
INTELLIREQ: Intelligent Techniques for
Software Requirements Engineering

Gerald Ninaus1 and Alexander Felfernig1 and Martin Stettinger1

and Stefan Reiterer2 and Gerhard Leitner3 and Leopold Weninger4 and Walter Schanil4

Abstract. Requirements Engineering is considered as one of the
most critical phases of a software development project. Low-quality
requirements are a major reason for the failure of a project. Con-
sequently, techniques are needed that help to improve the support of
stakeholders in the development of requirements models as well as in
the process of deciding about the corresponding release plans. In this
paper we introduce the INTELLIREQ Requirements Engineering en-
vironment. This environment is based on different recommendation
approaches that support stakeholders in requirements-related activi-
ties such as definition, quality assurance, reuse, and release planning.
We provide an overview of recommendation approaches integrated
in INTELLIREQ and report results of empirical studies that show in
which way recommenders can improve the quality of Requirements
Engineering processes.

1 Introduction

Requirements Engineering can be defined as the branch of systems
engineering concerned with the desired properties and constraints of
software-intensive systems, the goals to be achieved in the software’s
environment, and assumptions about the environment – see [4]. Ma-
jor phases of a Requirements Engineering process are elicitation &
definition, quality assurance, negotiation, and release planning [32].
Requirements Engineering is a critical phase of a software develop-
ment project since low-quality requirements are a major reason for
the failure of a project [14]. The corresponding follow-up costs can
add up to 40% of the overall project costs [19].

Due to the increasing size and complexity of software systems,
there is a growing demand for intelligent approaches that can help
to improve the quality of Requirements Engineering processes [8,
22, 24, 30]. Existing Requirements Engineering tools primarily sup-
port the definition and cataloging of requirements but fail to provide
additional information such as hidden relationships between require-
ments and quality status of requirements. Furthermore, these tools
do not support decision making scenarios where mediation support
is needed (e.g., in the case of contradicting opinions and preferences
of stakeholders). Finally, no mechanisms are integrated that help to
increase user involvement although a low degree of involvement in
many cases leads to project failure [20].

In this paper we introduce the INTELLIREQ environment5 which

1 Graz University of Technology, Austria, email:{gerald.ninaus, alexan-
der.felfernig, martin.stettinger}@ist.tugraz.at

2 SelectionArts Ltd., Austria, email:stefan.reiterer@selectionarts.com
3 Alpen-Adria-Universität Klagenfurt, Austria, email: gerhard.leitner@aau.at
4 wsop Ltd., Vienna, Austria, email:{lweninger,wschanil}@wsop.at
5 www.intellireq.org

exploits recommendation technologies [3, 18] to support Require-
ments Engineering tasks. INTELLIREQ supports Early Requirements
Engineering where the major focus is to figure out and priori-
tize high-level requirements in software projects. The outcome of
INTELLIREQ is a consistent set of high-level requirements with cor-
responding effort estimations and a release plan for the implementa-
tion of the identified requirements. All information units (e.g., re-
quirements, dependencies, and release plan) are summarized in a
high-level specification book. INTELLIREQ is applied by the indus-
try and research partners of the Graz University of Technology.

The remainder of this paper is organized as follows. In Section 2
we show how recommender systems can support the development of
requirements models. In Section 3 we present the INTELLIREQ user
interface and discuss related functionalities. An overview of empiri-
cal studies related to the INTELLIREQ environment and the business
benefits is given in Section 4. Section 5 contains a discussion of re-
lated and future work. The paper is concluded with Section 6.

2 INTELLIREQ Recommendation Technologies

In this section we provide an overview of recommendation technolo-
gies integrated in INTELLIREQ. A recommender system can be de-
fined as any system that guides a user in a personalized way to inter-
esting or useful objects in a large space of possible options or that
produces such objects as output [1, 3]. Recommender systems sup-
port the identification of relevant items in situations where the com-
plexity of an item assortment outstrips a user’s capability to survey it
and to reach a decision [2].
Recommendation Approaches. There are the following four ba-

sic types of recommendation approaches.
Collaborative Filtering [16, 21] is an implementation of word-of-

mouth promotion where purchase decisions are taken on the basis of
the opinion of relatives and friends: if users A and B rated similar
items in a similar fashion in the past, Collaborative Filtering will
propose new items to user A that B already rated positively.

Content-based Filtering [26] exploits features (e.g., keywords) of
items a user liked in the past for the determination of recommen-
dations. For example, if a customer of amazon.com bought books
related to the Java programming language, similar books (related to
Java) will be recommended in the future.

More complex items such as financial services or apartments are
recommended by knowledge-based recommenders [1, 7]. In this
case, constraints define the relationship between user requirements
and the corresponding items and are thus responsible for the deter-
mination of recommendations.

Finally, group recommenders [13, 17, 23] recommend items for

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1161

1161

Table 1. Example of a content-based filtering recommendation scenario (REQ = set of requirements).

ri ∈ REQ category release effort description

r1 database 1 140 hours store portfolio configuration in database
r2 UI 1 300 hours configurator UI with online help available
r3 database 1 100 hours Hibernate based database access
r4 UI 2 200 hours configurator UI with corporate identity

groups of users (e.g., recommendation of a hotel to a group of tourists
who plan a common holiday trip).

Recommendation Approaches in INTELLIREQ. The following
discussions are based on a simplified scenario which includes the
four requirements depicted in Table 1. On the basis of this sce-
nario we show how recommendation approaches can be exploited
to support different types of Requirements Engineering activities
(e.g., requirements definition, quality assurance, and release plan-
ning). In this context we want to emphasize that recommenders are
key-supportive technologies, however, we do not claim that informa-
tion gaps in general can be tackled by their application. For example,
efficient Requirements Engineering (RE) processes heavily rely on
the personal communication between stakeholders which cannot be
substituted by recommenders. Based on our scenario we now exem-
plify the application of recommendation approaches in RE.

Content-based Filtering. Content-based Filtering [26] exploits
similarities between user preferences and descriptions of items
(items not known to the user up to now). User preferences are often
represented in terms of keywords extracted from textual item descrip-
tions – see also [28]. Alternatively, items can be described in terms of
categories (semantic descriptions). Typical recommendations deter-
mined by Content-based Filtering are of type item A is recommended
since you purchased item B which is similar to A.

When defining requirements, stakeholders can be supported, for
example, by pointing out requirements defined by other stakeholders
in the current project that are similar to the current one. Furthermore,
requirements can be recommended for reuse, i.e., requirements al-
ready defined in previous projects can be more easily retrieved and
reused in the current project. The similarity between two require-
ments in the set REQ of defined requirements ({ra, rb} ⊆ REQ)
can be determined on the basis of Formula 1 (Dice coefficient which
is a variation of the Jaccard coefficient ”intensively” taking into ac-
count keyword commonalities – see also [18]).

sim(ra, rb) =
2 ∗ |keywords(ra) ∩ keywords(rb)|
|keywords(ra)|+ |keywords(rb)| (1)

For example, sim(r1, r3) = 0.33, since keywords(r1) = {store, port-
folio, configuration, database} and keywords(r3) = {database, Hi-
bernate} (see Table 2). Let us assume that the active stakeholder (st)
has already investigated the requirement r1. Now, Content-based Fil-
tering would recommend requirement r3 if r3 has not been inves-
tigated by the active stakeholder up to now. If available, metadata
can as well be exploited for determining the similarity between re-
quirements – in this situation, keywords (see Formula 1) have to be
substituted by category descriptions (see Table 1).

In INTELLIREQ, dependency detection is based on Content-based
Filtering. Dependency detection is the task of identifying semantic
relationships between requirements. Examples of relationships be-

Table 2. Keywords extracted from the textual requirement descriptions in
Table 1 (REQ = set of requirements).

ri ∈ REQ extracted keywords
r1 store, portfolio, configuration, database
r2 configurator, UI, help
r3 database, Hibernate
r4 configurator, UI

tween two requirements (ra and rb) are ra requires rb, ra is incom-
patible with rb, ra refines rb, and ra is part of rb. INTELLIREQ

does not identify relationships between requirements on a seman-
tic level but on the level of similarities, i.e., the basic assumption
is that similarity between requirements can be an indication of de-
pendency. The assertion of a concrete dependency is the task of
the stakeholders. In addition to the afore discussed Content-based
Filtering approach, INTELLIREQ exploits semantic information ex-
tracted from OpenThesaurus6 instead of keywords. This OpenThe-
saurus enhanced version is integrated in the current INTELLIREQ

version (www.intellireq.org).7

Group Recommendation. The major goal of group recommenda-
tion technologies [13, 17, 23] is to foster consensus among group
members. Group recommenders can support group decision mak-
ing by taking into account the fact that individual decisions depend
on factors such as own evaluation of an alternative, beliefs about
group member opinions, and information about the individual moti-
vations (e.g., egocentric or cooperative motivation [17]). Group rec-
ommenders include heuristics [23] that can be used for identifying
alternatives that will be accepted by all or at least a majority.

Requirements evaluation & negotiation are basic application sce-
narios for group recommenders since stakeholders have to cooper-
atively decide about the quality of requirements and also to figure
out in which way requirements should be taken into account in the
release plan. For demonstration purposes we assume that the require-
ment r1 has already been evaluated by the four stakeholders {sta, stb,
stc, std} – evaluations are depicted in Table 3.

Table 3. Example of a decision problem: deciding about the group
evaluation of requirement r1 (MAJ = majority voting as decision heuristic).

r1 sta stb stc std MAJ

quality medium medium medium high medium

priority high high medium high high

decision accept revision accept accept accept

6 www.openthesaurus.de
7 The inclusion of English thesauri such as WordNet (wordnet.princeton.edu)

is within the scope of future work.

G. Ninaus et al. / INTELLIREQ: Intelligent Techniques for Software Requirements Engineering1162

Figure 1. INTELLIREQ: details regarding a single requirement. The three stakeholders provided inconsistent ratings for the property priority which is
indicated by the traffic light feedback mechanism.

In order to determine a group recommendation we can apply group
decision heuristics [23]. For example, the majority voting strategy
(see Table 3) recommends a value that represents the majority in the
set of individual votes. Another example of such a group decision
scenario is the assignment of requirements to software releases. In
this context as well stakeholders can have different preferences re-
garding the assignment of a requirement to a specific release. When
applying majority voting (MAJ), the release with the highest number
of votes would be assigned to the corresponding requirement. As a
result of a couple of empirical studies [9], majority voting (MAJ) has
been selected and integrated as the primary decision heuristic of the
INTELLIREQ environment. In addition to the analysis of individual
decision heuristics, [9] also introduce a meta-heuristic that combines
individual heuristics into an ensemble. Ensemble-based heuristics
showed to outperform individual heuristics [25] and therefore will
be integrated and evaluated in new versions of INTELLIREQ.

Knowledge-based Recommendation. Knowledge-based recom-
mendation [1, 7] exploits deep knowledge about items, user re-
quirements and preferences, and their relationships. Recommenda-
tion knowledge is represented in terms of constraints (rules) which
indicate the relationship between user requirements/preferences and
the given item set. This type of knowledge representation supports
the generation of explanations as to why items are recommended or
no solution could be found [12].

In the Requirements Engineering context, knowledge-based rec-
ommenders can be used, for example, for the recommendation of
open issues. In Figure 1 the three stakeholders have diverging esti-
mates regarding the priority of the requirement – this situation can
be automatically detected by constraints that indicate open issues to
be solved (using the traffic light semantics).

Furthermore, knowledge-based recommenders can be applied in
the context of release planning. In INTELLIREQ release plans are
manually defined by stakeholders. Inconsistencies between stake-

holder preferences can be repaired on the basis of heuristic search
based diagnosis. In addition, we have developed concepts that allow
a model-based diagnosis (MBD) of inconsistencies [12, 29]. MBD
identifies a minimal set of changes in the requirements model such
that consistency can be restored. In the case of incomplete release
plans (some of the requirements do not have an assigned release),
INTELLIREQ can propose completions that are based on recommen-
dations of group recommendation algorithms [23].

3 INTELLIREQ User Interface

Figure 1 and Figure 2 provide an impression of the way in which
users can define and manage their requirements in INTELLIREQ.
Each requirement has a textual description and is associated with
a set of properties (metadata) that describe specific characteristics
of a requirement, for example, associated risk, feasibility, and costs.
Each stakeholder is encouraged to evaluate requirements with re-
gard to the given set of properties (metadata). For each requirement,
INTELLIREQ provides group recommendations that support a group
of stakeholders in deciding about the evaluation of the requirement.

INTELLIREQ automatically identifies potential dependencies be-
tween requirements and determines recommendations that are ranked
conform to the degree of similarity between the requirements (see
”support value” in Figure 2). In the current version, dependency rec-
ommendations can be selected and (manually) transformed into cor-
responding formal dependencies (e.g., requires and incompatible)
that are taken into account as constraints [33] in release planning.

An important functionality are traffic lights which summarize
open issues in an requirements model. For example, if stakehold-
ers evaluate requirement properties differently (e.g., requirement r
is considered as infeasible by stakeholder A but completely feasible
by stakeholder B), then the corresponding traffic light is red which
points out that additional evaluations are needed. In the current ver-

G. Ninaus et al. / INTELLIREQ: Intelligent Techniques for Software Requirements Engineering 1163

Figure 2. INTELLIREQ: recommendation of dependencies; dependency recommendation is based on OpenThesaurus (www.openthesaurus.de), i.e.,
INTELLIREQ currently supports German, the Englisch descriptions used in this paper have been included for reasons of understandability.

sion of INTELLIREQ, a red light is displayed if the corresponding
user evaluation exceeds the standard deviation, an orange light is
used to point out a low number of stakeholders (less than two) who
took a look at the requirement, otherwise a green light is shown.

In INTELLIREQ, traffic lights are included on different levels: (1)
contradicting evaluations on the level of requirement properties, (2)
neglected requirements in the context of quality assurance (e.g., a
requirement has never been evaluated by a stakeholder), (3) unex-
plained decisions for release plans, and (4) effort-related inconsisten-
cies in the current release plan (e.g., due to too many requirements
in a specific release). If the overall implementation effort of require-
ments assigned to a release is too low or too high, this situation is
reflected in terms of red or yellow lights (see Table 4).

Table 4. Constraints related to the allowed implementation effort of
requirements assigned to a release (RS = actual effort

allowed effort
).

RS green yellow red
<90% x

90-100% x
>100% x

4 User Studies and Benefits

In order to analyze improvements that can be achieved by
INTELLIREQ, we conducted different system evaluations that will
be discussed in the following. First, we analyzed the usability of
the INTELLIREQ user interface. Second, we evaluated different
INTELLIREQ recommendation approaches.

Usability. This study has been conducted at the Graz University of
Technology. N=20 subjects (85% male and 15% female) interacted
with the INTELLIREQ environment and developed a requirements
model (set of requirements) for an application domain they could
choose on their own. In a second step the subjects had to switch to a
predefined example set of requirements (digital watch) and to com-
plete a predefined set of tasks such as defining dependencies between
the given requirements (with the support of the INTELLIREQ de-
pendency detection) and evaluating meta-properties (e.g., risk level,
feasibility, and costs) of requirements. After having completed these
tasks, the participants had to fill out a questionnaire based on the
system usability scale (SUS) and to answer further questions regard-
ing the applicability of the INTELLIREQ environment. The subjects

of the study agreed on the applicability of the system. INTELLIREQ

is easy to use and the majority of the subjects stated that they are
willing to use the system on a regular basis (see Figure 3).

Recommendation Support. Further feedback provided by the sub-
jects of the usability study was the following. Content-based depen-
dency recommendations were appropriate and helped to increase the
quality of requirement models (average evaluation 4.35).8 Content-
based recommendation algorithms also alleviated the search for and
the reuse of requirements (4.26). Recommendations regarding qual-
ity assurance tasks (in terms of a traffic light signal) are helpful and
should be constantly shown to the user (4.22).

The outcome of previous evaluations (see [13]) was that group rec-
ommendation increases the perceived system usability and quality of
decision support. In this context it is important to not disclose indi-
vidual preferences of group members in early phases of a decision
process. The reason for this is that the knowledge about the pref-
erences of other group members leads to an insufficient exchange
of decision-relevant information. In future INTELLIREQ versions we
will make this property configurable, i.e., if the administrator prefers
to disclose the preferences (evaluations) of different users from the
very beginning, (s)he will be able to do so. Finally, recommenda-
tions to groups intensify discussions between group members which
itself has a positive impact on the quality of the decision outcome
[13]. The reason for this is that discussions between group members
increase information sharing which itself increases requirements-
related knowledge of group members and thus improves the quality
of the information needed for taking a decision.

In addition to these evaluation results we were interested in the
impact of recommendations (traffic light support) on quality assur-
ance practices. For example, if less than two other stakeholders (not
the originator of the requirement) took a look at a specific require-
ment, a yellow traffic light is shown (a red traffic light is shown if no
other stakeholder took a look at the requirement). This is a kind of
knowledge-based recommendation where a constraint specifies the
status of the traffic-light. From the psychological point of view peo-
ple prefer situations where things are complete and they do not need
to think about these things any further (completion directly leads to a
sense of having achieved closure). Contrary to this, incomplete things

8 1 = I do not agree, 2 = I partially agree, 3 = I rather agree, 4 = I agree, 5 = I
totally agree.

G. Ninaus et al. / INTELLIREQ: Intelligent Techniques for Software Requirements Engineering1164

Figure 3. SUS usability evaluation: average ratings, N=20 (1 = I do not
agree, 2 = I partially agree, 3 = I rather agree, 4 = I agree, 5 = I totally agree).

leave us unsatisfied and we seek to resolve the existing incompletion.
In order to analyze the impact of traffic lights based user guidance

we conducted an empirical study with N=32 computer science stu-
dents (22% female and 78% male).9 In the role of a release manager
their task was to analyze an existing requirements model, resolve in-
consistencies in the model, and to generate a corresponding release
plan. The outcome of this study was the following. When supported
by traffic light based recommendations regarding quality assurance
tasks (50% of the subjects received such recommendations), users
needed significantly less interaction steps (e.g., in terms of the num-
ber of changes of the requirements view) (p < 0.01) and less time (p
< 0.02) to successfully complete the given task. Traffic light based
indication of tasks also persuaded subjects to document their deci-
sions regarding a release plan (p < 0.01).

The semi-automated detection of dependencies between require-
ments in INTELLIREQ is based on content-based filtering where the
requirements most similar to the requirement currently under inves-
tigation are presented to the user. The underlying assumption is that
similarity between requirements is an indicator for dependencies. In
order to evaluate the quality of the current dependency detection ap-
proach (see Section 2), we measured precision as an indicator of pre-
diction quality (see Formula 2). The average precision (stakeholders
accepted this recommendation as a dependency) measured in the cur-
rent projects is 0.692 for the 10 top-ranked requirements (those with
the highest support value). Note that even for very small projects
with about 100 requirements, the theoretical number of pairs to be
analyzed with regard to dependencies is 4.950.

precision =
|accepted(reqi)|

|recommended(reqi)| (reqi ∈ REQ) (2)

Summarization of Benefits. The major benefits of the INTELLIREQ

Requirements Engineering environment are the following. Time ef-
forts related to the development and quality assurance of require-
ments can be reduced due to a more systematic approach of quality
assurance (traffic light based indication of open issues) and due to
a group recommendation support that helps to mediate between dif-
ferent stakeholders (e.g., in the case of contradicting evaluations of
requirements). A further reason for time savings is the recommen-
dation of potential dependencies between requirements which oth-
erwise would have to be figured out manually. A more systematic
analysis of dependencies can also cause a reduction of inconsistent

9 The subjects of this study did not participate in the usability study.

definitions in the requirements model. In the same line, the support of
requirements reuse can help to avoid the definition of redundant re-
quirements. From the psychological standpoint, the traffic light based
indication of open issues exploits the phenomenon need for comple-
tion and thus increases individual user engagement.

5 Related and Future Work

Recommender Systems in Software Engineering. The application of
recommendation technologies in Software Engineering is manifold
and ranges from method call recommendations in software develop-
ment [34] to the recommendation of effort estimation methods in
project management [27]. An overview of the application of rec-
ommendation technologies in Software Engineering can be found
in [31]. A detailed overview of the application of recommendation
technologies in Requirements Engineering can be found in [10]. In
the remainder of this section we focus on the topics related to recom-
mender systems in Requirements Engineering.

Stakeholder Recommendation. Crucial for the success of a project
is the inclusion of the right representatives of a group. The StakeNet
approach [20] supports stakeholder identification on the basis of the
concepts of social network analysis. StakeNet social networks are
build from individual stakeholder recommendations (e.g., A recom-
mends B to be part of the project). An example of a network analysis
operation in this context is betweenness centrality which counts for
a specific stakeholder st the number of shortest paths between other
stakeholders in which st is included. A corresponding high value in-
dicates a person’s capability of acting as a broker between groups.
The inclusion of stakeholder recommendation mechanisms into the
INTELLIREQ environment is an issue for future work.

Recommendation of Requirements. An approach to requirements
reuse is presented in Dumitru et al. [5]. Reuse support is imple-
mented on the basis of content-based filtering where keywords ex-
tracted from the description of the new project are matched with
keywords extracted from requirements descriptions of already com-
pleted projects. In contrast to INTELLIREQ no Thesaurus informa-
tion is used when determining content-based recommendations. Fur-
thermore, in contrast to existing approaches to include recommen-
dation techniques in Requirements Engineering processes, no group
recommendations (e.g., in the context of requirements definition and
release planning) are supported.

Consistency Management. Especially for informal requirements
an automated consistency management is unrealistic [15]. However,
semi-automated approaches as implemented in INTELLIREQ can
help to reduce related efforts. INTELLIREQ provides a couple of
techniques that help to improve consistency management processes.
Inconsistencies can, for example, be resolved on the basis of the con-
cepts of model-based diagnosis [29] combined with corresponding
repair algorithms [7]. A discussion of the automated diagnosis of in-
consistent requirement models can be found in [11].

Requirements Prioritization. Restrictions regarding available re-
sources often require prioritization decisions regarding the set of
requirements that should be implemented [4]. In disaster scenarios
victims are categorized into three types: those who will die, those
who will survive, and those whose survival depends on the medica-
tion (also known as triage). Requirements prioritization is similar:
requirements that must not be included in the next release, those that
are optional for the next release, and those that must be included. In
INTELLIREQ, requirements prioritization is implemented as a group
decision process where for each requirement the group as a whole
has to develop a consensus regarding the prioritization (not included,

G. Ninaus et al. / INTELLIREQ: Intelligent Techniques for Software Requirements Engineering 1165

optional, must be included).
Future Work. (1) Requirements Engineering environments are of-

ten based on the assumption of stable stakeholder preferences (e.g.,
regarding the prioritization of requirements). In fact, decision pro-
cesses in most cases follow a process of incremental preference con-
struction and are subject to different types of biasing effects. Being
able to take into account related decision psychological theories re-
quires a strongly interdisciplinary research approach. (2) In order to
further improve the quality of dependency detection mechanisms in
INTELLIREQ, approaches from natural language processing [6] and
text mining [35] have to be combined with content-based approaches
currently included in INTELLIREQ. (3) The INTELLIREQ user inter-
face will be improved in terms of integrating functionalities to au-
tomatically annotate and group requirements. (4) In future versions
of INTELLIREQ we intend to provide interfaces to existing Require-
ments Engineering tools such as IBM Doors.

6 Conclusion

Existing Requirements Engineering tools primarily support the defi-
nition and cataloging of requirements but fail to provide additional
information such as similarity of requirements, dependencies be-
tween requirements, and quality status of requirements. In this paper
we presented the INTELLIREQ environment which focuses on the
integration of recommendation technologies with the goal to make
Requirements Engineering environments more proactive. Among the
major advantages that can be expected from the application of rec-
ommendation technologies in Requirements Engineering are an in-
creased reuse of requirements, active guidance of stakeholders, in-
creased consistency in requirements models, and reduced time efforts
needed for the construction of requirement models.

ACKNOWLEDGEMENTS

The presented work has been conducted in the project INTELLIREQ

(funded by the Austrian Research Promotion Agency – 829626).

REFERENCES

[1] R. Burke, ‘Knowledge-based recommender systems’, Encyclopedia of
Library and Information Systems, 69(32), 180–200, (2000).

[2] R. Burke, ‘Hybrid recommender systems: Survey and experiments’,
UMUAI Journal, 12(4), 331–370, (2002).

[3] R. Burke, A. Felfernig, and M. Goeker, ‘Recommender systems: An
overview’, AI Magazine, 32(3), 13–18, (2011).

[4] A. Davis, ‘The art of requirements triage’, IEEE Computer, 36(3), 42–
49, (2003).

[5] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher, and
C. Castro-Herrara, ‘On-demand feature recommendations derived from
mining public product descriptions’, pp. 181–190, Waikiki, Honolulu,
Hawaii, (2011). ACM/IEEE.

[6] A. Fantechi and E. Spinicci, ‘A content analysis technique for inconsis-
tency detection in software requirements documents’, in WER2005, pp.
245–256, Porto, Portugal, (2005).

[7] A. Felfernig and R. Burke, ‘Constraint-based recommender systems:
Technologies and research issues’, in IEEE ICEC’08, pp. 17–26, Inns-
bruck, Austria, (2008).

[8] A. Felfernig, W. Maalej, M. Mandl, M. Schubert, and F. Ricci, ‘Recom-
mendation and decision technologies for requirements engineering’, in
ICSE 2010 Workshop on Recommender Systems in Software Engineer-
ing, pp. 1–5, Cape Town, South Africa.

[9] A. Felfernig and G. Ninaus, ‘Group recommendation algorithms for re-
quirements prioritization’, in ICSE 2012 Workshop on Recommender
Systems for Software Engineering (RSSE 2012), pp. 1–4, Zürich,
Switzerland, (2012).

[10] A. Felfernig, G. Ninaus, H. Grabner, F. Reinfrank, L. Weninger,
D. Pagano, and W. Maalej, ‘An overview of recommender systems
in requirements engineering’, in Managing Requirements Knowledge
Book, pp. 315–332, Berlin Heidelberg, (2013). Springer.

[11] A. Felfernig, M. Schubert, M. Mandl, and P. Ghirardini, ‘Diagnosing
inconsistent requirements preferences in distributed software projects’,
in 3rd International Workshop on Social Software Engineering, pp. 1–
8, Paderborn, Germany, (2010).

[12] A. Felfernig, M. Schubert, and S. Reiterer, ‘Personalized diagnosis for
over-constrained problems’, in 23rd International Conference on Arti-
ficial Intelligence (IJCAI 2013), pp. 1990–1996, Peking, China.

[13] A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maalej,
D. Pagano, L. Weninger, and F. Reinfrank, ‘Group decision support
for requirements negotiation’, Springer Lecture Notes in Computer Sci-
ence, (7138), 1–12, (2011).

[14] H. Hofmann and F. Lehner, ‘Requirements engineering as a success
factor in software projects’, IEEE Software, 18(4), 58–66, (2001).

[15] J. Iyer and D. Richards, ‘Evaluation framework for tools that manage
requirements inconsistency’, (2004).

[16] L. Terveen J. Herlocker, J. Konstan and J. Riedl, ‘Evaluating collabora-
tive filtering recommender systems’, ACM Transactions on Information
Systems, 22(1), 5–53, (2004).

[17] A. Jameson, S. Baldes, and T. Kleinbauer, ‘Two methods for enhanc-
ing mutual awareness in a group recommender system’, in ACM Intl.
Working Conference on Advanced Visual Interfaces, pp. 48–54, Gal-
lipoli, Italy, (2004).

[18] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender
Systems – An Introduction, Cambridge University Press, 2010.

[19] D. Leffingwell, ‘Calculating the return on investment from more effec-
tive requirements management’, American Programmer, 10(4), 13–16,
(1997).

[20] S. Lim, D. Quercia, and A. Finkelstein, ‘Stakenet: Using social net-
works to analyse the stakeholders of large-scale software projects’, in
32nd ACM/IEEE International Conference on Software Engineering,
pp. 295–304, Cape Town, South Africa, (2010). ACM/IEEE.

[21] G. Linden, B. Smith, and J. York, ‘Amazon.com recommendations:
Item-to-item collaborative filtering’, IEEE Internet Computing, 7(1),
76–80, (2003).

[22] W. Maalej and A. Thurimella, ‘Towards a research agenda for rec-
ommendation systems in requirements engineering’, in 2nd Inter-
national Workshop on Managing Requirements Knowledge, Atlanta,
USA, (2009).

[23] J. Masthoff, ‘Group recommender systems’, Recommender Systems
Handbook, 677–702, (2011).

[24] B. Mobasher and J. Cleland-Huang, ‘Recommender systems in require-
ments engineering’, AI Magazine, 32(3), 81–89, (2011).

[25] G. Ninaus, ‘Using group recommendation heuristics for the prioritiza-
tion of requirements’, in Proceedings of the 6th ACM Conference on
Recommender Systems, pp. 329–332. ACM, (2012).

[26] M. Pazzani and D. Billsus, ‘Learning and revising user profiles: The
identification of interesting web sites’, Machine Learning, 27, 313–331,
(1997).

[27] B. Peischl, M. Zanker, M. Nica, and W. Schmid, ‘Constraint-based
Recommendation for Software Project Effort Estimation’, Journal of
Emerging Technologies in Web Intelligence, 2(4), 282–290, (2010).

[28] L. Roy R. Mooney, ‘Content-based book recommending using learning
for text categorization’, User Modeling and User-Adapted Interaction,
14(1), 37–85, (2004).

[29] R. Reiter, ‘A theory of diagnosis from first principles’, AI Journal,
23(1), 57–95, (1987).

[30] D. Renzel, M. Behrendt, R. Klamma, and M. Jarke, ‘Requirements
bazar: Social requirements engineering for community-driven innova-
tion’, in RE 2013, pp. 326–327, Rio de Janeiro, Brazil, (2013).

[31] M. Robillard, R. Walker, and T. Zimmermann, ‘Recommendation Sys-
tems for Software Engineering’, IEEE Software, 27(4), 80–86, (2010).

[32] I. Sommerville, Software Engineering, Pearson, 2007.
[33] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,

London, 1993.
[34] M. Tsunoda, T. Kakimoto, N. Ohsugi, A. Monden, and K. Matsumoto,

‘Javawock: A java class recommender system based on collaborative
filtering’, in SEKE 2005, pp. 491–497, Taipei, Taiwan, (2005).

[35] I. Witten and E. Frank, Data Mining, Elsevier, 2005.

G. Ninaus et al. / INTELLIREQ: Intelligent Techniques for Software Requirements Engineering1166

