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Abstract. Taxi journeys are usually priced according to
the distance covered and time taken for the trip. Such a fixed
cost strategy is simple to understand, but does not take into
account the likelihood that a taxi can pick up additional pas-
sengers at the original passenger’s destination. In this paper
we investigate dynamic taxi pricing strategies. By using do-
main knowledge, such strategies discount trips to locations
containing many potential passengers, and increase fares to
those areas with few potential passengers. Identifying a closed
form optimal dynamic pricing strategy is difficult, and by rep-
resenting the domain as an MDP, we can identify an optimal
strategy for specific domains. We empirically compare such
dynamic pricing strategies with fixed cost strategies, and sug-
gest future extensions to this work.

1 Introduction

Taxi fares are commonly priced based on the distance and
time taken for a trip. This model is near-universal, and nor-
mally regulated by a licensing authority. However, and par-
ticularly for long journeys, a driver will often negotiate the
price for a journey with a potential passenger while ignoring
the official pricing rules. Literature in the field of economics
has examined this phenomenon (e.g. [1, 3]), and suggests that
in negotiating a price, the driver considers not only their own
costs, but also the likelihood that another passenger would
require a ride near the original passenger’s destination, pro-
viding the driver with more work — and additional income
— at little cost. Unlike the formal pricing structure, where
prices are set in advance, such negotiations appear to offer
the driver additional utility. In this paper, we empirically in-
vestigate how the best price for such a pricing strategy (which
we call dynamic taxi pricing) can be determined.

Our hypothesis is that the dynamic pricing strategy will
provide a driver with increased utility when compared to the
the regulated approach. We also compare the effects of the
two techniques on passengers. We describe our model of the
system in the next section, and undertake an empirical evalu-
ation of it in Section 3. Related and future work are discussed
in Section 4.

2 The Model

We consider a simple system containing only a single taxi,
which can transport a single passenger at a time from their
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origin to a destination. The environment in which taxis and
passengers exist is a weighted graph G = (N,E,W ), where
the set of nodes N identify points at which passengers can be
picked up and dropped off; edges E : N × N identify routes
between pick-up and drop-off points; and weights W : E → Z
identify the time and cost taken to travel between nodes. We
denote the shortest distance between two nodes i, j as |i, j|.

We adopt a discrete time representation. During each time
interval, there is a likelihood that a passenger will appear at
node ni and desire to travel to some other node j, written
as pji . We require that for any i ∈ N,

∑
j∈N pji ≤ 1. We as-

sume that a node will only generate a single passenger at any
point in time, and that a passenger who is not immediately
transported will not remain following the current time step.

The price a taxi will suggest for a journey is clearly depen-
dent on the passenger’s willingness to accept this price. We
therefore model passengers via a continuous demand func-
tion df : � × � → [0, 1]. This function takes the proposed
price and distance between nodes, and returns the probabil-
ity that a passenger will accept the proposed price. We assume
that this function is monotonically decreasing with increasing
price for the same distance, and that all passengers have an
identical demand function. We also introduce a reflexive cost
function c(i, j) for travelling between nodes.

During each time interval, a taxi can take one of two actions
—move; or bid-and-move. The former allows the taxi to travel
to another node, while the latter allows the taxi to propose a
price to a passenger and then travel to another node. If the
passenger accepts the taxi’s proposal, it will board the taxi,
and the taxi will start moving to its destination, otherwise, it
will move to its original target node.

We identify an optimal pricing and movement strategy for
our taxi by modelling the system as an Markov Decision Pro-
cess (MDP). To do so, we discretise our action space, making
the problem amenable to off-the-shelf value or policy iteration
solvers. This discretisation is done by noting that distances
are bounded (and integer), and by allowing only integers to
be bid as prices for trips, again bounding these by an upper
value (we assume that there is some finite maximum price for
a trip that a passenger is willing to pay). We also implicitly
assume that our graph contains a finite number of nodes.

Our MDP is generated such that if a node i within our sys-
tem has n non-zero pji , then it will be associated with n + 1
normal states. Each such state represents the presence of a
passenger desiring to travel from i to j, with an additional
state representing no passengers being present at this node.
We label each such state sji with s∅i representing the “no pas-
senger present” state. We also create a set of additional re-
ward states associated with each possible price - a price of x
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for moving from i to j will lead to a state sjxi .
We consider two types of actions - move actions, and bid

and move actions. A move action allows a taxi to move to
a neighbouring node (or remain at the current node), and
transitions from a state sji to a state skj with probability pkj .

Transitioning to s∅j occurs with probability 1 − ∑
k p

k
j . The

reward for this transition is equal to −c(i, j). A bid and move
action can be informally interpreted as “bid x for the journey,
if successful, transition to the passenger’s destination node nd

and drop them off, otherwise, move to node j”. Such an action
transitions from sdi to sdxi with a probability df(x, |i, d|), and
to a state skj with probability (1−df(x|i, d|))pkj . It transitions
to a state s∅j with probability (1−df(x|i, d|))(1−∑

k p
k
j ). The

reward for the transition to a reward state sdxi is x−c(ni, nd),
while the reward for a transition to state skj is −c(i, j).

Finally, we create a virtual action, enabling an agent to
move from a reward state to a normal state. This is the only
action possible in a reward state. Starting in a reward state
sjxi , this action leads to a normal state skj with probability pkj ,

and to s∅j with probability 1−∑
k p

k
j . The reward for moving

between these two states is 0. Since reward states capture the
utility gain of our agent, such virtual actions are needed to
return the MDP to a normal state.

With regards to size, in the worst case, there are O(n2+b2)
states in the MDP, where n is the number of nodes and b is
the number of possible bids. In such a system, there are O(n4)
edges. This case occurs when pji is non-zero for all nodes, and
the graph is fully connected.

We can now use standard finite MDP solving techniques to
identify an optimal strategy for a taxi given a specific road
network, demand function and cost function.

3 Evaluation

The following table summarises the experimental parameters
used in our empirical evaluation.

Parameter Value Parameter Value

Discount 0.1 df (x , |i , j |) 1− x/|i , j |
c(|i, j|) 1 + |i, j|/10 Distance range [5,15]

β 0.3 k 3

Note that the maximum expected utility for travel between
nodes i and j for the given df occurs at a bid value of |i, j|/2.
Therefore, having constructed our system, our MDP consid-
ers only (integer) bids ranging from �0.75|i, j|/2� to |i, j|, and
performed policy iteration over this MDP to identify an opti-
mal strategy. The results of this strategy were compared with
two fixed bid models, which bid |i, j|/2 and 1.25|i, j|/2 respec-
tively. Each experiment was averaged over 5 runs, with exper-
iments being run for 5 to 25 nodes in the graph respectively.
Fig. 1 plots the utility of each strategy as the percentage im-
provement over the worst performing strategy. The use of a
dynamic strategy yields small improvements over the optimal
fixed price approach in this situation.

Turning our attention to the number of passengers success-
fully transported, the dynamic approach results in around
10% more passengers being transported than the best fixed
price approach. In turn, the lowest utility fixed strategy trans-
ports around 10% more passengers than the dynamic ap-
proach. The dynamic approach therefore appears to not only
maximise taxi utility, but still perform well in terms of passen-
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Figure 1. Percentage of minimum utility for each strategy.

gers transported when compared to the highest utility fixed
price approach.

4 Discussion and Conclusions

The dynamic approach yielded only a small improvement over
fixed price approaches. However, these improvements were
consistent, and were obtained with a (relatively) small dis-
counting value, meaning that the taxi did not pay much at-
tention to future rewards. Surprisingly, we found that when
this discounting value was increased, the strategy performed
worse, and we believe that this is an artefact of our domain.
However, as future work, we intend to investigate this issue
more closely. Furthermore, we intend to increase the com-
plexity of our domain by adding passenger queues; consid-
ering multi-taxi scenarios; situations where a taxi can pick
up more than one passenger at a time; and examine how an
MDP model can affect passenger pricing structures. We in-
tend to investigate what formal guarantees with regards to
performance can be given. Finally, we will investigate how
our proposed pricing structure interacts with subsidies in re-
alistic domains.

There has been surprisingly little work on the topic of dy-
namic taxi pricing strategies. [2] examined a time based pric-
ing strategy to incentivise drivers to work during peak times,
and [4] gives an overview of taxi models from the transport lit-
erature. Finally, [5] consider non-linear fare structures which
bear passing similarity to the structures learned by our model.
Our work departs from these techniques by proposing a pric-
ing structure based on optimisation techniques first studied
in Artificial Intelligence.
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