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Abstract. We investigate the parameterized complexity of strate-
gic behaviors in generalized scoring rules. In particular, we prove
that the manipulation, control (all the 22 standard types), and bribery
problems are fixed-parameter tractable for many generalized scor-
ing rules, with respect to the number of candidates. Our results im-
ply that all these strategic problems are fixed-parameter tractable for
many common voting rules, such as Plurality, r-Approval, Borda,
Copeland, Maximin, Bucklin, Ranked pairs, Schulze, etc., with re-
spect to the number of candidates.

1 Introduction

In this paper, we study the strategic voting problems from the param-
eterized complexity perspective. Our main result is that the manip-
ulation, (all the 22 standard types) control and bribery problems are
fixed-parameter tractable (FPT ) for many generalized scoring rules,
with respect to the number of candidates. Since many common vot-
ing rules fall into the category of the generalized scoring rules, these
tractability results hold for these voting rules, among which are all
the positional scoring rules (e.g., Borda, r-Approval, Veto, Plurality),
Copelandα, Maximin, Bucklin, Ranked pairs, Schulze, Nanson’s and
Baldwin’s. Recall that an instance of a parameterized problem con-
sists of a main part I and a parameter t. A parameterized problem is
FPT if it is solvable in O(h(t) · |I|O(1)) time, where h is a com-
putable function that depends only on the parameter t. Due to space
limitations, all proofs are deferred to the full version which is avail-
able at http://arxiv.org/abs/1405.6562.

Preliminaries. Let C = {c1, ..., cm} be a set of candidates. A
linear order on C is a transitive, antisymmetric, and total relation on
C. The set of all linear orders on C is denoted by L(C). An n-voter
profile P on C consists of n votes defined as linear orders on C. That
is, P = (V1, ..., Vn), where for every i ≤ n, Vi ∈ L(C). A voting
rule is a function that maps a voting profile to a single candidate,
the winner. In the remainder of the paper, m denotes the number of
candidates.

In the following, we give the definition of the class of the general-
ized scoring rules which was introduced by Xia and Conitzer [11].

Let K = {1, ..., k}. For any �a,�b ∈ R
k, we say that �a and �b

are equivalent with respect to K, denoted by �a ∼K
�b, if for any

i, j ∈ K,�a[i] > �a[j] ⇔ �b[i] > �b[j] and �a[i] < �a[j] ⇔ �b[i] < �b[j]
(where �a[i] denotes the i-th component of the vector �a, etc.).

A function g : Rk → C is compatible with K if for any �a,�b ∈
R

k,�a ∼K
�b ⇒ g(�a) = g(�b).

A generalized scoring rule is defined by a generalized scoring
function f which maps votes to score vectors, and a decision func-
tion g which maps total score vectors to candidates. Given a profile
of votes, the generalized scoring rule selects the winner as follows.
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First, the generalized scoring function f maps every vote to a score
vector with each component a rational number. Here, all the score
vectors have the same dimension which is called the order of the
generalized scoring rule. Then, these score vectors are added up to
a total score vector. Finally, the decision function g maps the total
vector to a candidate, the winner. Here, the decision function g is
compatible with K = {1, 2, ..., k}, where k is the order of the gen-
eralized scoring rule.

In the following, we briefly introduce the strategic voting prob-
lems discussed in this paper. We refer to [5, 7] for all the detailed
definitions, including the manipulation, bribery and the 22 standard
control problems. In all these problems, we have as input a set C∪{p}
of candidates where p is a distinguished candidate, and a profile
P = (V1, ..., Vn) of votes. The question is whether the distinguished
candidate p can become a winner (in this case, p is not the winner in
the initial election) or become a loser (in this case, p is the winner in
the initial election) by imposing a specific strategic behavior on the
voting. The former case of making p a winner is called a constructive
strategic behavior, and the latter case is called a destructive strate-
gic behavior. Observe that if the problem of a specific constructive
strategic behavior is FPT with respect to the number of candidates,
so is the corresponding destructive case. To check this, suppose that
we have an FPT algorithm Algo for a specific constructive strate-
gic behavior problem. Then, we can guess a candidate p′ ∈ C and
run the algorithm Algo but with the distinguished candidate being
p′. Since we have at most m guesses, the destructive case is solved
in FPT -time. Due to this fact, we consider only the problems of
constructive strategic behaviors.

Manipulation. In addition to the aforementioned input, we have
a set V ′ of voters who did not cast their votes yet. We call these
voters manipulators. The question is whether the manipulators can
cast their votes in a way so that p becomes the winner.

Bribery. The bribery problem asks whether we can change at most
κ votes (in any way but still linear orders over the candidates) so that
p becomes the winner, where κ ∈ N is also a part of the input.

Control. There are 11 standard constructive control behaviors in
total. Among them 7 are imposed on the candidate set and 4 are im-
posed on the vote set. We first discuss the candidate control cases.
In these scenarios, we either add some candidates (limited or unlim-
ited), or delete some candidates, or partition the candidate set into
two sets (runoff or non-runoff partitions with ties-promote or ties-
eliminate models). Since the number of the candidates is bounded by
the parameter m, we can enumerate all the possible ways of perform-
ing the control strategic behaviors in FPT -time with respect to m.
Thus, if the winner is computable in FPT time with respect to m
(which holds for all the common voting rules studied in this paper),
the candidate control problems are FPT .

Deleting votes: The problem of control by deleting votes asks
whether we can remove at most κ votes from the given profile so
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that p becomes the winner, where κ ∈ N is also a part of the input.
Partition votes: In the control by partitioning of votes, we are

asked the following question: is there a partition of P into P1 and
P2 such that p is the winner of the two-stage election where the
winners of election (C ∪ {p}, P1) compete against the winners of
(C ∪{p}, P2)? We distinguish between ties-promote model and ties-
eliminate model. In the ties-promote model, all the candidates which
are tied as winners in the first-stage election are promoted to the sec-
ond stage election. In the ties-eliminate model, if there is more than
one winner, then all these winners will not be moved to the second
stage election. We remark that in the ties-promote model, we should
adopt the multiwinner variant of the generalized scoring rules (which
is easily to get as mentioned in [11]) as a tool.

Adding votes: In addition to the aforementioned input, we have
another list P ′ of unregistered votes, and are asked whether we can
add at most κ votes in P ′ to P so that the distinguished candidate p
becomes the winner. Here, κ is also a part of the input.

2 The General Framework

The main result of this paper is summarized in the following theorem.

Theorem 1 For any generalized scoring rule defined by a general-
ized scoring function f and a decision function g, if the order of the
generalized scoring rule is bounded by a function of the number of
the candidates, and f and g are computable in FPT -time with re-
spect to the number of candidates, then the manipulation, bribery
and all the 22 standard control problems are FPT with respect to
the number of candidates.

To use the framework of Theorem 1, the order of the generalized
scoring rule must be bounded by a function of the number of the can-
didates. Furthermore, the generalized scoring function and the deci-
sion function must be computable in FPT time with respect to the
number of candidates. The following lemma summarizes the com-
mon voting rules which fulfill these conditions.

Lemma 2 For the positional scoring rules, Copelandα for every
0 ≤ α ≤ 1, Maximin, STV, Baldwin’s, Nanson’s, Ranked pairs,
Schulze, and Bucklin, the orders of the corresponding generalized
scoring rules are bounded by functions of the number of candidates,
and the decision and generalized scoring functions of the corre-
sponding generalized scoring rules are computable in FPT -time
with respect to the number of candidates.

Due to Theorem 1 and Lemma 2, we have the following corollary.

Corollary 3 The manipulation, bribery and the 22 standard control
problems for the following voting rules are FPT with respect to the
number of candidates: all the positional scoring rules, Copelandα

for every 0 ≤ α ≤ 1, Maximin, STV, Baldwin’s, Nanson’s, Ranked
pairs, Schulze and Bucklin.

3 Discussion and Related Work

In this paper, we extend the application of the generalized scoring
rules by exploring the parameterized complexity of strategic voting
problems. In particular, we show that from the viewpoint of param-
eterized complexity, the manipulation, bribery and control problems
which are NP-hard in many voting systems turned out to be fixed-
parameter tractable (FPT ), with respect to the number of candi-
dates. Several related works are summarized as follows.

Hemaspaandra et al. [9] recently studied the manipulation, control
and bribery problems in Schulze and Ranked pairs voting systems.
They proved that all these strategic problems in Schulze and Ranked
pairs voting systems are FPT with respect to the number of can-
didates. Gaspers et al. [8] proved that the manipulation problem in
Schulze voting system is indeed polynomial-time solvable for any
number of manipulators. Faliszewski et al. [7] studied Copelandα

control problems and achieved FPT results for most of the control
problems in Copelandα voting with respect to the number of can-
didates. Besides the manipulation, (22 standard) control and bribery
problems, many other strategic voting problems were also studied
from the parameterized complexity perspective by researchers. Fal-
iszewski et al. [6] studied a multimode control problem (in this
model, the strategy individuals are allowed to add votes, delete votes,
add candidates, delete candidates, and change votes simultaneously)
and proved that this problem is FPT with respect to the number
of candidates for voting rules which are integer-linear-program im-
plementable. Dorn and Schlotter [3] proved that the swap bribery
problem is FPT with respect to the number of candidates for any
voting system which is described by linear inequalities. Betzler et al.
[2] proved that the possible winner problem is FPT with respect
to the number of candidates for all positional scoring rules, Buck-
lin, Maximin, Copelandα and Ranked pairs. Elkind et al. [4] devised
a general framework for classifying the fixed-parameter tractabil-
ity of the winner determination problem for voting rules which are
“distance-rationalizable”. For parameterized complexity of strategic
voting problems with respect to other parameters than the number of
candidates, we refer to [1] for a survey.

Similar results of this paper were independently announced by
Xia [10]. However, there are several differences. First, our results ap-
ply to all the 22 standard control problems, while the results in [10]
does not include the control by partition votes. Second, Xia [10] stud-
ied the winner determination problem which is not discussed in this
paper.
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