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1 Introduction & Related Work

We tackle the problem of multi-task learning with copula process.
Multi-task learning is valuable in many areas of research such as
spatial-temporal modeling, environmental sciences, numerical opti-
mization and data fusion. In these problems it is advantageous to pre-
dict more than one quantity at a time (in contrast to single-task learn-
ing) to exploit inter-dependencies. Kernel-based algorithms achieve
this by the use of an appropriate multi-task kernel. Gaussian pro-
cess (GP) [6] based regression, as a simple and fully probabilistic
model, is often the tool of choice for such problems. Copulas, with
roots in statistics are models that separate the dependence structure of
two or more random variables from their marginal distribution, thus
possessing the flexibility of using a different probability distribution
function for each variable. Copula distributions can be extended to
stochastic processes [4] with the help of kernels. This makes cop-
ula processes an appealing replacement for GPs in cases where the
Gaussian assumption is not appropriate. Copula processes are rela-
tively new in machine learning [4]. In geostatistics the copula process
is called copula based Kriging estimator [5] and had been introduced
as a possible improvement over Gaussian random fields. Multi-task
learning is a more general form of co-Kriging where predictions for
multiple quantities are made at the same time. Several different meth-
ods had been proposed for multi-task Gaussian processes: The task
dependence can be introduced with shared hyper parameters or an
appropriate prior on the covariance matrix as, for example an inverse-
Wishart distribution [10]. The Bayesian committee machine (BCM)
[8] is a local approximation for general probabilistic learning algo-
rithms and belongs to the family of transductive algorithms because
the predictive distribution depends on the number and location of
the query points. The novelty of this work lies in the derivation of a
transductive approximation for Bayesian multi-task problems.

1.1 Multi-Task Copula Processes

In contrast to single-task learning, where the objective is to estimate
a scalar valued quantity, the aim of multi-task learning is to estimate
more than one variable at a time.

For a finite set of input locations X = (x1, . . . , xn) and corre-
sponding outputs y = (y1, . . . , yn) a (zero mean) Gaussian cop-
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ula process {Yx} with marginal distribution function F1, . . . , Fn is
given as

p(YX) = c0,k(X,X)(F1(y1), . . . , Fn(yn)) ·
n∏

i=1

∂Fi(yi)

∂yi
, (1)

where cμ,Γ(·) is the Gaussian copula density with mean μ and covari-
ance Γ and k(X,X) is a positive definite kernel function. In order to
make predictions at input X∗ we use the quantiles of the conditional
distribution

p(YX∗ |YX) = cμ̂,Γ̂(F
∗
1 (y

∗
1), . . . , F

∗
m(y∗

m)) ·
m∏
i=1

∂F ∗
i (y

∗
i )

∂y∗
i

(2)

μ̂ = K(X,X∗)TK(X,X)−1w

Γ̂ = K(X∗, X∗)−K(X,X∗)TK(X,X)−1K(X,X∗)

and wi = Φ−1
0,γ(Fi(yi)) and Gaussian cdf Φ.

The challenge to extend a kernel-based algorithm (such as GPs
or the Gaussian copula process) to a multi-task version gets reduced
to the problem of defining an appropriate multi-task kernel. Some
multi-task kernels are inspired from co-Kriging theory [9] as, for
example the intrinsic correlation model (ICM) and linear model of
corregionalization (LMC). Others are more recent such as the con-
volutional kernel [3].

2 Transductive Multi-Task Learning

As mentioned in the previous section, many learning algorithms,
such as the ones we used in this work, can only handle a limited
number training data efficiently. This makes it even harder to ap-
ply to multi-task problems, since each task carries additional data.
In Kriging, Gaussian processes and Gaussian copula processes we
have to do a covariance (kernel) matrix inversion, which scales cubic
with the number of training data. In this section we present a trans-
ductive approach for multi-task algorithms inspired by the Bayesian
committee machine [8].

Informally speaking, we are going to perform multi-task learning
with the primary variable of interest and each of the secondary vari-
ables individually and combine the results at the end. This will reduce
the computational costs to O(tn̄3).

Theorem 1. Let YX1 , . . . , YXt be the random variables modeling
each of the t tasks and we assume without the loss of generality that
we want to make predictions for the primary variable YX∗

1
for task 1.

Using the assumption that any two YXi , YXj with i �= j ∈ {2 . . . , t}
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are conditionally independent given YX1 and YX∗
1

, we can approxi-
mate the full multi-task model as

P (YX∗
1
|YX1 , . . . , YXt) �

∏t
i=2 P (YX∗

1
|YX1 , YXi)

P (YX∗
1
|YX1)

t−2
· const.

Proof. See [7] for the proof

Notice, that with this approximation, we never have to learn a
model for more than two tasks at a time, which gives the computa-
tional speedup and also provides a way to easily distribute the com-
putation to several machines.

If we apply the approximation to Gaussian copula processes, the
numerator and denominator are conditional Gaussian copula densi-
ties of the form as in Eq. (2). This is advantageous since we only
have to deal with products and quotients of Gaussian distributions
for which analytical solutions are available. More precisely, the ap-
proximate predictive distribution for the Gaussian copula process is
then

P (YX∗
1
|YX1 , . . . , YXt) � cμ̇,Γ̇(F

∗
1 (y

∗
1), . . . , F

∗
m(y∗

m))

·
m∏
i=1

∂F ∗
i (y

∗
i )

∂y∗
i

,

where μ̇ and Γ̇ can be obtained from

Nμ̇,Γ̇ =
t∏

t=2

Nμ̂1,i,Γ̂1,i

Nμ̂1,i,diag(Γ̂1,i)

(Nμ̂1,diag(Γ̂1)

Nμ̂1,Γ̂1

)t−2

, (3)

and μ̂1, Γ̂1, μ̂1,i, Γ̂1,i are defined as in Eq. (2) if we calculate the
predictive distribution for P (YX∗

1
|YX1) and P (YX∗

1
|YX1 , YXi) re-

spectively. For example Γ̂1,i would be obtained as

Γ̂1,i = K(X∗
1 , X

∗
1 )−K([X1, Xi], X

∗
1 )

T

·K([X1, Xi], [X1, Xi])
−1K([X1, Xi], X

∗
1 ),

which is also the main contributor to the complexity of O(8(t −
1)n̄3) = O(tn̄3). Eq. 3 above can be further reduced with the rules
for products and quotients of Gaussian distributions which can be
found in standard textbooks and in [8], but we omit it here due
to paucity of space. Please note also that all y∗

1 , . . . , y
∗
m are from

the primary task and so are their univariate marginal distributions
F ∗
1 , . . . , F

∗
m.

If we follow [2], we can also see our transductive approximation
as an inducing approach, where the so called inducing variables are
defined to be YX1 and YX∗

1
. Using this point of view, it may be easier

to see that the quality of prediction can depend on the number of
query points YX∗

1
used. As in general for transductive algorithms,

the prediction becomes better, the more query points are used. As a
consequence, even if only a few estimations are needed, one should
include artificial dummy test inputs in the prediction step and then
discard them. In most cases this is not a serious problem, since the
training/parameter estimation phase is the one, which takes an order
of magnitude more time than the prediction phase.

3 Experiments

The experiment is performed on the Jura dataset which contains 359
samples of two categorical variables (land uses and rock type) and the
concentration of seven chemical elements. The primary variable has
fewer samples than the secondary variables. This can occur in real

Opt. Time Time/Eval.
MtGCP Cd [Ni, Zn] 898 s 0.517 s
TransGCP Cd [Ni, Zn] 429 s 0.363 s
MtGCP Cu [Pb,Ni,Zn] 1046 s 0.625 s
TransGCP Cu [Pb,Ni,Zn] 621 s 0.409 s
D200 Cd [Ni, Zn] 185 s -
F359 Cd [Ni, Zn] 691 s -
P200 Cd [Ni, Zn] 385 s -

Table 1. The table shows the comparison between the full multi-task copula
process (MtGCP) and the transductive approximation (TransGCP) for Cad-
mium (Cd) and Copper (Cu). The first column indicates the algorithm fol-
lowed by the primary variable and the secondary variables in brackets. The
second column shows the total time needed for the marginal likelihood opti-
mization (Opt. Time) and the last column show the time needed per marginal
likelihood function evaluation (Time/Eval). The last three entries are from [1]
and the algorithm did not run on the same machine as our results. We just
provide the figures for completeness and a rough baseline.

datasets if, for example, the concentration of one element is harder
or more expensive to estimate or the dataset contains missing values.
For comparison reasons we use exactly the same setup as in [1].We
are using the Matérn kernel for Cd, Ni and Cu and the squared ex-
ponential kernel for Zn and Pb. We are modeling the marginal distri-
bution functions for Cd, Ni and Cu with a generalized extreme value
distribution and for Zn and Pb a Gamma distribution is used.
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