
Rational Deployment of Multiple Heuristics in IDA*

David Tolpin 1 and Oded Betzalel 2 and Ariel Felner 3 and Solomon Eyal Shimony4

1 Introduction

In the past, we adapted metareasoning techniques to decide on
whether to evaluate a costly heuristic in A* [6]. Since IDA* [3] is a
linear-space simulation of A*, similar techniques are likely to speed
up IDA* as well - the focus of this paper. The first thing to consider
is lazy IDA*: lazy evaluation of the heuristics. Given heuristics h1

and h2, if h1 causes a cutoff there is no need to evaluate h2.
The main contribution of this paper is Rational lazy IDA* (RL-

IDA*) which uses a myopic expected regret criterion whether to
skip evaluation of h2 after computation of h1 fails to cut off search.
We provide experimental results on sliding tile puzzles and on the
container relocation problem [7], showing that RLIDA* outperforms
both IDA* and LIDA*.

2 Lazy IDA*

Assume for clarity only two available admissible heuristics, h1 and
h2, that h1 is faster to compute than h2, but h2 is weakly more in-
formed, i.e., h1(n) ≤ h2(n) for most of the nodes n. We denote the
cost of the optimal solution by C∗, and computation time of h1 and
of h2 by t1 and t2, respectively. Unless stated otherwise we assume
that t2 is much greater than t1.

Let T be the current IDA* threshold. After h(n) is evaluated, if
g(n) + h(n) > T , then n is pruned and IDA* backtracks to n’s
parent. Given both h1 and h2, a naive implementation of IDA* will
evaluate them both and use their maximum in comparing against T .
In the context of IDA*, if g(n)+h1(n) > T the search can backtrack
without the need to compute h2, resulting in Lazy IDA* (depicted
in Algorithm 1). The “optional condition” in line 15 is needed for
the rational lazy A* algorithm, described below: in lazy IDA*, this
condition is always true.

3 Rational Lazy IDA*

Meta-reasoning [5] is a general theory, hard to apply in practice, ex-
cept under specific assumptions and simplifications. We focus on de-
ciding whether to evaluate or to bypass the computation of h2 in the
context of IDA*. Each IDA* iteration is a depth-first search up to a
gradually increasing threshold T . For each node n, we say that eval-
uating h(n) is helpful if g(n) + h(n) > T , i.e. the heuristic helped
in the sense that node n is pruned in this iteration.

The only addition of Rational Lazy IDA* to Lazy IDA* is the op-
tion to bypass h2(n) computations (line 15). Suppose that we choose
to compute h2 — this results in one of the following outcomes:

1 CS Department, Ben-Gurion University. E-mail:tolpin@cs.bgu.ac.il
2 CS Department, Ben-Gurion University. E-mail:odedbetz@cs.bgu.ac.il
3 ISE Department, Ben-Gurion University. E-mail:felner@bgu.ac.il
4 CS Department, Ben-Gurion University. E-mail:shimony@cs.bgu.ac.il

Algorithm 1: Lazy IDA*

Lazy-IDA* (root) {1

Let Thresh = max(h1(root), h2(root))2

Let solution = null3

while solution == null and Thresh < ∞ do4

solution, Thresh = Lazy-DFS(root, Thresh)5

return solution6

}7

Lazy-DFS(n, Thresh) {8

if g(n) > Thresh then9

return null, g(n)10

if goal-test(n) then11

return n, Thresh12

if g(n)+h1(n) > Thresh then13

return null, g(n)+h1(n)14

if opt-cond and g(n)+h2(n) > Thresh then15

return null, g(n)+h2(n)16

Let next-Thresh = ∞17

for n’ in successors(n) do18

Let solution, temp-Thresh = Lazy-DFS-lim(n’, Thresh)19

if solution ¬ = null then20

return solution, temp-Thresh21

else22

Let next-Thresh = min(temp-Thresh, next-Thresh)23

return null, next-Thresh24

}25

1. h2(n) is not helpful and n is expanded.
2. h2(n) is helpful (because g(n) + h2(n) > T ), pruning n, which

is not expanded in the current IDA* iteration.

Computing h2 can be beneficial only in outcome 2, but the out-
come is known to the algorithm only after h2 is computed. The de-
cision on whether to evaluate h2 must be based on the subjective
probability of each of the outcomes. The time wasted by being sub-
optimal in deciding whether to evaluate h2 is called the regret of the
decision. We make the following meta-level assumptions:

1. The decision is made myopically: assumes that the algorithm con-
tinues like Lazy IDA* starting with the children of n.

2. h2 is consistent: if evaluating h2 is beneficial on n, it is also ben-
eficial on any successor of n.

3. h1 will not cause pruning in any of the children of n.

Table 1 summarizes the regret of each possible decision, for each
possible future outcome. te is time to expand n, and b(n) the number
of its children. Denote the probability that h2(n) is helpful by ph.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1107

1107



Compute h2 Bypass h2

h2 helpful 0 te + b(n)t1 + (b(n)− 1)t2
h2 not helpful t2 0

Table 1: Time losses in Rational Lazy IDA*

The expected regret of computing h2(n) is thus (1 − ph)t2.
On other hand, the expected regret of bypassing h2(n) is ph(te +
b(n)t1+(b(n)−1)t2). As we wish to minimize the expected regret,
we should thus evaluate h2 just when:

(1− phb(n))t2 < ph(te + b(n)t1) (1)

If phb(n) ≥ 1 (the left side of Equation 1 is negative), then the
expected regret is minimized by always evaluating h2, regardless of
the values of t1, t2 and te. For phb(n) < 1, the decision of whether
to evaluate h2 depends on the values of t1, t2 and te:

evaluate h2 if t2 <
ph

1− phb(n)
(te + b(n)t1) (2)

The factor ph
1−phb(n)

depends on the potentially unknown probability
ph, making it difficult to reach the optimum decision. However, if our
goal is just to do better than Lazy IDA*, then it is “safe” to replace
ph by an upper bound on ph. Assume (as a first approximation) that
values of h1 and h2 are iid. Denote: x = 1− h1(n)

max(h1(s),h2(n))
. Also,

let xN denote the average of N samples of x, and define: l = 1 −
h1(n)

T−g(n)
. Then using the union bound and the Hoeffding and Markov

inequalities, we can (nontrivially) obtain the bound:

ph ≤
1 +

√
log

√
2Nl√

2Nl
+

xN

l
(3)

4 Evaluation on sliding tile puzzles

For consistency of comparison, we used for the 15 puzzle 98 out of
Korf’s 100 tests [3]: all tests solved using under 20 minutes with
standard IDA* with h1 being Manhattan Distance (MD). As h2 we
used the linear-conflict heuristic (LC) [4].

algorithm time generated h2 total h2 helpful
IDA* (MD) 58.84 268,163,969
IDA* (LC) 40.08 30,185,881
LIDA* 32.85 30,185,881 21,886,093 6,561,972
RLIDA* 20.09 47,783,019 8,106,832 4,413,050
Clairvoyant 12.66 30,185,881 6,561,972 6,561,972

Table 2: Results for 15 puzzle

Results (Table 2) are for a constant ph = 0.3, estimated from
trial runs of RLIDA* on a few problem instances. The advantage of
Rational Lazy IDA* is evident: even though it expands many more
nodes than Lazy IDA*, its runtime is significantly lower as it saves
even more time on evaluations of LC. The Clairvoyant row is an
unrealizable oracle scheme that evaluates h2 only if helpful.

algorithm time generated h2 total h2 helpful
IDA* (MD) 184.46 822,898,188
IDA* (LC) 155.35 104,943,867
LIDA* 112.74 104,943,890 65,660,207 12,549,104
RLIDA* 63.08 137,881,842 21,564,188 8,871,727
Clairvoyant 40.36 104,943,890 12,549,104 12,549,104

Table 3: Results for weighted 15 puzzle

Table 3 shows results for 82 of Korf’s 100 initial positions on
weighted (move cost equals number on the tile) 15 puzzle solved in
under 20 minutes by IDA*. Rational Lazy A* achieves a significant
speedup here as well. Similar results occured in 3*5 and 3*6 puzzles.

5 Evaluation on container relocation problem

The container relocation problem is encountered in retrieving stacked
containers for loading onto a ship in sea-ports [7]. We are given S
stacks of containers, each stack with up to T containers. The initial
state has N ≤ S × T containers, arbitrarily numbered from 1 to N .
Rules of stacking containers are as in blocks world. The goal is to
“retrieve” all containers in order of number, from 1 to N , and place
them on a freight truck that takes them away. The objective function
to minimize is the number of container moves until all containers are
gone. We assume the “restricted” version [7].

Every container numbered X which is above at least one container
numbered Y < X must be relocated. The number of such containers
is used as h1 (called LB1 in [7]). Counting one more for each con-
tainer that must be relocated a second time as any place to which it is
moved will block some other container, is used as h2 (LB3 in [7]).

algorithm time generated h2 total h2 helpful
IDA* (LB1) 372 853,094,579
IDA* (LB3) 704 110,753,768
LIDA* 368 130,695,270 42,862,888 19,060,111
RLIDA*, ph = 0.3 337 233,077,220 27,628,566 13,575,017
RLIDA*, ph ≤ 0.5 320 158,362,305 33,693,072 16,460,400
Clairvoyant 194 130,695,270 19,060,111 19,060,111

Table 4: Results for container relocation

Results are shown in Table 4 for the 49 hardest tests out of those
solved in under 20 minutes using LB1, from the CVS test suite de-
scribed in [1, 2]. Rational Lazy IDA* improves performance even
when ph was assumed constant (Ph = 0.3). As the branching factor
is almost constant (frequently equal to the number of stacks minus
1), there is room for improvement by better estimating ph. Using the
bounds developed in Section 3 to estimate ph dynamically indeed
achieves this (line RLIDA*, ph ≤ 0.5).

6 Acknowledgments

Supported by the Israeli Science Foundation (ISF) grant #417/13,
and by the Lynne and William Frankel center for computer science.

REFERENCES

[1] Marco Caserta, Stefan Voβ, and Moshe Sniedovich, ‘Applying the corri-
dor method to a blocks relocation problem’, OR Spectr., 33(4), 915–929,
(October 2011).

[2] Bo Jin, Andrew Lim, and Wenbin Zhu, ‘A greedy look-ahead heuristic
for the container relocation problem’, in IEA/AIE, volume 7906 of LNCS,
pp. 181–190. Springer, (2013).

[3] R. E. Korf, ‘Depth-first iterative-deepening: An optimal admissible tree
search’, Artificial Intelligence, 27(1), 97–109, (1985).

[4] Richard E. Korf and Larry A. Taylor, ‘Finding optimal solutions to the
twenty-four puzzle’, in AAAI, pp. 1202–1207, (1996).

[5] Stuart Russell and Eric Wefald, ‘Principles of metereasoning’, Artificial
Intelligence, 49, 361–395, (1991).

[6] D. Tolpin, T. Beja, S. E. Shimony, A. Felner, and E. Karpas, ‘Toward
rational deployment of multiple heuristics in A*’, in IJCAI, (2013).

[7] Huidong Zhang, Songshan Guo, Wenbin Zhu, Andrew Lim, and Brenda
Cheang, ‘An investigation of IDA* algorithms for the container reloca-
tion problem’, in Proc. of the 23rd Inter. Conf. on Industrial Engineering
and Other Applications of Applied Int. Systems - Part I, IEA/AIE’10, pp.
31–40, Berlin, Heidelberg, (2010). Springer-Verlag.

D. Tolpin et al. / Rational Deployment of Multiple Heuristics in IDA*1108


