best classification results (with an average ac-
curacy of 95%). It is interesting to note that although we found that
the face features had a lower margin of uncertainty than the edge
features (Section 5.1), the face features do not necessarily provide
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better classification results than the edge features. Overall the classi-
fication accuracy rates are high, indicating the features we extracted
are useful for tablet classification.

Table 2. Classification Results

recent recent Urlll Average

Feature Algo vs. Urlll ~ vs.Ass  vs. Ass

face DT 0.85 1 0.89 0.92
face SVM 0.88 1 0.89 0.92
edge DT 0.81 0.77 0.88 0.82
edge SVM) 0.87 1 0.9 0.92
edge& face DT 0.86 1 0.86 0.90
edge& face SVM 0.97 1 0.87 0.95
curvF DT 0.94 0.99 0.63 0.85
curvF SVM 0.97 0.97 0.88 0.94
curvE DT 0.99 1 0.77 0.92
curvE SVM 0.96 0.9 0.72 0.86
curvF & curvE DT 0.93 0.99 0.61 0.84
curvF & curvE  SVM 0.9 0.92 0.75 0.86
face & curvF DT 0.94 1 0.9 0.95
face& curvF SVM 0.93 0.95 0.88 0.92
edge& curvE DT 0.99 1 0.76 0.92
edge & curvE SVM 0.9 0.95 0.74 0.86
all DT 0.94 1 0.9 0.95
all SVM 0.73 0.89 0.67 0.76

6 CONCLUSION

This study was motivated by archaeological questions on cuneiform
tablets, such as: What is the exact shape of the stylus used for im-
printing cuneiform tablets? How can one classify tablets ? We used
3D scans of the cuneiform tablets, and cut out single wedges that are
imprinted by a single impression of the stylus.

Our study presents a method to extract geometrical features from
these cuneiform wedges. We introduced two types of features that
can be extracted from the wedge. One feature set extracts informa-
tion from the high curvature (edge) area of the wedge, and the other
uses the low curvature (face) areas. These two feature sets are inde-
pendent, as they different areas of the scanned wedge.

We used three scanned cuneiform tablets to demonstrate the accu-
racy of the extracted features, and showed that the stylus geometry
can be measured to within the accuracy of 1-2 degrees.

We demonstrated how these features, and other curvature features
can be used to classify the tablets. Our experimental results show
that the features we propose can be used successfully to classify the
different tablets we use (with an average accuracy of 90%). This will
enable applying our method to the classification task of other tablets,
in archaeological study.

There are several possible extensions of this work. In this study the
wedges we used were manually cut from the full scan of the tablet. In
order to increase efficiency we should integrate an automated method
to extract the wedges such as the one proposed by Fisseler et al. [6].
Another interesting extension, is to classify wedges based on other
measures such as their orientation, depth, size to enable further study
of the differences between various scribes. It would also be interest-
ing to combine several wedges to create the cuneiform symbols, and
use them for OCR.
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