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Abstract. We propose a solution to a new problem that is faced by
steelworks, who own private thermal power-plants and plan to use
batteries to absorb fluctuations in power demand. A major challenge
is in controlling both the power generation and the use of batteries
under such fluctuations. We formulate a Markov decision process
(MDP) and design the states of the MDP so that it has a periodic
structure to avoid the explosion of its state space. We then develop a
policy iteration algorithm that exploits the periodic structure for com-
putational efficiency. Numerical experiments suggest that the combi-
nation of the proposed MDP and the policy iteration allows us to find
a control policy that can significantly reduce the electricity cost.

1 INTRODUCTION

For economical and environmental reasons, there has been a signifi-
cant amount of research for optimizing the control of the generation
or the use of electric power. This research is motivated by require-
ments not only from electric power companies but also from man-
ufactures of steel, automobile, chemical, and other products that re-
quire a huge amount of electricity for production. The goal of this
paper is to introduce and solve a new problem faced by leading steel-
works in Japan who own private power plants and seek to optimize
the way they generate and use electric power.

The prior work addresses various issues that appear in the genera-
tion or the use of electric power. An active area of research for opti-
mally controlling the electric power plants is in unit commitment [12]
for determining when to turn on and turn off their turbines. Energy
storage devices for flexible and secure unit commitment are studied
in [2, 9] to cope with the wind energy fluctuation.

There is also an increasing interest in batteries for balancing the
use of electric power. Because there are various factors that can af-
fect their performance, the charging schedule of batteries must be
designed carefully. A problem of designing the charging schedule of
batteries in electric vehicles from wind energy is studied in [17], and
a study in using uninterrupted power supply (UPS) as energy storage
instead of just for emergency for data centers is in [18].

The first contribution of this paper is to introduce and formulate a
new problem in the steelworks that deals with both aspects of elec-
tric power generation and usage by exploiting storage capabilities of
batteries. The new problem that we address appears in anonymous
steelworks who own private power plants that are capable of gener-
ating electric power cheaper than directly buying from electric power
companies. However, due to turbine constraints, the steelworks must
commit the amount of the electric power it will use for every 30-
minute period and do so 15 minutes prior to the beginning of the
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period. Undercommitment results in buying expensive electricity to
cover the power deficit, and overcommitment results in wasting un-
used electricity. On the other hand, accurate prediction of the amount
of power consumption is difficult in practice, because production
schedule can change within the last minutes and power consump-
tion depends on uncontrollable external factors such as the temper-
ature. To reduce the cost of electricity that results from over- and
undercommitment, the steelworks plan to use batteries to mitigate
the uncertainties and fluctuations of the demand for electric power.

The second contribution of this paper is in using MDPs for opti-
mizing the control of the generation and the use of electric power. We
design the state space of the MDP so that it has a periodic structure
that allows constructing an efficient algorithm.

The third contribution of this paper is a new approach of policy
iteration for the MDP whose state space has a periodic structure.
Our work follows a trend in the community where the computational
complexity of policy iteration for MDPs having particular structures
can be significantly reduced [7, 19]. However, unlike previous ap-
proaches, our proposed policy iteration avoids matrix inversion and
other bottlenecks from matrix operation, and therefore, is faster, as
shown from the numerical experiments.

2 A PROBLEM FROM STEELWORKS

Steelworks consume a huge amount of electricity for rolling slabs
into coils, electric furnaces, and other manufacturing processes.3

They thus often have private thermal power plants that can produce
electricity at the cost lower than that provided by electric power com-
panies. For efficient operation, power plants often shut down and start
up some of their turbines to cope with the changes in power demand.
However, due to the delay in starting turbines, the operation of the
turbines needs to be planned in advance by taking into account the
uncertainty in the power demand. This planning is called unit com-
mitment and has been well studied in the literature. Our work can be
considered as a preprocessing step prior to the unit commitment and
its output decision can be utilized by a unit commitment solver.

In practice, the steelworks cannot commit the exact amount of
power to be used in a period due to the uncertainty in the demand.
The use of batteries to store the power surplus during a period of
overcommitment to be used later at a period of undercommitment is
a solution of the steelworks. Notice that, with the ability to store sur-
plus for later use, it is not necessarily an optimal choice to commit
the exact amount of power that is predicted for the next period.

We must take into account various factors to appropriately charge
and discharge batteries. First, a nonnegligible fraction of power is
3 According to Japan Statistical Yearbook 2012, the iron and steel industry

in Japan consumed 70.5 TWh of electric power in 2009, which amounts to
18.3% of the total consumption in Japan.
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Figure 1. Fluctuation of power demand in a period

lost when batteries are charged and discharged. For example, approx-
imately 10% or more of the power is lost upon charging lead-acid
batteries and sodium-sulfur batteries. Second, a careless charging and
discharging policy can shorten the life time of batteries. For exam-
ple, the life time can be shortened far more quickly when they are
used at low state of charge (SOC) [14, 13]. Third, the rate at which
batteries can be charged and discharged is constrained, and can also
affect their life time.

3 MODELING WITH MDP

We design the MDP to optimally decide the amount of power to be
generated and the amount of power to be stored to (or released from)
batteries. The idea behind the MDP formulation for the steelworks is
described in Figure 1. Let qcom be the committed amount of power
(as bounded by the larger rectangle in the figure), and qpre be the pre-
dicted amount of power usage in the 30-minute period (as bounded
by the smaller gray rectangle in the figure). Dividing the period into
T intervals, one can see that, if the steelworks avoid underestimation,
then the average of power usage per interval is at most qcom/T .

However, the actual power demand fluctuates. The curved line il-
lustrates the average power consumed since the beginning of the 30-
minute period. The steelworks have opportunities to store the unused
power to batteries when the actual average usage is below the average
commitment (low usage region in the figure), and to release it when
the actual average usage is above the averaged commitment (high us-
age region in the figure). These opportunities will be weighed against
other internal and external factors of batteries. Moreover, when de-
ciding the commitment amount in the next period, the current state of
batteries and total amount of committed, predicted and actual power
usage can be used to estimate the probabilities of ending the period
with empty batteries (underestimate in path 1 in the figure), or fully
charged batteries (overestimate in path p in the figure). An MDP
is used to guide decisions of the counter actions by modifying the
amount of charge/discharge decisions in the rest of the intervals and
by committing an appropriate amount of power for the next period.

The MDP is a 4-tuple 〈S,A, P (· | ·, ·), C(·, ·)〉, where S is a set
of finite states, A is a set of finite actions, P (st+1 | st, at) is the
transition probability of moving to state st+1 when taking action at

in state st, and C(st, at) is the cost of taking action at in state st.
We describe each component of the tuple below. For simplicity, we
fix the length of period to 30 minutes, and the time to commit the
amount of power to 15 minutes prior to the beginning of the period.

We assume that the parameters of the MDP are set in advance.

The parameters can be determined based on the electric tariff, the
fuel cost, and the specifications of batteries.

The set of finite states S is one of the key features of our formu-
lation. We divide the period of 30 minutes into (finite) T intervals of
length 30/T each, and for each interval t ∈ {1, 2, . . . , T} define a
set of possible states St. Each state is designed to store the predicted
values of power deficit or surplus (i.e., the difference between power
consumed and committed) at the end of the current period and in the
next period. We refer to these estimated values as the power balance
values of the current and next period.

Formally, each of st ∈ St is represented by

st ≡ (t, dt, d
′, ut), (1)

where t is the interval number in the current period, dt is the power
balance value of the current period, d′ is the power balance value of
the next period, and ut is the state of the battery at t. A major benefit
of our definition of states is that it does not explicitly include the
amount of power consumption and commitments in the current and
succeeding period. Such amount may vary for each period and can
do so by orders of magnitude.

Notice that dt varies with t since we can use the knowledge of the
total power consumed up to the beginning of the interval t to refine
the power balance value of the current period. Specifically, we use
the linear model

dt ≡
(
qt +

T − (t− 1)

T
qpre

)
− qcom. (2)

The first term on the right-hand side is the prediction of the consumed
power, where qt is the total power consumed up to the interval t, and
T−(t−1)

T
qpre is the estimation of the total power consumed from t to

the end of the period (we simply estimate that each interval from t
consumes qpre/T power). The second term on the right-hand side is
the committed power for the current period (which was decided 15
minutes prior to the beginning of that period).

The set of actions, shown later, use these predicted values of power
balance and the battery state ut to decide either to store or use energy
from batteries. Roughly speaking, under power surplus (deficit) and
the availability of uncharged (charged) batteries, the action tends to
charge (discharge) so that the power deficit or surplus at the end of
the period, dT = qT − qcom, becomes close to 0.

The power balance value at the succeeding period, d′, is q′pre −
q′com for t ≥ Tcom, or ∅ (i.e., not used) for t < Tcom. Here,
q′pre, q

′
com are, respectively, the total amount of predicted and com-

mitted power for the next period, and Tcom is the interval that in-
cludes the time deadline to commit the amount of power generated
at the succeeding period. Let Dt be the set of (finite) possible values
of dt for t = 1, . . . , T , and let D′ be that of d′. Let Ut be the set of
(finite) possible values of ut for t = 1, . . . , T .

The set of actions, A, consists of possible action sets At of
charging or discharging batteries at the beginning of interval t ∈
{1, 2, . . . , T}, and committing to generate q′com energy in the suc-
ceeding 30-minute period at t = Tcom. Each action at ∈ At takes
the following form

at ≡ (rt, d
′), (3)

where |rt| is the amount of power charged to (or, discharged from)
batteries during the t-th interval if rt ≥ 0 (or, rt < 0), and d′ is the
power balance value of the succeeding period. Notice that d′ = ∅
(i.e., ignored) if t �= Tcom, and the amount of committed energy is
obtained from q′pre − d′ otherwise. Clearly, the possible values of all
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Figure 2. State transition

d′ in at’s are D′. Let R denote the possible values of rt, which is
primarily determined by the maximum speed at which the batteries
can be charged or discharged during an interval in the period.

The combination of states and actions defines the transition prob-
ability P (st+1 | st, at), which is the probability of moving to state
st+1 ∈ St+1 when performing at ∈ At at state st ∈ St. For ex-
ample, taking an action at = (rt, d

′′) in state st = (t, dt, d
′, ut)

at interval t �∈ {Tcom, T}, we transition to (t + 1, Dt+1, d
′, Ut+1),

where Dt+1 and Ut+1 are the random variables for power balance
values and battery states at t+1. If the amount of consumption were
exactly qpre/T at t, we would have Dt+1 = dt + rt surely. How-
ever, in practice the power balance value at t is inaccurate due to the
fluctuation of qt and qt+1. We model these inaccuracies and fluctua-
tions as random transitions by estimating the probability distribution
of Dt+1 − (dt + rt) using the data about past predictions and actual
usage of electric power.

Notice that from the periodicity, we have t = T + 1 is equal to
t = 1, and the non-zero transition probability is possible only from
sT = (T, dT , d

′, uT ) to s1 = (1, d1, ∅, u1) if d1 = d′ (i.e., setting
the power balance value at the beginning of the succeeding period).
This and other representative transitions are illustrated in Figure 2.
The non-zero transition probability at t = Tcom is possible only from
st = (t, dt, ∅, ut) to st+1 = (t+ 1, dt+1, d

′, ut+1) when the action
is at = (rt, d

′). Moreover, since we cannot change the commitment
made at t = Tcom, the non-zero transition probabilities at t > Tcom

are only between states with the same power balance value of the next
period, i.e., st = (t, dt, d

′, ut) to st+1 = (t+ 1, dt+1, d
′, ut+1).

We consider four types of costs to take into account short and long
term benefits of actions. The first type of cost is determined by the
amount of electricity purchased from the power company when the
commitment was an underestimate. The second is by the amount of
electricity that the private power plant generated but not used. The
third is the cost associated with the electric power that is lost upon
charging or discharging batteries. The fourth is the cost associated
with shortening the life time of the batteries.

The first two types of costs are incurred at the end of the period
(i.e., at the end of the interval T ), depending on aT and sT . We de-
note these costs as CP (at, St) which is zero if t �= T . Notice that the
first cost is approximately twice as high as the second, and therefore,
an optimal sequence of actions will guide to actions of generating
power from the private plant. However, since the second cost im-

poses limiting the amount of wasted power, unexpected fluctuation
of power consumption can occasionally cause underestimation.

The third type of cost is denoted by CE(rt) and depends on the
efficiency of charging and discharging batteries by the amount of rt.
For simplicity, we can assume that the power is lost only at the time
of charging. Suppose that the fraction of the power that is lost from
charging to discharging is α. Then, assuming that the unit cost of
power from the private plant is γ, we set CE(rt) = α

1−α
rtγ for

rt > 0. On the contrary, we set CE(rt) = 0 when rt ≤ 0.
The fourth type of cost is denoted by CL(st, rt) and depends on

the characteristics of the batteries under consideration and the rate of
(dis)charge, rt, of action at. For example, being at a particular SOC
or (dis)charging at high rate can shorten the life time of batteries.

In summary, we define, C(st, at), the cost of taking action at =
(rt, d

′) at state st as

C(st, (rt, d
′)) ≡ CP (st, rt) + CE(rt) + CL(st, rt). (4)

4 EFFICIENT POLICY ITERATION

We seek to obtain the optimal policy that assigns an action to each
state in such a way that the average expected cost is minimized. Be-
cause our MDP is periodic, the average expected cost is defined with
the Cesaro limit,

lim
n→∞

E[C1] + E[C2] + · · ·+ E[Cn]

n
, (5)

where Ck denotes the cost incurred at the k-th transition of our MDP.
We do not discount the future cost, because our MDP has a short time
step such that a few hours ahead would be quickly ignored even with
a moderate discount factor of 0.99. The approaches whose conver-
gence relies on the discount factor converge very slowly when the
discount factor is very close to 1. Not using a discount factor is es-
sentially equivalent to using the discount factor very close to 1.

4.1 Policy iteration

Standard approaches for finding optimal policy that minimizes the
average expected cost of an MDP include value iteration, linear pro-
gramming, and policy iteration (see Chapter 8 from [15]). The prior
work on policy iteration that exploits the structure of the MDP for
computational efficiency [19, 7] motivates us to investigate policy it-
eration for our MDP that has a particular structure resulting from the
30-minute period. Policy iteration consists of four steps: (Step 1) Se-
lect an initial policy, (Step 2) Evaluate the policy, (Step 3) Update the
policy, (Step 4) End if there is no update; return to Step 2 otherwise.

A bottleneck of policy iteration is in policy evaluation, which re-
quires to solve the system of equations

c = g 1+ (I−P)h, (6)

where we assume that the MDP is unichain (see Corollary 8.2.7 from
[15]). For readability, we omit the description for multichain.

In (6), g and h are variables that represent the performance of
a given policy, π, that we are evaluating; c and P are given by
the parameters of the MDP and π; 1 denotes the vector whose el-
ements are all 1, and I denotes an identity matrix. Specifically, g is
referred to as gain in the literature and denotes, in our context, the
average cost incurred per transition when we follow π. Also, h is
called bias. An element of h is associated with a state and denotes
limn→∞

∑n

k=1
(E[Ck] − g) + β , where β is an arbitrary constant,

and Ck denotes the cost associated with the k-th transition, starting
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from that state following π. Notice that (6) does not determine the
solution uniquely. If (g�,h�) is a solution of (6), then (g�,h�+β 1)
is also a solution of (6) for any β. Finding any solution of (6) would
suffice for the purpose of policy iteration.

4.2 Policy evaluation for periodic MDPs

We say that an MDP, 〈S,A, P (· | ·, ·), C(·, ·)〉, is periodic, if S can
be partitioned into into {St}t=1,...,T for T ≥ 2 such that P (s′ |
s, a) = 0, ∀(s′, s, a) ∈ St′ × St × A such that t′ − 1 = t mod T .
Note that a periodic MDP has an infinite horizon and is different
from a finite-horizon MDP. We will solve the infinite-horizon MDP
without approximation by exploiting the periodic structure.

Given π, an MDP is reduced to a Markov reward process. Let P
be the transition probability matrix for a π. For a periodic MDP, we
can arrange the states so that P has the following structure:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 P1,2 0 · · · 0

0 0 P2,3

. . .
...

...
. . .

. . . 0

0
. . . PT−1,T

PT,1 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

Here, an element of Pt,t+1 denotes the probability of transitioning
to a state in St+1 from a state in St. An element of c denotes the
expected cost incurred immediately from a state when an action is
selected based on π. Analogously to (7), let

cT = ( cT1 cT2 · · · cTT ) (8)

hT = ( hT
1 hT

2 · · · hT
T ). (9)

The key idea in our approach is to first evaluate the bias for a
subset of states. We start by evaluating the bias for the subset having
the minimum number of states. Without loss of generality, let S1 be
that subset and be referred to as a set of core states.

To evaluate the bias for S1, we calculate

Q = P1,2 P2,3 · · ·PT−1,T PT,1 (10)

b = c1 +R1,2 c2 +R1,3 c3 + · · ·+R1,T cT , (11)

where R1,k ≡ P1,2 P2,3 · · ·Pk−1,k is the transition probability ma-
trix from states in S1 to states in Sk. The (i, j) element of Q is
the probability of transitioning to the j-th core state given that the
Markov reward process transitions from the i-th core state in the pre-
ceding cycle. Then the i-th element of b denotes the expected cumu-
lative cost from when the Markov reward process transitions out of
the i-th core state to when it transitions back to a core state.

Observe that Q and b define a Markov reward process on S1. An
element of Q denotes the probability of transitioning from a core
state to another core state (via states in S2, . . . ,ST ). An element of
b denotes the expected cost to be incurred from a core state (until
coming back to a core state via states in S2, . . . ,ST ). Analogously
to (6), we thus need to solve the following system of equations to
obtain g and h1:

b = T g 1+ (I−Q)h1 (12)

We can solve (12) using an iterative algorithm such as conjugate
gradient [16]. Although neither (12) nor (6) determines the solution
uniquely, it suffices to find one from the iterative algorithm.

Once a pair of g and h1 is obtained as a solution of (12), we can
obtain ht for t = 2, . . . , T recursively from (with PT+1 = P1 and
hT+1 = h1),

ht = ct − g 1+Pt,t+1 ht+1. (13)

It is straightforward to verify that the solution, (g,h), satisfies (6).

5 NUMERICAL EXPERIMENTS

We now evaluate the effectiveness of the proposed policy iteration
with experiments.

We divide a 30-minute period into intervals of length ΔT minutes
each, and vary ΔT such that ΔT divides 30. The number of intervals
in a period is 30/ΔT and each is labelled as t = 1, 2, . . . , 30/ΔT .
At t = tc ≡ �15/ΔT �, the amount of power to be generated during
the succeeding period is determined.

We consider a battery having the capacity of C = 4 MWh and the
power of Pdischarge = 18 MW, which corresponds to a 100 t lead-
acid battery of 0.04 MWh/t and 0.18 MW/t. The charging rate is set
Pcharge = 4 MW. For simplicity, we assume that, for each interval,
the battery is either charged at the full rate of Pcharge, or discharged
at the full rate of Pdischarge, or is left unchanged.

Recall that at the beginning of an interval t, the state st of the
MDP is in the form (t, dt, d

′
t, ut), as in Eq. (1), and an action at of

the MDP is in the form (rt, d
′′
t ). When d′t �= ∅, the state st is a state

that commits to generate q′pre − d′t MWh, where q′pre is the given
predicted power consumption, and d′t is the power balance value of
the next period whose value is chosen between −C/2 and C/2.

We discretize the power into the unit of ΔP MW and vary ΔP
in the following experiments. The internal state (SOC) of a battery
is correlated to the amount of electricity charged. Thus, ut can be
represented by an integer in the range

[
0,
⌈

60C
ΔT ΔP

⌉]
. Analogously,

d′t, d
′′
t , and rt are integers in the range

[
−
⌈

30C
ΔT ΔP

⌉
,
⌈

30C
ΔT ΔP

⌉]
.

Notice that although batteries are charged or discharged at full speed,
the charge (discharge) is terminated when the batteries become full
(empty). Hence, the possible values of rt vary between states de-
pending on the SOC (or, ut).

As shown in the previous section and Fig. 2, when we take an ac-
tion at = (rt, d

′′
t ) at the state st = (t, dt, d

′
t, ut) for t < T/Δ,

the non-zero transition probabilities are only to states of the form
(t+ 1, Dt+1, d

′
t+1, ut+1) with Dt+1 = dt + rt + Yt, where Yt is a

random variable representing the fluctuation of the power consump-
tion in the interval t (i.e., the curved line in Fig. 1). Therefore, the
power balance value of the current period, dt, in the state st satisfies

dt = d0 +

t∑
i=1

ri +

t∑
i=1

Yi, (14)

where d0 is the power balance value at the beginning of the period.
We assume that the amount of power consumption in a period,∑
i
Yi, follows a Brownian motion. We adjust the parameters of the

Brownian motion so that at the end of the period its mean is the pre-
dicted amount of power consumption (qpre), and its standard devia-
tion is Σ = 12 MWh. This implies that the standard deviation of the
power consumption at each interval is σ = Σ

ΔP

√
ΔT
T

. When taking
action (rt, d

′′
t ) at state (t, dt, d

′
t, ut), the probability of transitioning

into state (t+1, dt+rt+Yt, d
′
t+1, ut+1) can be approximated from

Φ
(
Yt + 0.5

σ

)
− Φ

(
Yt − 0.5

σ

)
(15)
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Figure 3. The left two figures show how (a) the number of states and (b) the number of state-action pairs grows as functions of cycle length, T/ΔT . The
right two figures show the performance: (c) the running time per iteration and (d) the number of iteration.

by rounding off the small probabilities of 0.005, where Φ denotes the
cumulative distribution function of the standard normal distribution.

We consider two types of costs: the inefficiency of batteries and
mispredicting the amount of power to be generated. We consider bat-
teries with leakage percentage α = 13 %. The cost of the power
leakage is $10/MWh. Therefore, the power of 1/0.87 unit is neces-
sary to store one unit in the battery (1/0.87−1 is lost per unit stored).
Such cost is associated with every action (rt, d

′′
t ), with rt > 0.

Meanwhile, the price of the electricity to cover underestimation is
$200/MWh, and the cost of the unused electricity due to overestima-
tion is $100/MWh. Such cost is associated with transitions that move
states to the next period.

All of the experiments are carried out with Python 2.7.2 on a Win-
dows machine with two Intel Xeon Processor E5503 and 132 GB
RAM. For fair comparison, only one node of the CPU is used
throughout the experiments. The system of linear equations in (12)
is solved with Python implementation of LSMR 1.0.1 [3]. We exam-
ine the running time of the efficient policy iteration in two settings
related to the key parameter that affect its running time: the number
of core states (i.e., |S1|). We vary the number of intervals (or cycle
length), keeping the number of core states unchanged, and vice versa.

We first vary ΔT , keeping ΔP = 8 MW. Figure 3 (a)-(b) shows
how the number of states and the number of state-action pairs grow as
the cycle length, T/ΔT , increases. The dashed line with dots shows
the total number of states in Figure 3 (a) and the total number of state-
action pairs in Figure 3 (b). The solid lines with cross marks show
the corresponding number of core states in both figures. Observe that
the total number of states grows quickly, while the number of core
states remains unchanged.

Figure 3 (c)-(d) shows the running time of our efficient policy iter-
ation and standard policy iteration. The dashed line with dots shows
the running time of standard policy iteration, and the solid line with
cross marks for the efficient policy iteration. Specifically, Figure 3 (c)
shows the running time for an iteration (i.e., one policy evaluation
and one policy improvement), and Figure 3 (d) shows the number
of iterations. Total running time can be obtained by multiplying a
value in Figure 3 (c) and a corresponding value in Figure 3 (d). Be-
cause the number of iterations does not vary between efficient policy
iteration and standard policy iteration, only one curve can be seen
in Figure 3 (d). Observe that the running time of efficient policy it-
eration is shorter than that of standard policy iteration by orders of
magnitude when there is a large number of states.

We next vary ΔP , keeping ΔT = 15. Figure 4 (a)-(b) shows how
the number of states and the number of state-action pairs grow as
P/ΔP increases, analogously to Figure 3 (a)-(b). Notice that P/ΔP

represents the number of levels of the SOC. Namely, the SOC can be
represented by an integer in [0, �P/ΔP �]. Both the total number of
states and core states grow with the number of charge levels.

Figure 4 (c)-(d) shows the running time of our efficient policy it-
eration and its degradation, analogously to Figure 3 (c)-(d). The de-
graded version evaluates the system of equations (12) by calculating
the inverse of a matrix instead of using an iterative approach, LSMR.
The running time of the degraded version roughly corresponds to the
policy iteration of [7], which exploits the structure of the MDP that
is skip-free in one direction. The solid line with cross marks shows
the running time of efficient policy iteration, and the dashed line with
dots shows that of its degradation. The running time of the degraded
version grows far more quickly than that of efficient policy iteration
due to the matrix inversion. Also, the inverse of a sparse matrix can
be dense, resulting in memory constraints for large core states.

6 RELATED WORK

The existing approaches to optimizing the control of electric power
include mathematical programming [17, 2, 9] and MDPs [10, 20].
The solution with MDPs has the desirable flexibility of allowing the
action to depend on the state under consideration.

The design of the state space of an MDP largely determines the
computational complexity and the quality of its solution. In the prior
work, including [10, 20], a state of an MDP includes the information
about the demand of electric power at or by the corresponding time,
and the state space is defined based on the probability distribution of
demand forecast. On the other hand, the key feature of our state space
is the information about the differences between the forecasted and
actual demand. Although the state space with the demand of electric
power does not show a periodicity, the state space with the differ-
ences does under mild assumptions. This periodicity also stems from
the fact that the steelworks must make a commitment on the amount
of electric power for every period.

Popular algorithms for finding optimal policies for MDPs include
value iteration, linear programming (LP), and policy iteration [15].
The best algorithm depends on instances and purposes. For exam-
ple, [4] designs an approximate LP for a subclass of factored MDP
with particular graph structures, and policy iteration is used for on-
line planning in large MDPs with Monte-Carlo tree search [1]. Many
algorithms can benefit from our definition of the state space, but we
further show that policy iteration can exploit the periodic structure of
the state space for computational efficiency.

White [19] studies policy iteration for the MDP whose state tran-
sitions follow a quasi-birth-and-death (QBD) process for any pol-
icy. Our periodic MDP does not have the QBD structure. Lambert
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Figure 4. The left two figures show how (a) the number of states and (b) the number of state-action pairs grows as functions of cycle length, P/ΔP . The
right two figures show the performance: (c) the running time per iteration and (d) the number of iteration.

et al. [7] study policy iteration for the MDP whose state transitions
follow a Markov chain that is skip-free in one direction, where the
state space can be divided into ordered subsets of states such that
“backward” transitions are allowed only between neighboring sub-
sets of the states, while “forward” transitions are allowed between
any subsets. The class of the Markov chains that are skip-free in one
direction includes a QBD process and our periodic MDP. However,
it is unclear if the techniques in [7] work when the future cost is not
discounted because they require inversion of matrices that become
singular when translated into our formulation. Our policy iteration
avoids matrix inversion and runs faster than that of [7].

Jacobson et al. [6] study the periodic MDP with an additional
structure that the MDP is time-homogeneous within a period, which
we do not assume. Their focus is in giving a guarantee on the qual-
ity of approximation that assumes initially stationary policies when
a period is long. Our approach does not approximate but efficiently
finds the optimal policy by exploiting periodicity. The project man-
agement studied in [6] is another application of periodic MDPs.

7 CONCLUSION

We have introduced a problem faced by leading steelworks that re-
quires controlling both power-generation and battery-use when fu-
ture power demand is uncertain. Our solution is an MDP whose state
space has a periodic structure to avoid the explosion of its state space.
The optimal policy can be found efficiently with policy iteration due
to the MDP’s periodic structures. Value iteration does not appear to
get much benefit from such structures beyond what can be exploited
by existing techniques of compressing the state space [5]. There ex-
ists a wide range of techniques for efficiently analyzing structured
Markov chains either exactly or approximately [8, 11], and it is an
interesting direction to investigate how these techniques can help de-
signing efficient algorithms for structured MDPs.

Acknowledgments

A part of this research was supported by JST, CREST.

REFERENCES

[1] H. Baier and M. H. M. Winands, ‘Nested Monte-Carlo tree search for
online planning in large MDPs’, in Proceedings of the 20th European
Conference on Artificial Intelligence, pp. 109–114, (2012).

[2] A. Daneshi, M. Khederzadeh, N. Sadrmomtazi, and J. Olamaei, ‘Inte-
gration of wind power and energy storage in SCUC problem’, in Pro-
ceedings of World Non-Grid-Connected Wind Power and Energy Con-
ference, pp. 1–8, (2010).

[3] D. C.-L. Fong and M. A. Saunders, ‘LSMR: An iterative algorithm for
sparse least-squares problems’, Technical Report Report SOL 2010-
2R1, Systems Optimization Laboratory, Stanford University, (2011).

[4] N. Forsell and R. Sabbadin, ‘Approximate linear-programming algo-
rithms for graph-based Markov decision processes’, in Proceedings of
the 17th European Conference on Artificial Intelligence, pp. 590–599,
(2006).

[5] J. Hoey, R. St-aubin, A. Hu, and C. Boutilier, ‘SPUDD: Stochastic plan-
ning using decision diagrams’, in Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence, pp. 279–288, (1999).

[6] M. Jacobson, N. Shimkin, and A. Shwartz, ‘Markov decision processes
with slow scale periodic decisions’, Mathematics of Operations Re-
search, 28(4), 777–800, (2003).

[7] J. Lambert, B. Van Houdt, and C. Blondia, ‘A policy iteration algo-
rithm for Markov decision processes skip-free in one direction’, in Pro-
ceedings of the International Workshop on Tools for solving Structured
Markov Chains (SMCtools), (2007).

[8] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling, ASA-SIAM, Philadelphia, 1999.

[9] C. A. S. Monroy and R. D. Christie, ‘Energy storage effects on day-
ahead operation of power systems with high wind penetration’, in Pro-
ceedings of North American Power Symposium, IEEE, pp. 1–7, (2011).

[10] D. Nikovski and W. Zhang, ‘Factored Markov decision process models
for stochastic unit commitment’, in Proceedings of the IEEE Confer-
ence on Innovative Technologies for an Efficient and Reliable Electric-
ity Supply, pp. 28–35, (2010).

[11] T. Osogami, Analysis of multiserver systems via dimensionality reduc-
tion of Markov chains, Ph.D. dissertation, School of Computer Science,
Carnegie Mellon University, June 2005.

[12] N. P. Padhy, ‘Unit commitment — A bibliographical survey’, IEEE
Transactions on Power Systems, 19(2), 1196–1205, (2004).

[13] V. Pop, H. J. Bergveld, D. Danilov, P. P. L. Regtien, and P. H. L. Notten,
Battery Management Systems: Accurate State-of-Charge Indication for
Battery-Powered Applications, Springer, 2002.

[14] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, ‘State-of-
the-art of battery state-of-charge determination’, Measurement Science
and Technology, 16(12), 93–110, (2005).

[15] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, Wiley, 2005.

[16] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, second edn., 2003.

[17] O. Sundstroem and C. Binding, ‘Optimization methods to plan the
charging of electric vehicle fleets’, in Proceedings of the 1st Interna-
tional Conference on Control, Communication, and Power Engineer-
ing, pp. 323–328, (2010).

[18] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramanian,
‘Optimal power cost management using stored energy in data centers’,
in Proceedings of the ACM SIGMETRICS 2011, pp. 221–232, (2011).

[19] L. B. White, ‘A new policy evaluation algorithm for Markov decision
processes with quasi birth-death structure’, Stochastic Models, 21(2-3),
785–797, (2005).

[20] W. Zhang and D. Nikovski, ‘State-space approximate dynamic pro-
gramming for stochastic unit commitment’, in Proceedings of North
American Power Symposium, IEEE, pp. 1–7, (2011).

T. Osogami and R. Raymond / Efficient Policy Iteration for Periodic Markov Decision Processes1172


