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1 INTRODUCTION

Bounded Intention Planning (BIP) [7] is a pruning approach for opti-

mal planning with unary operators. BIP has the flavor of partial order

reduction, which has recently found increasing interest for optimal

planning [4, 6]. However, although BIP is claimed to be a variant of

stubborn sets [3] in the original paper, no proof is given for this claim.

In this paper, we shed light on the relationship of BIP and stubborn

sets. In particular, we show that BIP’s operator partitions sometimes

correspond to strong stubborn sets defined for planning [5].

2 PRELIMINARIES

We consider SAS+ planning with action costs. A planning task is a

4-tuple Π = 〈V,O, s0, s⋆〉, where V is a finite set of state variables,

O is a finite set of operators, s0 is the initial state and s⋆ is the goal.

Every v ∈ V has a finite domain D(v). A variable assignment on a

subset of V is called a partial state s; we denote the set of variables

mentioned in s by vars(s). A partial state is a state if vars(s) = V .

By s[v] we refer to the value of v in s. A (partial) state s complies

with a (partial) state s′ iff s[v] = s′[v] for all v ∈ vars(s)∩ vars(s′).
The initial state s0 is a state and s⋆ is a partial state. Every o ∈ O has

a precondition pre
o
, an effect eff

o
and a prevail-condition prv

o
, which

are partial states, and associated cost c(o) ∈ R
+
0 . If v ∈ vars(eff

o
),

then v /∈ vars(prv
o
) and possibly v ∈ vars(pre

o
); otherwise v /∈

vars(pre
o
) and possibly v ∈ vars(prv

o
). An operator o is applicable

in s if both pre
o

and prv
o

comply with s. The result of applying o in

s is the successor state s′ that complies with eff
o

and satisfies s′[v] =
s[v] for all v /∈ vars(eff

o
). A sequence of operators o1, . . . , on ∈ O

is called an s-plan if applying all operators in sequence, starting at

state s, results in a state complying with s⋆. A plan for a task Π is

defined as an s0-plan for Π. A plan is optimal if its cost
∑

n

i=1 c(oi)
is minimal among all plans. The objective of optimal planning is to

find an optimal plan or to prove that no plan exists.

2.1 BOUNDED INTENTION PLANNING

We introduce the essential parts of bounded intention planning (BIP),

which we will relate to stubborn sets afterwards.

BIP is defined for unary planning tasks (|vars(eff
o
)| = 1 for all

o ∈ O). Roughly speaking, BIP augments the original planning task

Π with intention variables and defines several “intermediate” oper-

ators for each original operator. The resulting augmented planning

task Π̄ = (V̄, Ō, s̄0, s̄⋆) can then be exploited for pruning. Let CG

be the causal graph [1] of Π, which is a directed graph with nodes

V and edges from v to w iff there exists an operator o ∈ O with

v ∈ prv
o

and w ∈ eff
o

(recall that O only contains unary operators,
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so there are no edges between effect variables). We denote the suc-

cessors of v in CG by CG(v). Furthermore, let O[v] ⊆ O denote the

operators o with v ∈ vars(eff
o
).

For every v ∈ V , the augmented variable set V̄ contains v and two

additional intention variables Ov and Cv . Ov has domain D(Ov) =
O[v] ∪ {free, frozen}, and Cv domain D(Cv) = CG(v) ∪ {free}.

For all v ∈ V , the augmented operator set Ō contains the fol-

lowing operators: first, for every o ∈ O[v], there is a “set opera-

tor intention” operator SetO(o) with pre[Ov] = free, eff[Ov] = o
and prv[v] = pre

o
[v], with cost c(o); second, for every x ∈ D(v),

there is a zero-cost “freeze operator intention” operator Freeze(v, x)
with pre[Ov] = free and eff[Ov] = frozen; third, for every v ∈ V
and c ∈ CG(v), there is a zero-cost “set child intention” operator

SetC(v, c) with pre[Cv] = free and eff[Cv] = c; fourth, for every

o ∈ O[v], there is a zero-cost “fire” operator Fire(o) which has

the same conditions and effects as o and in addition pre[Ov] = o,

eff[Ov] = free, and for all w ∈ vars(prv
o
), pre[Ow] = frozen,

eff[Ow] = free and pre[Cw] = v, eff[Cw] = free.

The augmented initial state s̄0 extends s0 by setting all new Ov

and Cv variables to free. The augmented goal s̄⋆ is the same as s⋆.

BIP partitions the operators into partitions of three types: for each

v ∈ V and x ∈ D(v), there is a partition SetOv=x = {SetO(o) | o ∈
O[v] ∧ pre

o
[v] = x} ∪ {Freeze(v, x)}; for each v ∈ V , there is a

partition SetCv = {SetC(v, c) | c ∈ CG(v)}; for each o ∈ O, there

is a partition Fireo = {Fire(o)}.

Let P denote the set of all such partitions. By definition, either all

operators in a partition are applicable or none. We denote the set of

applicable partitions for a given state s with Ps. The central theorem

of Wolfe and Russell [7] states that we can choose a single, arbi-

trary partition from Ps in every state s and still preserve optimality.

Branching is restricted to operators within this partition.

2.2 STUBBORN SETS

Stubborn sets were introduced by Valmari [3]. To state the defini-

tion (adapted to planning tasks), we need the concept of necessary

enabling sets (NES). For a state s and operator o not applicable in

s, a NES for o and s is a set of operators such that all operator se-

quences that lead from s to some goal state and include o contain

some operator from the NES before the first occurrence of o.

Operator o disables operator o′ if there is a variable v with values

{x, x′} ⊆ D(v) such that x 6= x′, eff
o
[v] = x and either prv

o′
[v] =

x′ or pre
o′
[v] = x′. Operators o and o′ interfere if o disables o′, or

vice versa, or eff
o
[v] = x and eff

o′
[v] = x′ for x′ 6= x.

Definition 1. A set of operators Ts ⊆ O of a task Π is a strong

semistubborn set in state s iff for all o ∈ Ts not applicable in s, Ts

contains a necessary enabling set for s, and for all o ∈ Ts applicable

in s, Ts contains all operators that interfere with o.
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A set of operators Ts ⊆ O is a strong stubborn set in the Valmari

sense iff Ts is a strong semistubborn set, and Ts contains at least one

applicable operator in s if such an operator exists.

Strong stubborn sets in the Valmari sense guarantee to preserve

deadlocks, but not goal reachability. However, goal reachability can

be reduced to deadlock detection, which yields corresponding defi-

nitions for planning tasks [4, 5]. We provide the definition of gener-

alized strong stubborn sets given by Wehrle and Helmert [5], simpli-

fied to the setting needed for this paper. A state s is called solvable iff

there exists an s-plan. Furthermore, following Wehrle and Helmert,

we call a plan π strongly optimal iff π is an optimal plan with mini-

mum number of zero-cost operators.

Definition 2. A set of operators Ts ⊆ O of a task Π is a generalized

strong stubborn set (GSSS) in the planning sense in the solvable state

s iff Ts is a strong semistubborn set in s, and Ts contains at least one

operator from at least one strongly optimal plan starting in s.

3 RELATION TO STUBBORN SETS

BIP’s applicable operator partitions induce strong semistubborn sets

that contain exactly the same applicable operators.

Theorem 1. Let s be a state, X ∈ Ps be an applicable partition.

Then Ts := X ∪ {o | o interferes with o′ ∈ X} is a strong semi-

stubborn set with the same applicable operators as X .

Proof sketch. We exemplarily prove the claim for the case that X is

a partition Fireo = {Fire(o)}. All remaining cases follow a similar

argumentation. The full proof can be found in a technical report [2].

Without loss of generality, assume v ∈ vars(eff
o
). We have to

show that all operators that interfere with Fire(o) are not applicable

in s and that Ts already contains a NES for those operators. We show

the claim for the most involved case where an operator Fire(o′) inter-

feres with Fire(o). Let us assume that Fire(o′) disables Fire(o) via

variable w ∈ V , w 6= v, with eff
o′
[w] 6= prv

o
[w].

We claim that Fire(o′) is not applicable in s. By the definition of

Fire operators, we have preFire(o)[Ow] = frozen and thus s[Ow] =
frozen because Fire(o) is applicable in s. Again by definition, we

have preFire(o′)[Ow] = o′ 6= s[Ow], proving the claim.

Furthermore, we claim that {Fire(o)} is a NES for Fire(o′) in s.

We observe that the value of Ow must change from frozen to free

before it can be set to o′ as required by Fire(o′) . Only some operator

Fire(ô) with w ∈ vars(prv
ô
) can set Ow to free. Let v′ ∈ vars(eff

ô
).

If v′ = v, preFire(ô)[Ov] = ô 6= o = s[Ov] and thus Fire(o) must be

applied first. If v′ 6= v, preFire(ô)[Cw] = v′ 6= v = s[Cw] and only

some operator Fire(ô′) with v ∈ vars(eff
ô′
) and w ∈ vars(prv

ô′
) can

change Cw from v to free (required before setting it to v′). Because

s[Ov] = o, this must be Fire(o), proving the claim.

As the induced semistubborn set Ts contains an applicable opera-

tor partition by definition, it contains at least one applicable operator.

Corollary 1. Let s be a state, X ∈ Ps be an applicable operator

partition. Then Ts induced by X defined in Theorem 1 is a strong

stubborn set in the Valmari sense.

As shown by Wolfe and Russell, every applicable operator parti-

tion starts an optimal plan. However, not all such partitions contain

an operator that starts a strongly optimal plan2, which is the missing

2 Consider a task with variables v and w, initially 0, goal w = 1 and
two operators that can set v and w to 1. Applying the zero-cost operator
Freeze(v, 0) from partition SetOv=0 is neither required nor corrupting an
optimal plan (as it does not disable any operator from other partitions).

criterion for Ts to be a GSSS in the planning sense (cf. Definition 2).

Nevertheless, there always exists at least one partition in Ps which

induces a GSSS in the planning sense.

Theorem 2. Let s be a solvable state. Then, for at least one operator

partition X ∈ Ps, the induced strong semistubborn set Ts defined in

Theorem 1 contains an operator that starts a strongly optimal plan

in s. Hence Ts is a GSSS in the planning sense.

Proof. Because s is solvable, there exists an operator o that starts

a strongly optimal plan in s. As Ps contains exactly the applicable

operators, one of these partitions contains o.

We observe that only partitions inducing a GSSS in the planning

sense are needed to find strongly optimal plans, whereas the oth-

ers could ultimately be ignored. However, deciding if a partition in-

duces a GSSS in the planning sense is computationally hard. Wolfe

and Russell propose a heuristic criterion to select “good” partitions,

which prefers partitions that resolve existing intentions. This in turn

corresponds to selecting partitions inducing a GSSS in the plan-

ning sense. Hence, our analysis in particular sheds light on what the

heuristic proposed in BIP computes and why it is reasonable.

4 CONCLUSION

BIP’s operator partition pruning can be viewed as a stubborn set

method: every applicable operator partition X induces a strong stub-

born set in the Valmari sense with the same pruning power as X , and

for every state, there must be at least one such partition that induces

a generalized strong stubborn set in the planning sense.

Apart from the theoretical results obtained so far, our analysis also

points us to interesting future research directions. In particular, as the

“good” operator partitions are related to strong stubborn sets which

are defined for arbitrary (non-unary) operators, it will be interesting

to investigate if BIP can be generalized to arbitrary operators based

on this insight – this question is considered as “most important” in

Wolfe and Russell’s future work description. We think that our anal-

ysis provides a promising starting point for this research goal.
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